
Tag Management in a Reconfigurable Tagged-Token Dataflow
Architecture

BRUNO DE ABREU SILVA
University of Sao Paulo

Department of Computer Systems
Av. Trabalhador Saocarlense, 400

BRAZIL
brunoas@icmc.usp.br

JORGE LUIZ E SILVA
University of Sao Paulo

Department of Computer Systems
Av. Trabalhador Saocarlense, 400

BRAZIL
jsilva@icmc.usp.br

Abstract: Combining dataflow concepts with reconfigurable computing provides a great potential to exploit the
application parallelism efficiently. However, to express such parallelism cannot be a trivial task. Therefore, there
is a great effort to automatically translate programs originally written in procedural languages (like C and Java) into
dataflow architectures which express the parallelism in a natural way. Our previous work presents a static dataflow
architecture which is part of a framework to translate C programs into reconfigurable dataflow architectures. In this
paper, it is discussed an implementation of tag management in a reconfigurable tagged-token dataflow architec-
ture which was implemented on a field programmable gate array (FPGA). Although tagged-token is a traditional
concept to implement dynamic dataflow machines, they have not been well explored in FPGA-based dataflow
architectures. The FPGA-based dynamic dataflow architecture shows the potential for high computation rates al-
lowing more efficient execution and presenting a more effective way to exploit parallelism for several program
statements, as nested loops and function calls, when compared to static dataflow architectures.

Key–Words: Tagged-Token Dataflow Architecture, Dynamic Dataflow Model, Reconfigurable Computing.

1 Introduction
With the advent of reconfigurable computing and

Field Programmable Gate Array (FPGA), researchers
are trying to explore the maximum capacities of these
devices, which are: flexibility, parallelism, optimiza-
tion for power, security and real time applications
[1, 2]. However, the development of tools to con-
vert algorithms into hardware description to execute
in these devices, associated with a General Purpose
Processor (GPP) using high level language, like C and
Java, is one of the challenges for researchers nowa-
days [3, 4].

This paper takes a step forward from our previ-
ous work [5] where accelerating algorithms was im-
plemented converting parts of programs written in
C language by using an FPGA-based static dataflow
model. However, the static model cannot exploit all
parallelism in an application. In the literature, the
dynamic dataflow architecture was proposed to over-
come this problem although the FPGA implementa-
tion of this model was not widely explored. The
main goal in this paper is to describe a specific kind
of dynamic dataflow model, called tagged-token, tag
management concepts, operators and hardware sup-
port implemented on FPGA to better exploit the avail-
able application parallelism.

The remainder of this paper is organized as fol-
lows. Related work is described in section 2. The
dataflow graph model is discussed in section 3. In
section 4, the iterative operators for the dataflow ar-
chitecture is presented. Section 5 presents the opera-
tors implementations and the results are presented in
Section 6. Finally, Section 7 presents the conclusion.

2 Related Work
The dataflow graph model and its architecture

were first researched in the 1970s and were discon-
tinued in the 1990s [6, 7, 8, 9]. Nowadays, they
are a topic of research once more, mainly due to the
advance of reconfigurable technologies, particularly
with the advent of FPGAs [10, 8, 2].

Recently, Michael Flynn has published a pa-
per [11] with very important considerations about
dataflow processors and it is described here: ”In par-
allel software achieving multicore speedup is limited
by: Efficient distribution of tasks, Inter-node commu-
nications (data assembly & dispatch), Memory band-
width, Layers of abstraction that hide critical sources
of and limits to efficient parallel execution. One ap-
proach to the problem is to use heterogeneous com-
pute elements in the form of accelerators. The ap-

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 730 Volume 14, 2015

plication code is profiled and only the kernels of the
application are relocated to the accelerator. Usually
in relevant applications, the kernels represent a small
part of the code (usually less than 10,000 lines). If the
kernels of the application represent well over 90% of
the application execution time then only they need to
be rewritten for the accelerator, limiting the law of ef-
fort to achieve speedup. Successful graphical acceler-
ator implementations follow this line. There is an even
greater speedup opportunity with FPGA based accel-
erators especially when they realize dataflow compute
engines to implement the kernels”.

Since the dataflow model has an implicit paral-
lelism and the FPGA is composed by parallel circuits,
the dataflow model applied to an FPGA has the perfect
combination to execute applications which also have
parallelism in their execution [8]. However, as appli-
cations become more complex, software development
is only possible using high level languages, such as C
or Java [12], although only parts of a program will be
executed directly into the hardware. Therefore, sev-
eral tools have been developed to convert C into hard-
ware using VHDL (Very high speed integrated circuits
Hardware Description Language) [13, 14, 15].

In order to analyze the data dependence, many of
these systems generate an intermediate dataflow graph
for pipeline instructions. The optimizations, using
several techniques such as loop unrolling, are con-
cluded and finally a reconfigurable hardware is gen-
erated in VHDL. The hardware generated using these
tools consists of coarse grain elements or assembly in-
structions for a customized processor as Picoblaze or
Nios from Xilinx and Altera, respectively [16].

Our approach relies on a fine grain model imple-
menting a dynamic dataflow architecture in VHDL.
Such architecture consists of nodes of processing ele-
ments connected by arcs forming a graph.

3 The Dataflow Graph Model
In the Asynchronous Dataflow Graph project,

which was developed by Teifel et al. [2], the asyn-
chronous system is a collection of concurrent hard-
ware processes that communicate with each other
through message-passing channels. These messages
consist of atomic data items called tokens. Each pro-
cess can send and receive tokens to and from its envi-
ronment through communication ports. In the Teifel
project, asynchronous pipelines are constructed by
connecting these ports to each other using channels,
where it is allowed only one sender and one receiver
for each channel. Since there is no clock in an asyn-
chronous design, processes use handshake protocols
to send and receive tokens via channels.

In Fig. 1, it is described an equation converted
into a dataflow graph in three different situations: (a)
a pure dataflow graph, (b) a token-based asynchronous
dataflow pipeline and (c) a clocked dataflow pipeline.

In our project, we use a collection of concurrent
hardware processes that communicate with each other
by using a parallel bus with bits for data and bits to
control the communication in a synchronous system
of communication.

3.1 Dataflow Computations

A traditional dataflow model is described in the
literature and is used to accelerate algorithm designs.
In a dataflow graph, a node represents a processing
element and an arc represents the communication be-
tween two processing elements [6, 10, 7, 8, 9]. A data
bus and a control bus to execute the communication
between the operators were implemented in our previ-
ous static dataflow graph model, where only one item
of data can be in an arch.

In Fig. 2, an example of a basic operator and its
data buses and control buses for communication are
depicted. The signal data a, b and z in Fig. 2 are
16-bit data traveling through the parallel buses. The
signals stra, strb, strz, acka, ackb and ackz are 1-bit
control data to control communication between oper-
ators according to a handshake protocol.

The communication protocol between operators
is described in Fig. 3. As can be seen in figure, two
operators (a sender and a receiver) are communicat-
ing. Both sender and receiver operators have two input
data buses a and b, one output data bus z and their re-
spective control signals stra, strb, strz, acka, ackb and
ackz. Each of the input data bus and output data bus
is connected to a register to store a receiving item of
data and to store a sending item of data, represented by
rectangles with rounded edges a, b and z. The sender
output z is connected to the receiver input a; the out-
put control signal strz from the sender is connected to
the input control signal stra from the receiver; and the
input control signal ackz from the sender is connected
to the output control signal acka from the receiver. A
”logic-0” in the signal ackz informs the sender that
the receiver is ready to receive data. A ”logic-1” in
the signal ackz informs the sender that the receiver is
busy. A ”logic-1” in the signal stra informs the re-
ceiver that an item of data is ready to be sent to it from
the sender. A ”logic-0” in the signal stra informs the
receiver that the sender does not have an item of data
to be sent to it. To start the communication, an enable
signal with ”logic-0” is sent to the ackz connected to
the sender (Fig. 3a). When the receiver is ready to
receive data, a ”logic-1” is sent to stra and an item of
data is sent from sender to the receiver input data bus

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 731 Volume 14, 2015

Figure 1: Computation of yn=yn-1+c(a+b):(a) pure dataflow graph, (b) token-based asynchronous dataflow pipeline
(filled circles indicate tokens, empty circles indicate an absence of tokens), and (c) clocked dataflow pipeline [2].

Figure 2: A basic operator with its data buses (input a
and b, and output z) and handshake control buses (ack
and str for each data bus).

a (Fig. 3b). Finally, a ”logic-0” in the acka acknowl-
edges that the item of data a was received and stored
(Fig. 3c).

3.2 The Dataflow Operators
The dataflow operators implemented in our ar-

chitecture were the traditional operators described by
Veen in [9], which are: copy, non deterministic merge,
deterministic merge, branch, conditional and primi-
tive operators (such as, add, sub, mul, div, and, or,
not, etc.).

To perform the computation in an operator, it is
necessary that all of its input buses of data presents an
item of data. In Fig. 4, operators are described where
filled circles indicate items of data, and empty circles

Figure 3: The communication protocol between two
operators (sender and receiver): a) enabling the com-
munication, b) sending an item of data, c) Acknowl-
edging an item of data.

show absence of items of data. Before the computa-
tion begins, data are available in all operator inputs.
Then, the computation produces its results and data is
sent to the operator output after the computation ends
[2].

The functional execution of dataflow operators is
described below:

1. Branch: This dataflow node performs a two-way
controlled data branch and allows the item of
data to be conditionally sent to two different out-
put buses. It receives a control signal C which
can be TRUE or FALSE used to decide which
output data (Z1 for TRUE or Z2 for FALSE) will
transfer the input data A;

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 732 Volume 14, 2015

Figure 4: Basic dataflow operators (Branch, Condi-
tional, Dmerge, NDmerge, Copy, and Primitive) [2].
Before the computation, all required input data (rep-
resented by filled circles) are available to the operator.
Then, after the computation, the result is available in
the operator output (also represented by filled circles).

2. Conditional (If): Comparison operations are per-
formed by this operator. It receives two items of
data from its inputs A and B and produces a logi-
cal value TRUE or FALSE in its output Z accord-
ing to the implemented comparison. Operations
such as equal to, greater than, less than are im-
plemented by using this operator;

3. Dmerge: This dataflow node performs a two-way
controlled data merge and allows an item of data
to be conditionally read from input data buses. If
the control signal (C) is FALSE, the item of data
present in input A is sent to the output Z. On the
other hand, if C is TRUE, the item of data present
in B is sent to the output Z;

4. NDmerge: This dataflow node performs a two-
way not controlled data merge and allows an item
of data to be read on input data buses. The first
data to arrive into the Ndmerge operator from in-
put A or B is then sent to the output Z;

5. Copy: This dataflow node duplicates an item of
data from the input A to its two outputs Z1 and Z;

6. Primitive: This dataflow node receives two item
of data in its input data buses (A and B), com-
putes the primitive operation with these two
items of data and generates the result sending it
to the output data bus Z. Operators such as add,
sub, multiply, divide, and, or, and not are imple-
mented in the same way.

4 The Iterative Operators

There are two methods to implement a dynamic
dataflow model: code-copying and tagged-token. The

code copying method can achieve high level of paral-
lelism by copying subgraphs of loops into the FPGA
and executing them at the same time for different it-
erations of the loop. However this method requires a
complex area and data traveling management for the
subgraph. This method is similar to loop unrolling
techniques.

The tagged-token method adds a tag to each item
of data traveling by the dataflow graph. The tag iden-
tifies the instance where the item of data is located in
the dataflow graph. Then, an operator performs com-
putation when each input arc of that operator contains
an item of data with identical tags.

In the Fig. 5 part a), it is described a simple itera-
tive statement while where the condition is a function
of f(x) and the loop command is a function of g(x,y).
In this case, the f(x) and g(x,y) control all the data
flowing through the graph preventing deadlock. A dif-
ferent situation is described in the Fig. 5 part b) where
the box h is a delayer which generates an incompati-
bility with data traveling into the graph. Finally, in
the Fig. 5 part c), it is described a loop graph for
the same algorithm in Fig. 5 b). However, the graph
solves the data incompatibility by using the tagged-
token method. As can be seen in the Fig. 5 part c), a
tagged-token method introduces specific operators in
graph to manipulate tags. A new tag area operator is
allocated at the loop beginning to generate a tag for
an item of data coming into the loop. For the iteration
of the item of data, a next tag operator modify the tag
to informs the new iteration. Finally, at the end of the
loop, the tag restore operator restores the old data tag,
that means, the tag that the data had before entering
the loop [9].

4.1 Tag Management Operators

In Fig. 6, it is described a subgraph G1 represent-
ing a for command. In Fig.7, it is described another
for command with subgraph G1 inside it. As can be
seen in the Fig. 7, for each stream of the variables i
and m, from an external for command, a new activa-
tion for the subgraph G1 occurs. Once activated, the
item of data i and the item of data m flow through
the subgraph normally, and various computation iter-
ations over the item of data i and the item of data m
can occur.

The whole graph (the whole program), as well as
a particular subgraph (functions, procedures, and loop
statements), can have items of data belonging to dif-
ferent iterations and activations flowing into its struc-
ture. Therefore, three different tags are needed to en-
sure the right algorithm execution: a tag representing
the whole graph activation (graph act), the subgraph
activation (subgraph act), and the loop iteration (cur-

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 733 Volume 14, 2015

Figure 5: Different models of dataflow iterative constructs.

Figure 6: Example of a subgraph G1 representing an
iterative construction graph.

rent it). The dataflow graph operators used to manage
such tags, which were implemented in this work, are
presented in the following sections.

4.1.1 Initial Tag Generator - ITG

The ITG operator is responsible to generate an
initial tag for each item of data coming into a graph.
The ITG operator has a register (graph act reg) that
stores the current graph activation. Initially, the reg-
ister value is zero, and it is incremented in every new
graph activation. A new activation occurs whenever
new items of data arrive to ITG operator. When an
item of data receives all tags, the ITG provides the
graph act reg value for its graph act tag. The ITG
also initializes the other tags. Therefore, subgraph act

Figure 7: Example of nested loops.

and current it receive zero as initial value. As the
ITG generates initial tags for data, it is an operator
extremely important to ensure that each item of data
will be processed only with its partners.

In Fig. 8, it is described an example using an ITG
operator. As can be seen in figure, the graph is sup-
plied with data to be processed for three variables: A,
B, and C. The arriving order is important since it
defines the tag value. Therefore, a0, b0, and c0 must
arrive before a1, b1, and c1 respectively. Our com-
piler generates the data in the right order. As soon as
the a0 arrives, its value is concatenated to the respec-
tive tag with the values (0,0,0) representing graph act,
subgraph act and current it respectively. When a1 ar-
rives, the tag with the values (1,0,0) is concatenated to

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 734 Volume 14, 2015

Figure 8: The initial tag generated by ITG operator.

a1 since a1 belongs to a new activation for the sub-
graph. The tag generation for the other data is similar.
Each variable being processed into the graph has its
own ITG. In this way, only the arriving order is im-
portant, however there is no need to all variables arrive
into the graph at the same time.

4.1.2 Tag Remover - TR

Whenever an item of data leaves the graph, it does
not need tag anymore. Therefore, the tag can be re-
moved. The Tag Remover (TR) operator removes the
tag of an item of data.

4.1.3 New Iteration Generator - NIG

After an item of data coming into a graph, it can
be inside a loop, and the current it tag need to be ad-
justed for each iteration of the data. Then, the New
Iteration Generator (NIG) adjusts the current it for
each iteration of the item of data, incrementing this
tag.

4.1.4 New Tag Manager - NTM

The New Tag Manager (NTM) assigns a new sub-
graph activation to the tag of the items of data coming
into a subgraph (a subgraph can be a function body
or loop statements). The NTM has a register (sub-
graph act reg) that starts with zero and for each new
subgraph activation its value is incremented. When-
ever an item of data pass by NTM, the value of regis-
ter subgraph act reg is assigned to the subgraph act
tag of data. When the item of data finished to be pro-
cessed in the subgraph, it needs to recover the tag it

Figure 9: Sum of vectors element by element.

had before entering the subgraph in order to continue
to be rightly processed in other graph parts. There-
fore, the old tag must be stored in some way. The
next section explains the process to recover old tags.

Differently from what happens in ITG, it is not
always possible to ensure the right arriving order for
data partners in NTM. Therefore, instead of having
a particular NTM for each variable, we have only
one NTM for all variables used in a given subgraph.
Then, the NTM synchronizes the items of data coming
into the subgraph with the same subgraph act tag (the
partners). When all partners are available, the NTM
supplies its subgraph with such data. As new loop
iterations can occur in this subgraph, NTM operator
assigns zero to the current it tag.

4.1.5 New Tag Destructor - NTD

Whenever an item of data pass by a NTM, the cur-
rent it tag is changed, and the old tag before the item
of data coming into the subgraph is lost. In order to
recover the old tags, a memory is used to store the tags
before to pass by the NTM operator. This memory is
called Old Tag Table (OTT). OTT stores two informa-
tion for each input set: old tag which is composed by
subgraph activation (subgraph act) and current itera-
tion (current it); and new tag (represented by graph
activation and new subgraph activation - assigned by
NTM). The NTM saves the old tag in OTT to be re-
covered later. NTD consults OTT to recover the old
tag, whenever it receives an item of data.

5 Implementation and Synthesis

In Fig. 9, it is described a dataflow graph that
uses all tag management operators proposed in this
project. The C code related to the dataflow graph has
a function called plus that receives two parameters and
returns the sum of them. The main program function

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 735 Volume 14, 2015

has a loop that calls the function plus for each element
of vectors A and B and stores the results in vector C.

At the beginning of graph execution, the constants
(address of vectors A, B, C and values of variables i
and n) are loaded into memory. All constants are wait-
ing for their partners while i enters ITG and receives
its initial tag < 0.0.0, 0 > representing graph act,
subgraph act, current it and the i value.

When the variable i enters NTM1, its subgraph
activation tag receives the value of NTM1 subgraph
activation, that is zero. The NTM1 refers to the loop
beginning in C code. If the logic comparison inside
the loop returns TRUE, the sum operator increments
i, the NIG increments current iteration of tag and the
token becomes < 0.0.1, 1 >. At the same time, a copy
of i arrives in load and store operators. The store then
remains waiting for the item of datum which is partner
of i. After load execution, A[0] and B[0] are sent to
NTM2, that refers to function plus beginning.

NTM2 receives A[0] and B[0] and the values of
tokens are < 0.0.0, 2 > for A[0] and < 0.0.0, 7 > for
B[0]. Their old tags are associated to the new ones and
are stored in OTT. When the sum result of A[0] and
B[0] arrives in NTD, the old tag is recovered, the store
instruction receives the missing partner of i copy and
store the item of data in C[0]. Finally, a copy of the
result is sent to TR that removes the tag and the data
can be sent to some output device, for instance. The
execution cycle continues until the logic comparison
between i and n returns FALSE.

Listing 1: VHDL piece of code illustrating an ITG
case statement with two states: sending and receiving
data.
case s t a t e i s

when r e c e i v i n g d a t a =>
i f i n p u t s t r = ’1 ’ then

i n p u t r e g := i n p u t ;
s t a t e := s e n d i n g d a t a ;

end i f ;
when s e n d i n g d a t a =>

i f o u t p u t a c k = ’1 ’ then
g r a p h a c t r e g := g r a p h a c t r e g + 1 ;
s t a t e := r e c e i v i n g d a t a ;

e l s e
o u t p u t (g r a p h a c t s i z e − 1 downto 0)

<= g r a p h a c t r e g ;
o u t p u t (t a g s i z e − 1 downto

g r a p h a c t s i z e) <= (OTHERS =>
’ 0 ’) ;

o u t p u t (t o k e n s i z e − 1 downto
t o k e n s i z e − d a t a s i z e) <=
i n p u t r e g ;

o u t p u t s t r <= ’ 1 ’ ;
i n p u t a c k <= ’ 1 ’ ;

end i f ;
end case ;

The operators were implemented by using a finite
state machine described in VHDL. A piece of code of
ITG can be seen in Listing 1 as an example of two
typical states of an operator: sending and receiving
data. All operators have an initial state to receive data.
When all the operands are received, the operator exe-
cution starts. At the end of execution, there is a state
to send the result to output signals. In this particular
implementation, a token has 32 bits: 16 for value of
data and 16 for tag. The tags graph activation and sub-
graph activation have 4 bits and the current iteration
has 8 bits. Such values for the tag length are arbitrar-
ily chosen only for tests and to verify the operators
behavior.

All operators have an internal clock signal, how-
ever the communication between operators is asyn-
chronous according to the handshake protocol. In
other words, for each output signal si of an operator,
there is a signal, called strobei, that indicates to next
operator that exists an item of data in output si ready
to be consumed. The operators also have acknowl-
edge signals related to input. Such signals (ack) indi-
cate to previous operator that a given item of data was
received.

6 Results

The tag manipulators (ITG, TR, NTM, NTD, NIG
and OTT) were described in VHDL, synthesized and
validated using the Xilinx ISE 9.1. The Spartan 3E
FPGA family was used and the 3s500efg320-4 de-
vice was selected. Table 1 presents synthesis results
of each tag manipulator.

In previous work [5], where accelerating algo-
rithms were proposed, the Fibonacci sequence was
implemented by using two others tools, C-to-Verilog
and LALP, to be compared with the accelerating algo-
rithms. In this paper, the comparison was realized to
the same tools just for Fibonacci sequence and itera-
tive operators. The Fibonacci algorithm is described
in Algorithm 1 and its dataflow graph is described in
Fig. 10.

Algorithm 1 Calculate Fibonacci
first ⇐ 0
second ⇐ 1
tmp ⇐ 0
for i = 0 to n do

tmp ⇐ first+ second
first ⇐ second
second ⇐ tmp

end for

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 736 Volume 14, 2015

Table 1: Synthesis results for the VHDL implementation of each tag operators using Xilinx Spartan 3E
3s500efg320-4

Device Elements Utilization
NTM NTD ITG TR NIG OTT

Slices 159 (3%) 47 (1%) 45 (0%) 21 (0%) 46 (0%) 13 (0%)
Slices Flip-Flops (FFs) 243 (2%) 81 (0%) 74 (0%) 35 (0%) 69 (0%) 18 (0%)

4 input Look-Up Tables (LUTs) 122 (1%) 57 (0%) 10 (0%) 4 (0%) 41 (0%) 10 (0%)
bounded Input-Output Blocks (IOBs) 229 (98%) 93 (40%) 53 (22%) 37 (15%) 69 (29%) 49 (21%)

Memory Blocks (BRAMs) - - - - - 1 (5%)
Global Clocks (GCLKs) 1 (4%) 1 (4%) 1 (4%) 1 (4%) 1 (4%) 1 (4%)

Min period (ns) 4.786 3.523 3.126 3.056 4.390 3.561
Max Freq (MHz) 208.923 283.889 319.944 327.241 227.788 280.824

Figure 10: The Fibonacci algorithm described in Dataflow Graph.

As can be seen in Fig. 10, there are two parts
in the dataflow graph: one of them is located on the
left side of figure and controls the loop with index i;
on the right side of figure, the manipulation of other
variables and the calculus of Fibonacci sequence itself
are described.

As the dataflow graph consists of nodes and arcs,
each node represents an operator and each arc repre-
sents the communication between two operators. In
Fig. 10, a label is assigned to each arc in the dataflow
graph. As arcs represent the communication between
two operators, the parallel data bus for items of data
and the control data bus for control the communica-
tions are included in the label representations. The as-
sembly language (mnemonic representation) that uses
the name of the operator and its label arcs to con-
vert the dataflow graph into VHDL was developed.

The assembly language for Fibonacci dataflow graph
is described in Listing 2. This specific assembly-like
language is an intermediate dataflow representation
that simplifies the compilation process for both front-
end and back-end. Specifically, the compiler back-end
just needs to directly translate the assembly code into
VHDL. In addition, the assembly language is inter-
esting since it can be used to automatically generate
a graphical representation to debugging, mainly for
large dataflow graphs.

As can be seen in Listing 2, several node opera-
tors and their input and output arcs are listed. Labels
used to connect nodes operators are described initial-
izing with the s character followed by a number and
the others are input or output data signals. The same
organization is used for the others benchmarks imple-
mentation.

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 737 Volume 14, 2015

Figure 11: Comparison among the resource usage for Fibonacci sequence, Iterative Operators, C-to-Verilog, LALP,
and Acceleration Algorithms according to maximum frequency achieved (Max. Freq. MHz), number of flip-flops
(FF), number of Look-Up Tables (LUT), and number of slices (Slices). The y-axis represents the absolute resource
usage in each case, except for Max. Freq where it represents MHz.

Listing 2: The Assembly Language for Fibonacci
Dataflow Graph

1 . ndmerge s7 , dadob , s1 ;
2 . dmerge s2 , dadoc , s1 , s3 ;
3 . ndmerge dadod , s11 , s2 ;
4 . g t d e c i d e r dadoa , s4 , s5 ;
5 . copy s3 , s4 , s9 ;
6 . copy s5 , s6 , s8 ;
7 . b r an c h s9 , s8 , s10 , p f ;
8 . copy s6 , s7 , s12 ;
9 . add s10 , dadoe , s11 ;
1 0 . ndmerge s17 , dadof , s13 ;
1 1 . ndmerge dadog , s25 , s14 ;
1 2 . ndmerge dadoi , s22 , s23 ;
1 3 . ndmerge dadoj , s19 , s21 ;
1 4 . copy s18 , s19 , s20 ;
1 5 . dmerge s23 , dadoh , s12 , s24 ;
1 6 . dmerge s20 , s21 , s26 , s22 ;
1 7 . copy s24 , s25 , s26 ;
1 8 . add s13 , s14 , s15 ;
1 9 . copy s15 , s16 , s18 ;
2 0 . copy s16 , s17 , f i b o ;

In the Listing 2 the labels dadoa, dadob, dadoc,
dadod, dadoe, dadof, dadog, dadoh, dadoi and dadoj
are input data signals used to initialize data for the
Fibonacci dataflow graph and the label fibo is out-
put data signal to inform the result of the Fibonacci

sequence. Specifically for the Fibonacci sequence,
dadoa receives and maintain the n Fibonacci argu-
ment; dadob and dadoc receive ”logic-0” to initialize
the i value in the for command; dadod receives ”logic-
0” and dadoe receives and maintain ”logic-1” to con-
trol the next value for ”i”; dadof receives ”logic-1”
and dadog,dadoh,dadoi and dadoj receive ”logic-0”
to initialize the Fibonacci algorithm.

In Fig. 11, it is described the comparison results.
As can be seen, in a general way, the iterative opera-
tors occupy less FPGA resources when compared to
the other tools. However, the iterative operators have
less speed than the complete benchmark Fibonacci
implemented using three different tools.

7 Conclusion and Future Work

A dynamic dataflow model was implemented by
using tagged-tokens to identify items of data in differ-
ent positions in the dataflow graph. Besides consid-
ering the traditional operators of the dataflow model,
iterative operators were implemented supporting the
dynamic structure proposed in this project. The it-
erative operators were compared with three different
tools executing a Fibonacci sequence and occupy less
FPGA resources than the other tools. This is par-
ticular important in FPGA-based dataflow architec-
tures since they are usually composed by several in-
stances of their operators. However, the iterative op-

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 738 Volume 14, 2015

erators have less speed than the complete benchmark
Fibonacci implemented using three different tools. To
get high performance in the dynamic dataflow model,
using the iterative operators, a strong effort is neces-
sary to reduce the speed of the iterative operators to
justify a dynamic dataflow model. It is also possi-
ble to justify the dynamic model when applying it in
highly parallel applications different from Fibonacci
sequence. Nevertheless, the main aim in this work
was to validate the implementation model. Taking this
into account, dynamic dataflow model becomes a rel-
evant solution for parallelism in FPGA.

Future work includes the development of a mod-
ule to convert C into a VHDL code directly, associated
with the FPGA, to implement a complete dynamic
dataflow model integrating traditional operators with
iterative operators in a unique tool and to compare the
dynamic model to the static model when executing a
set of extremely parallel benchmarks.

References:

[1] Hauck, S. (1998) The Roles of FPGAs in Re-
programmable Systems, Proceedings of the IEEE,
IEEE, vol. 86, pp. 615–638.

[2] Teifel, J. Manohar, R. (2004) An asynchronous
dataflow FPGA architecture, IEEE Transactions
on Computers, IEEE, vol. 53, no. 11, pp. 1376–
1392.

[3] Chen, Z. and Pittman, R. N. and Forin, A. (2010)
Combining multicore and reconfigurable instruc-
tion set extensions, Proceedings of the 18th an-
nual ACM/SIGDA international symposium on
Field programmable gate arrays - FPGA’10,
Monterey, California, USA, ACM, pp. 33–36.

[4] Hefenbrock, D. and Oberg, J. and Thanh, N. T.
N. and Kastner, R. and Baden, S. B (2010) Ac-
celerating Viola-Jones Face Detection to FPGA-
Level Using GPUs , 18th IEEE Annual Interna-
tional Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), ACM, USA,
pp. 11–18.

[5] Silva, J. and Silva, B. A. and Lopes, J. J. and
Silva, A. C. F. (2012) The ChipCflow Project to
Accelerate Algorithms using a Dataflow Graph in
a Recongurable System. WSEAS Transaction on
Computer, WSEAS, vol. 11, pp. 265–274.

[6] Arvind (2005) Dataflow: Passing the token, The
32th Annual International Symposium on Com-
puter Architecture (ISCA Keynote), ACM, Madi-
son, USA, pp. 1–42.

[7] Dennis, Jack B. and Misunas, David P. (1974)
A preliminary architecture for a basic dataflow
processor, Computer Architecture News -
SIGARCH’74, ACM, USA, pp. 126–132.

[8] Swanson, S. and Schwerin, A. and Mercaldi, M.
and Petersen, A. and Putnam, A. and Michelson,
K. and Oskin, M. and Eggers, S. J. (2007) The
Wavescalar Architecture, ACM Transactions on
Computer Systems, ACM, vol. 25, no. 2, pp. 4:1–
4:54.

[9] Veen, A. H. (1986) Dataflow Machine Architec-
ture, ACM Computing Surveys, ACM, vol. 18, no.
4, pp. 365–396.

[10] Cappelli, Andrea and Lodi, Andrea and
Mucci, Claudio and Toma, Mario and Campi,
Fabio. (2004) A Dataflow Control Unit for
C-to-Configurable Pipelines Compilation Flow,
IEEE Sumposium on Field-Programmable Cus-
tom Computing Machines FCCM’04, IEEE,
USA, pp. 323–333.

[11] Michael J Flynn, Oliver Pell and Oskar Mencer
(2012) DATAFLOW SUPERCOMPUTING, 22th
International Conference on Field Programmable
Logic and Applications FPL, IEEE, USA, pp.1–3.

[12] Cardoso, J., H. Neto (2003) Compilation for
FPGA Based Reconfigurable Hardware, IEEE
Design Test of Computers, IEEE, vol.20, no.2, pp.
65–75.

[13] ImpulseC (2015) Impulse Acceler-
ated Technologies, Impulse Acceler-
ated Technologies, Inc. Available at:
http://www.impulseaccelerated.com/. Acessed in:
04/24/2015.

[14] Spark (2004) User Manual for the SPARK Paral-
lelizing High-Level Synthesis Framework Version
1.1, Center for Embedded Computer Systems.

[15] Suif (2015) The Stanford SUIF Compiler
Group, Suifcompiler system. Available at:
http://suif.stanford.edu/. Acessed in: 04/24/2015.

[16] Bobda, C. (2007) Introduction to Reconfigurable
Computing, Springer Publishing Company, Incor-
porated.

WSEAS TRANSACTIONS on COMPUTERS Bruno De Abreu Silva, Jorge Luiz E Silva

E-ISSN: 2224-2872 739 Volume 14, 2015

