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Abstract: Plan reuse is a technique of databases optimization, the main purpose of which is to reuse old access
plans stored in the database to execute future queries instead of generating new plans. To carry out its task, the
optimizer needs to identify similarity between new and old queries. Questions such as which techniques are needed
and which SQL query representation is best to produce accurate similarity estimation remain poorly addressed.
The main goals of this work is to propose an approach for access plan recommendation using 4 SQL queries
representations and clustering techniques to identify similarity between queries. We study SQL queries similarity,
at the intentional level by considering the uninterpreted SQL sentences; therefore SQL queries are represented to
TF-IDF and N-GRAM. Then, feature selection algorithms are used to identify the most significant descriptors in the
feature space. Next, clustering is applied using partitionning clustering, density based clustering and competitive
learning based clustering. Finally, a access plan is recommended to the optimizer. Results show that the use of
feature selection process is relevant to our work especially for TF-IDF representation while the most accurate and
efficient clutsering is obtained with k-means algorithm.
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1 Introduction

Generally, a database management system (DBMS)
could follow and process a variety of access plans to
provide an answer to a given query. We get equiv-
alent results by considering different plans, but use
of the best plan is crucial when performance is con-
sidered. Thus, query optimizers task is to generate a
plan with the sequence of actions that minimizes the
resources consumption. Ideally, we aim to find the
best access plan. But practically, often, the best that a
query optimizer could do is to avoid worst plans. We
note that it is expensive for the server to generate ex-
ecution plans. One solution is to reuse existing plans,
basically generated for old queries, to execute new
similar queries [1]. This solution is based on mea-
suring queries similarity. Many application scenarios
in different fields could benefit from the identification
of similarities in the data, for instance, the work in [2]
studies similarity between OLAP sessions for recom-
mendation purposes and authors of [3] use similarity
metrics for predicting future OLAP queries. In this
paper, we use a log based recommendation process in
order to achieve an optimization task. Our main goal
is to recommend access plans, to be reused by the opti-
mizer, based on similarity identification between new
and old SQL queries. To carry out this task, we ex-

plore the use of clustering along with a feature rep-
resentation of SQL sentences in order to detect sim-
ilarity. Our access plan recommendation approach is
based on several steps described as follows:

• The first step is to describe the SQL queries in
a feature space. At this stage, we represent each
query in the form of a vector whose each descrip-
tor is associated with a weight. There are many
measurement techniques to define the weights.
In our study, we choose N-GRAM and TF-IDF
measurements.

• In the second stage, we use a feature selection
process in order to identify the most significant
descriptors for the queries. We apply 10 features
selection algorithms and choose the best descrip-
tors that were selected by most of the algorithms.

• Next, we perform clustering using 3 categories
of clustering algorithms which are: Partitionning
clustering , Density based clustering and compet-
itive learning based clustering.

• Finally,considering the most accurate clustering
algorithm, we compare new queries with each
cluster’s centroid. If the similarity score between
a new query qn and an old query qo is less or
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equal to a certain treshold, then our system rec-
ommends to the optimizer to use the access plan
of query qo to execute query qn.

This paper is organized as follows: We firstly provide
a litterature review in section 2, then we describe in
section 3 the different processes of our approach in-
cluding query representation, feature selection, clus-
tering and plan recommendation . Finally, we expose
our results in the last section and conclude with dis-
cussing future work.

2 Related Work

The motivation behind this study is to minimize, as
much as possible, generation of new access plans by
identifying similarity between old and new queries.
Thus, our main goal is to come up with an efficient
approach for establishing similarity between two SQL
queries. Existent approaches in the literature perform
SQL queries similarity identification based on two
main phases: i) Defining a pattern for an appropriate
query representation, as well as ii) developing a sim-
ilarity function. Queries can be represented at the in-
tentional level by considering the uninterpreted SQL
sentence [4][13] or at the extensional level by using
the set of tuples resulting from the query execution
[5]. Other query representations range from vectors
of features [6] to set of fragments [7].Graphs [8][9]
are sometimes used as a pattern for query representa-
tion as well. The similarity function varies depending
on the nature of the problem. [9] uses a simple equal-
ity test of queries patterns and the comparison in [10]
is based on separate tests of query fragments. Other
ways for establishing similarity are based on classical
functions applied to the queries representation. For
instance, authors of [5] use inner product and sim-
ilarity in [11] and [5] is identified based on cosine
distance and Jaccard similarity, respectively. [8] con-
verts the queries similarity identification to a graph-
isomorphism problem and compares the queries pat-
tern using the VF graph matching algorithm [12].

3 Access Plan Recommendation Ap-
proach

Queries are said to be similar if the same access plan
could be applied to both of them. When the DBMS
optimizer encounters a new query, our access plan rec-
ommendation approach allows it to reuse old queries
plans and directly use them to execute the new query.
In our work, we want to study the usefulness of tex-
tual analysis of SQL queries for the representation in

a feature space and explore the relevance of clustering
techniques for measuring similarity.

Figure 1: Access Plan recommendation Approach

3.1 Query Representation

In our study, we benefit from textmining techniques to
give 2 weighted representations. Particularly, we pro-
vide a semantic description of SQL queries in order to
represent the data in a feature space.
Firstly, we rewrite all the queries in the following for-
mat proposed by [13]:

〈clause〉 − 〈expression〉

Example:

Query
SELECT R.a, R.b FROM R WHERE R.a=1

Rewritten format of the query
SELECT-R.a, SELECT-R.b, FROM-R,
WHERE-R.a, WHERE-= R.a,1

Then, we tokenize the data in order to explore the
words in queries. Next, we compute the ”importance”
of each word using TF-IDF and N-GRAM techniques.

3.1.1 N-GRAM

A query is a string of characters. Define a n-gram for
a query to be any substring of length n found within
the query. Then, we associate with each query the set
of n-grams that appear p times within that query.
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3.1.2 TF-IDF

Short for Term Frequency Inverse Document Fre-
quency, is a numerical statistic that is intended to re-
flect how important a word is to a document[13]. This
statistic is computed using equations (1) and (2).

tfidfi,j = tfi,j · idfi (1)

where:

idfi = log
|Q|

|{qj : wi ∈ qj}|
(2)

Such as:

• |Q| : Total number of queries in the dataset ;

• {qj : wi ∈ qj}|: number of queries where the
word wi appears (ni,j 6= 0).

3.2 Features selection

Some attributes are not relevant for the description of
the queries. In order to remove insignificant attributes
and detect the attributes which are the most impor-
tant and discriminative, we conduct a feature selection
process. This step will reduce the number of attributes
and make the clustering process cost lower. We apply
feature selection in two main steps. Firstly, we choose
10 algorithms and apply them to both N-GRAM and
TF-IDF representations.Then, we choose only the at-
tributes which were selected by at least 5 algorithms
with N-GRAM representation, and 7 algorithms with
TF-IDF representation. The algorithms used are as
follows:

1. SymmetricalUncertAttributeEval
2. GainRatioAttributeEval
3. FilteredAttributeEval
4. ChiSquaredAttributeEval
5. Weight by Correlation
6. PrincipalComponents
7. InfoGainAttributeEval
8. SVMAttributeEval
9. LatentSemanticAnalysis

10. ReliefAttributeEval

3.3 Clustering

Clustering is a fundamental datamining technique. As
an unsupervised classification method, the main aim
of the clustering process is to group similar objects
together. A cluster is therefore a collection of objects
that have a small distance from one another. Sev-
eral clustering techniques are given in the literature,
in [14] K.-L.Du gives a comprehensive overview of
clustering methods. In our work, we want to examine
the results of 3 types of clustering algorithms when
applied to our SQL data.

3.3.1 Clustering Algorithms

• Partitioning clustering: This category of clus-
tering algorithms involves objects assignment
[15]. It considers a number k of clusters and each
object is assigned to the cluster into which it fits
best. K is required to be prespecified by the user.
Each cluster is represented by one of its objects
called centroid and characteristics of the centroid
are specified based on the studied domain knowl-
edge.The most well-known data clustering tech-
nique is K-means.

• Competitive learning based clustering: This
method is a form of unsupervised training where
outputs are said to be in competition for in-
put patterns. The Kohonens Self-Organizing
Maps (SOM) is a topology-preserving compet-
itive learning model that produces mapping from
a multidimensional input space into a lattice of
clusters. The SOM is not based on the minimiza-
tion of any known objective function, its a clus-
tering network with a set of heuristic procedures
[14].This algorithm is especially powerful for the
visualization of high-dimensional data, since it
converts complex relationships between high di-
mensional data into simple geometric relations at
a low dimensional display .

• Density based clustering: It groups objects
of a dataset into clusters based on density con-
dition [14]. The key idea behind this type of
methods is that for each instance of a cluster,
the neiborhood of a given radius(Eps) has to
contain at least a minimum number of instances
(Minpts).Density based algorithms can handle
outliers and discover clusters of arbitrary shape.
DBSCAN is a widely known density based clus-
tering algorithm.

The clustering algorithms that we use in our work are
presented in Table 1 according to the clustering meth-
ods category they belong to.

Clustering Method Algorithm
Partitionning clustering K-means
Competitive learning based clustering SOM
Density based clustering DBSCAN

Table 1: Algorithms used for clustering

3.3.2 Parameters Estimation

A major challenge in cluster analysis is the estimation
of algorithms parameters.
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As shown in Table 2, DBSCAN algorithm requires 2
parameters (Eps and MinPts), SOM needs the in-
put argument n and k must be specified for K-means
as well. The parameters Eps, MinPts and n are es-
timated empirically and k is estimated using the gap
statistic proposed by Tibshirani, Walther and Hastie in
[16] and defined by equation (3).

Gapn(k) = E∗{log(Wk)} − log(Wk) (3)

whereW (k) is the sum of the pairwise distanceDr for
all n points in cluster r:

W (k) =
k∑

r=1

1

2nr
Dr (4)

Algorithm Parameter
K-means k: number of clusters
SOM n: Number of neurons

DBSCAN Minimum number of data points MinPts
Density measure Eps

Table 2: Parameters required by the clustering algorithms

3.3.3 Similarity metric

As presented above, clustering is the task of finding
collections of similar objects that have a small dis-
tance from one another. Detecting similarity between
queries consists of calculating the distance between
each pair of them.
In order to idenify similar queries, we use the cosine
similarity along with k-means and the Euclidean dis-
tance with SOM. DBSCAN doesn’t need a distance
metric since it’s a density based algorithm.
The cosine similarity between two vectors is a mea-
sure that calculates the cosine of the angle between
them. The cosine similarity formula is given by equa-
tion (5).

cos(θ) =

∑n
k=1 x1kx2k√∑n

k=1 x1k
2
√∑n

k=1 x1k
2

(5)

3.3.4 Cluster validity

The result of clustering algorithms can be very differ-
ent from each other even on the same dataset and it is
difficult to define when a clustering result is accept-
able. The aim of studying the clusters validity is to
find the partitioning that best fits the underlying data,
thus several clustering validity techniques and indices
have been developed. Kovcs & al give an overview
of the most commonly used validity indices in [17].

In order to evaluate clustering validity in our work we
use efficiency and accuracy metrics. We measure ef-
ficiency in terms of the time taken for clustering. In
order to calculate accuracy, we categorize our SQL
queries manually using their Plan hash value, which
give us the actual numbers of clusters and queries per
cluster. Then, we compare the outputs of each clus-
tering algorithm to the actual information. Figure 2
summarizes this process.

Figure 2: Process of finding actual clusters

Plan hash value:

When we execute a SQL statement in Oracle, a
hash value is being assigned to its execution plan.
Hence, every plan is identified by its hash value.
Given two execution plans, comparing one plan hash
value to another easily identifies whether or not the
plans are the same. According to Oracle documenta-
tion, the PLAN HASH VALUE metric can be used as
a shortcut to determine if two execution plans are the
same. We benefit from this metric to find out which
queries have the same execution plan, and hence cate-
gorize them according to their plan hash values.

3.4 Plan Recommendation

There has been much research done on recommen-
dation technologies over the past years. [18] gives a
good survey of the state of the art and possible exten-
sions in the field. Authors in [19] group algorithms for
recommendations into two general classes: memory
based and model-based algorithms. In our study, we
propose a memory based access plan recommender
presented in Figure 3. The recommendation is based
on similarity checking between new query and old
queries whose access plans are available in the mem-
ory. If a similarity is detected between a new query
qn and an old query qo, then our system recommends
to the optimizer to use the access plan of query qo to
execute query qn. This operation makes the optimizer
avoid the cost required to generate a new access plan
for query qn.
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Figure 3: Access Plan recommendation process description

4 Experimentations

4.1 Data

In this study, we use the dataset from APB1 bench-
mark [20]. The star schema of this benchmark has
one fact table and four dimension tables, all described
in Table 3. The dataset contains 55 queries templates.
At this stage we limit our study to the 31 templates
containing 2 tables. We write a Java program in order
to generate 1350 queries using these templates.

Table Name Cardinality Size (MB)
ACTVARS 33323400 2085

CHANLEVEL 10 2.4× 10−4

CUSTLEVEL 990 2.4× 10−2

PRODLEVEL 9900 7.3× 10−1

TIMELEVEL 24 3.9× 10−4

Table 3: APB1 Benchmark Characteristics

4.2 Attributes selection evaluation

We use Weka [21] for data tokenization. We obtain
192 attributes for N-GRAM representation and 68 at-
tributes for TF-IDF representation. After the feature
selection process, the number of attributes is reduced
to 17 and 12 for N-GRAM and TF-IDF respectively
as shows Table 4. A detailed description of selected
attributes is given in Tables 5 and 6.

Weighting
technique

Number of
attributes

Nb.of selected
attributes

N-GRAM 192 17
TF-IDF 68 12

Table 4: Number of attributes according to weight measure
method

Attribute Select by
CODE LEVEL 7
PRODUCT LEVEL 7
and-PRODLEVEL 7
from-PRODLEVEL 7
select-* 7
where-=PRODLEVEL 7
MONTH LEVEL 7
TIME LEVEL 7
and-TIMELEVEL 7
and-like 7
from-TIMELEVEL 7
where-=TIMELEVEL 7
select-ACTVARS 6

Table 5: Selected attributes dor TF-IDF Representation

Attribute
Select

by
CODE LEVEL and-PRODLEVEL 7
PRODUCT LEVEL where-=PRODLEVEL 7
PRODUCT LEVEL where-=PRODLEVEL
CODE LEVEL 7
from-ACTVARS from-PRODLEVEL 7
from-ACTVARS from-PRODLEVEL
where-ACTVARS 7
from-PRODLEVEL where-ACTVARS 7
from-PRODLEVEL where-ACTVARS
PRODUCT LEVEL 7
where-=PRODLEVEL CODE LEVEL 7
where-ACTVARS PRODUCT LEVEL
where-=PRODLEVEL 7
MONTH LEVEL and-TIMELEVEL 5
TIME LEVEL where-=TIMELEVEL 5
TIME LEVEL where-=TIMELEVEL
MONTH LEVEL 5
from-ACTVARS from-TIMELEVEL 5
from-ACTVARS from-TIMELEVEL
where-ACTVARS 5
from-TIMELEVEL where-ACTVARS 5
from-TIMELEVEL where-ACTVARS
TIME LEVEL 5
where-ACTVARS TIME LEVEL
where-=TIMELEVEL 5
PRODUCT LEVEL from-ACTVARS 4
PRODUCT LEVEL from-ACTVARS
from-TIMELEVEL 4
QUARTER LEVEL and-like %Q4 4

Table 6: Selected Attributes For N-GRAM Representation

4.3 Clustering Evaluation

We now present the results of the clustering process.
The metrics used for evaluation are accuracy and ef-
ficiency. Accuracy in our case is the ability of our
approach to assign the SQL queries to the same clus-
ters as obtained by Oracle’s metric. We measure effi-
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ciency in terms of the time taken for clustering. Table
7 shows the actual number of clusters and the number
of queries contained with in each cluster. Recall that
queries sharing same clusters are the queries whose
access plan is, actually, the same. We start our ex-
periment by estimating the parameter k required by k-
means algorithm using the gap statistic. The estimated
and actual numbers of clusters are reported in Table 8.
In the next step, k-means, DBSCAN and SOM algo-
rithms are applied to 4 representations of the dataset:
TF-IDF and N-GRAM each with full and selected
attributes. Each representation and each algorithm
give a different categorization of the SQL data. The
graphs reported by Figures 5 and 6 compare the num-
ber of queries contained with in the obtained clusters
by DBSCAN and k-means respectively, while Figure
4 presents the clusters produced by SOM. From the
obove experimentations we compute accuracy and ef-
ficiency reported in Figure 7 and Table 9 respectively.

Cluster Plan hash values Number of Related queries
1 4072885321 500
2 2685087043 150
3 3213411799 150
4 579567007 50
5 1918545856 50
6 1806581648 150
7 2213448725 150
8 4051080753 100
9 1743607541 50

Table 7: Actual number of queries per cluster

Figure 4: Results of clustering using SOM

Figure 5: Results of clustering using DBSCAN

Figure 6: Results of clustering using k-means

Query representation Actual Estimated
TF-IDF 9 9
TF-IDF Selected 9 9
N-GRAM 9 10
N-GRAM Selected 9 8

Table 8: Actual and Estimated Number of Clusters Using
GAP Statistic

Query representation K-means DBSCAN SOM
TF-IDF Full 0.22 3.33 35.69
TF-IDF selected 0.03 0.53 21.59
N-GRAM Full 0.10 21.42 87.65
N-GRAM selected 0.04 0.75 17.95

Table 9: Time of clustering (sec)
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Figure 7: Accuracy of the clustering

Results from Table 8 show that gap statistic gives
generaly a good estimation of the number of clusters.
We observe that , unlike N-GRAM representations,
both TF-IDF representations, either with selected or
full attributes, give exactly the same estimated num-
ber of clusters which is equal to the real number of
clusters. This means that when applied to TF-IDF rep-
resentations, the gap statistic gives better estimation
of the number of clusters compared to N-GRAM rep-
resentations and the feature selection process doesnt
have any impact on the estimation in this case.

Moving on to the accuracy of clustering, Figure
7 shows that the overall accuracy of k-means is bet-
ter compared to DBSCAN even if it slightly decreases
for cluster 7. On the other hand, we noticed that SOM
is not relevent to our study. Even if inter-clusters dis-
tance is greater when the algorithm is applied to TF-
IDF representation with selected set of attributes, the
accuracy remains poor since the number of clusters
retrieved is far from the actual number of clusters.

With regard to efficiency, the fastest clustering is
achieved with k-means algorithm with 0.03s recorded
for TF-IDF representation with selected attributes
while DBSCAN and SOM take 0.53s and 21.59s ,
respectively, to cluster the SQL data modeled in the
same representation.

From the above discussion it is straightforward to
conclude that the most accurate and quick clutsering
is obtained with k-means algorithm when applied to
TF-IDF with selected attributes, thus, we use it for the
next step of the recommendation process.

4.4 Plan Recommendation

Considering the clusters obtained with k-means algo-
rithms, we start the recommendation process as de-
scribed in Figure 3. Recall that our approach consists
of calculating the distance between a new query Qn

and the centroids of all clusters. Once the nearest clus-
ter is identified, we calculate the similarity between qn
and each query qi in that cluster, using the cosine sim-
ilarity described previously. Then, we compare the
results.
In order to test the relevence of this approach, we ap-
ply the recommendation process to a query Qn that
we pick randomly. Qn is defined as:

Qn:
select ACTVARS.UNITSSOLD
from ACTVARS,TIMELEVEL
where
N ACTVARS.TIME LEVEL=TIMELEVEL.TID
and TIMELEVEL.MONTH LEVEL = ’5’;

Results of similarity calculation show that the highest
similarity is detected with a certain query Q29 defined
as:

Q29:
select UNITSSOLD
from ACTVARS ,TIMELEVEL
where
ACTVARS.TIME LEVEL=TIMELEVEL.TID
and TIMELEVEL.MONTH LEVEL=’10’;

Hence, we recommend to the optimizer to use the ac-
cess plan of Q29 to execute query Qn.

5 Conclusion
In this paper, we presented a clustering approach
for access plans recommendation comparing 3 differ-
ent algorithms and 4 query representations. Resuts
showed that TF-IDF representation with selected at-
tributes gives the most accurate clustering results and
gap statistic can be used to estimate number k of clus-
ters. We also noticed the advantage of using fea-
ture selection algorithms for TF-IDF representation
in terms of efficiency without affecting the accuracy.
Meanwhile, feature selection process was not relevent
when applied to N-GRAM representation.
In our future work,we will explore classification al-
gortihms and other query representations in feature
space. Another important issue that we plan to con-
sider in the future is to use a bigger set of data for
tests instead of a set of limited instances.
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réutilisation des plans dexćution. STIC09,2009.
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