
A Hybrid Load Balancing Policy
underlying Cloud Computing Environment

S.C. WANG, S.C. TSENG, S.S. WANG*, K.Q. YAN*

Chaoyang University of Technology
168, Jifeng E. Rd., Wufeng District, Taichung 41349

TAIWAN, R.O.C.
{scwang; s10314903; sswang*; kqyan*}@cyut.edu.tw

*: Corresponding author

Abstract: - Network bandwidth and hardware technology are developing rapidly, resulting in the vigorous development
of the Internet. A concept, cloud computing, uses low-power hosts to achieve high usability. The cloud computing refers to
a class of systems and applications that employ distributed resources to perform a function in a decentralized manner.
Cloud computing is to utilize the computing resources (service nodes) on the network to facilitate the execution of
complicated tasks that require large-scale computation. Thus, the selecting nodes for executing a task in the cloud
computing must be considered. However, in this study, a hybrid load balancing policy, which integrated static, and
dynamic load balancing technologies to assist in the selection for effective nodes. In addition, if any selected node can no
longer provide resources, it can be promptly identified and replaced with a substitutive node to maintain the execution
performance and the load balancing of the system.

Key-Words: - Cloud computing, Distributed computing, Load balancing

1 Introduction
Cloud computing is a concept in distributed systems
[1,6,8]. It is currently used mainly in business
applications in which computers cooperate to
perform a specific service together. As network
bandwidth and quality outstrip computer
performance, various communication and
computing technologies previously regarded as
being of different domains can now be integrated
[6,12]. In a cloud-computing environment, users
have access to faster operational capability on the
Internet, and the computer systems must have high
stability to keep pace with this level of activity [8].

However, cloud computing aggregates the rich
computing resources to form a powerful computing
capability and assist in the computing of large
amounts of complicated tasks. In the cloud-
computing environment, there are numerous nodes
capable of providing computing resources; some of
them are frequently available and able to provide
sharing of computing resources constantly, but some
are not [4]. Therefore, when an inefficient node is
chosen for distributing tasks, re-distribution and re-
execution of tasks may frequently occur, lowering
the execution performance of the system. How to
select efficient nodes is one of the issues worth of
our further investigation. Thus, this study proposed
a hybrid load balancing policy, which first selects
effective node sets in the stage of static load
balancing to lower the odds of selecting ineffective

nodes and makes use of the stage of dynamic load
balancing. When the status of a node is changed, a
new substitute can be located in the shortest time to
maintain the execution performance of the system.

The rest of this paper is organized as follows.
The literature review is discussed in Section 2. The
proposed policy is discussed in Section 3. The
simulation results are shown in Section 4. Finally,
the conclusions and the future works are discussed
in Section 5.

2 Related Works
Cloud computing is a distributed computing system
in which nodes are interconnected with the internet.
However, previous studies of load balance [3,9,11]
are not specifically address cloud computing to
order the application of internet. As cloud
computing is a distributed system utilizing the nodes
scattered, the most critical issue pertaining to
distributed systems is how to integrate and apply
every node into a distributed system, so as to
achieve the goals of enhancing performance,
resource sharing, extensibility, and increase
availability [12]. “Load Balancing” is very
important in a distributed environment. In
distributed systems, every node has different
processing speed and system resources, so in order
to enhance the utilization of each node and shorten
the consumption of time, “Load Balancing” will

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 580 Volume 14, 2015

play a critical role. On the other hand, in distributed
systems, the policies and methods for keeping a
“Load Balancing” will directly affect the
performance of the system [2,5]. In addition, the
load balancing policies for distributed systems can
be generally categorized into static load balancing
policies and dynamic load balancing policies [7,11].

Static load balancing policies use some system
information, such as the various information related
to average operation, operation cycle, etc.
According to these data, tasks are distributed
through mathematic formulas or other adjustment
methods, so that every node in the distributed
system can process the assigned tasks until
completed. The merit of this method is that system
information is not required to be collected at all
time, and through a simple process, the system can
run with simple analyses [7,11].

Dynamic load balancing policies refer to the
current state of the system or the most recent state at
the system time, to decide how to assign tasks to
each node in a distributed system. If any node in the
system is over-loaded, the over-loading task will be
transferred to other nodes and processed, in order to
achieve the goal of a dynamic balance [2,5].
However, the migration of tasks will incur extra
overhead to the system [2,5]. It is because the
system has to reserve some resources for collecting
and maintaining the information of system states. If
this overhead can be controlled and limited to a
certain acceptable range, in most conditions,
dynamic load balancing polices outperform than
static load balancing policies [9,10].

3. Research Methods
The proposed system consists of a dispatcher that
manages system related tasks and nodes that join the
cloud computing and provide resources. A
dispatcher’s role in the system is the management of
tasks, including maintenance of the load-balancing,
monitor on the status of each node in the cloud
computing, selection for nodes for task execution,
and assignment and adjustment of tasks for each
node. To make a dispatcher accomplish its mission
in the most efficient way, a dispatcher has the
mechanisms of an agent, node selection, and
calculation of effective node.

In this system environment, an agent mainly
collects related information of each node
participating in this cloud computing, such as CPU
utilization, remaining CPU capability, remaining
memory, the execution condition of the assigned
task, and etc. After all these data are collected, they

will be provided to the dispatcher and assist it in
maintaining the load balancing of the system.

To make the dispatcher select appropriate
nodes effectively, all of the nodes in the system will
be evaluated by the threshold that is derived from
the demand for resource needed to execute the task.
Nodes that pass the threshold are considered
effective, and will be organized into a table of
effective nodes. Through the mechanism of value
functions, the value of each effective node can be
derived, and will be listed in ascending order.
Besides, to get hold of the status of task distribution,
all the assigned tasks and executing tasks will be
incorporated into an execution aggregate, and the
time required by each node to process the task will
be predicted too. In addition, the unassigned nodes
will be incorporated into a waiting aggregate. When
any node in the execution aggregate accomplishes
its assigned task, it will be transferred to the waiting
aggregate, waiting for another assignment.

In a cloud computing environment, the
composition of nodes is dynamic, every node is
likely to enter a busy state at any time and thus
lower its performance, so when selecting nodes,
CPU utilization cannot be the sole factor of
consideration. Other factors affecting the
effectiveness of nodes are the past level of
contribution, past completion rate, possibility of
continuous provision of the resource, etc. Thus, a
value function is proposed to evaluate the value of
each effective node, and provide reference for
selecting effective nodes.

In this value function, the properties of the task
to be processed is the decision variable in the value
function, and the relative values of each decision
variable can be derived with equations or figure
correspondence tables. In addition, to search for a
node that meets the demand most, different weight
values will be given to the nodes in accordance with
the level of preference for the task, so as to select
the nodes most suitable for the execution of the task.
Therefore, the value function is shown as Eq. (1).

)(, ji

n

i ij xfwV ∑=
 (1)

Where

∑ =+++=
n

i
ni wwww 1...21 , 1≤j≤N; 0≤f(xi,j)≤1

And, f(xi,j) is the score of the decision variable i

in node j; Vj is the estimated value of node j; i is the
decision variable adopted in this value function, and
there are totally n decision variables; and there are

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 581 Volume 14, 2015

totally N nodes; wi is the weight value of each
decision variable.

Nodes play the role of assisting in the
execution of tasks in this system. When any node is
in an available state and can provide its resource, a
“join” message and related hardware information
will be transmitted to the dispatcher; when it can no
longer provide resource, it has to transmit an “exit”
message to the dispatcher.

To maintain the load balancing of the system,
this study proposed a hybrid load balancing policy,
consisting of static and dynamic load balancing
stages. In the stage of static load balancing, when
request of executing a task is made, the task will be
assigned to an appropriate node to achieve the goal
of load balancing. In addition, in the stage of
dynamic load balancing, the system will be adjusted
dynamically according to the load balancing until a
balance is reached.

3.1 The static load balancing stage
Because cloud resources are provided by available
nodes, when a request for executing a task is
proposed, the task has to be divided into several
subtasks. Based on the proposed task, a table of
effective nodes for the task will be built, so that the
needed nodes can be selected from the table of
effective nodes. Suppose in executing a certain task
and k nodes are required to provide assistance, the
top k nodes with the highest value will be selected
from the table of effective nodes to assist the
execution of the task. If the total amount of nodes in
the table is smaller than the required amount k, a
portion of subtasks will be first assigned to effective
nodes and the remaining subtasks will be processed
when new nodes are incorporated in the table of
effective nodes. The relationship between different
roles in static load balancing stage is described in
Fig. 1.

Fig. 1. The interaction of different roles at static load balancing stage

In Fig. 1, node sends message to dispatcher:

(a) When any node is in a ready state and can
provide its resource, a “join” message and
related hardware information will be
transmitted to the dispatcher.

(b) When node can no longer provide resource, it
has to transmit an “exit” message to the
dispatcher.

The processes of static load balancing stage are

shown as follow:
(1) When a request for executing a task is

proposed, dispatcher dispatches agent to
collect related information of each node
participating in this Cloud computing
environment.

(2) Agent collects the related information of
node, such as remaining CPU capability,

remaining memory ...etc.
(3) Nodes sent its own information to agent.
(4) Agent provides all node related information

to dispatcher.
(5) Dispatcher builds a table of effective nodes

by mechanism of calculation of effective
nodes.

(6) Dispatcher selects effective nodes set from a
table of effective nodes by mechanism of
node selection.

(7) Dispatcher assigns subtasks to selected nodes.

3.2 The dynamic load balancing stage
In a cloud-computing environment, the assignment
of tasks has to be dynamically adjusted in
accordance with the variation of node status. The
variation of the node status can be identified in two
conditions; firstly, when the dispatcher receives the

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 582 Volume 14, 2015

message that a certain node can no longer provide
resources, and secondly, when the execution of a
certain node exceeds the expected time. When any
of the above situations are occurred and is detected
by the dispatcher, the dispatcher will launch the
agent mechanism to collect the related data of all the
nodes in the table of effective nodes and compare
the collected data with historic ones, in order to
confirm if the node is still effective. If the node

remains effective, the distribution of the task will
not be re-adjusted, but the time required for the
node’s execution of the task will be estimated again.
If the node is confirmed ineffective, a node with the
highest value will be selected from the waiting
aggregate, and the existing task will be transferred
from the ineffective node to the new effective one.
The relationship between different roles in dynamic
load balancing stage is described in Fig. 2.

Fig. 2. The interaction of different roles at dynamic load balancing stage

In Fig. 2, node sends message to dispatcher:
(a) When any node is in a ready state and can

provide its resource, a “join” message and
related hardware information will be
transmitted to the dispatcher.

(b) When node can no longer provide resource, it
has to transmit an “exit” message to the
dispatcher.

The processes of dynamic load balancing stage

are shown as follow:
(1) When state of node changes, dispatcher

dispatches agent to collect related data of
each node in the table of effective nodes.

(2) Agent collects related information of node in
the table of effective nodes.

(3) Nodes sent its own information to agent.
(4) Agent provides collected data to dispatcher.

Dispatcher compares the collected data with
historic ones in order to confirm if the node is
still effective.

(5) If the node is confirmed ineffective, a node
with the highest value will be selected from
the wait aggregate, and the subtask is re-
executed by new effective node.

4. Experiment
In this section, simulation experiments are
conducted according to the proposed method. Based
on the demands for computing resource for the
execution of the task and transmission rate,
simulation tests were conducted on the four
different conditions and compared to other node-
selection mechanisms in terms of performance, in
order to verify if the mechanism proposed by this
study had a better performance.

The experiment verification is conducted on
the nodes selected to execute tasks by the value
function of this study. The value of each node is
estimated with the value function and serves as the
basis for task assignment. This method first divides
the task into several independent subtasks and takes
minimum resource demand of each node as the
threshold value. After the value of each node is
estimated with the value function, the nodes for the
execution of the task are selected by the order of
their values. In the value function, decision
variables can be given a different setting according
to the factor focused in the actual application. In the
experiment, the available CPU capacity, size of
available memory, transmission rate, and the past
completion rate were the four factors regarded as the
threshold for the value function to select nodes and
the decision variables for estimating node values.

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 583 Volume 14, 2015

In the cloud computing environment, the
computing capability provided by the CPU and the
available size of memory of each node are different.
In addition, cloud computing utilizes idle resources
of each node, so the available resource of each node
may vary in a busy condition. From the perspective
of task completion time, the available CPU capacity
and size of available memory are the two decisive
factors for the duration of execution. Thus, in this
experiment, the available CPU capacity and the size
of available memory were taken as the threshold for
value function and decision variables for estimating
node values.

In cloud computing environment, nodes may
not provide as much transmission rate as the
bandwidth due to ongoing execution of tasks. In this
experiment, the transmission rate of each node was
taken as the threshold for the value function to
select nodes and a parameter for estimating node
values. Furthermore, the effectiveness of the nodes
in the cloud-computing environment may vary with
time, and the status of the nodes in the next moment
may not be completely predicted. However, the time
that nodes can provide resources can be predicted
through historic records. Given that the nodes
capable of completing the execution of the assigned
task as expected, and the time of providing
resources for cloud computing is longer, in this
study, the node’s past completion rate was also
taken as the threshold for the value function to
select nodes and one of the variables for estimating
node values.

After the decision variables for the value
function are determined, to make every decision
variable comparable, each of the variables has to be
quantified. In this experiment, the available CPU
capacity and the size of available memory are
quantified. In addition, in the aspect of transmission
rate, because the transmission rate between
dispatcher and each node is limited to their network
bandwidth, the network bandwidth of the dispatcher
is taken as the denominator to quantify the
transmission rate of each node. To verify that the
nodes selected by the value function of this study
were able to effectively reduce the times of re-
assigning tasks in a cloud-computing environment
and achieve the goal of enhancing system
performance, it was assumed in the experiment that
the time for every node to provide the resource was
limited.

According to the aforementioned assumption,
this experiment was carried out in two stages. In the
first, the network simulator – Network Simulation
Version 2 (NS-2) [13] was adopted to create a
cloud-computing environment dynamically. In the

second, Java was adopted to simulate various task-
scheduling algorithms. In the first stage, cloud
computing environments with 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 nodes were
dynamically created with NS-2. Data packages were
generated at random sizes, and transmitted in CBR
(constant bit rate). The transmission rates between
the dispatcher and every node were tested. To
simulate the heterogeneity of nodes in the cloud
computing environments, the CPU capability,
memory size, CPU usage and memory usage, past
task completion rate of each node are generated at
random. In addition, the effective time of each node
was generated at random and then multiplied by the
past task completion rate, so as to reflect the relation
between the past task completion rate and effective
time of the node.

Because the composition of resources is
dynamic and varies with time, the state of node is
difficult to forecast. However, in our experiment,
the effective time of each node is generated
randomly. According to the computing resource and
amount of data transmission required to execute the
task, the experiment was conducted in the following
four conditions.

Condition 1: Demand for computing resource is
large (25,000GHz), and amount of
data transmission is small
(100MB).

Condition 2: Demand for computing resource is
small (1,000GHz), and amount of
data transmission is large
(300,000MB).

Condition 3: Demand for computing resource is
large (25,000GHz), and amount of
data transmission is large
(300,000MB).

Condition 4: Demand for computing resource is
small (1,000GHz), and amount of
data transmission is small
(100MB)

In the experiment, the four different task
scheduling algorithms, including First Come First
Served (FCFS), Later In First Out (LIFO), available
CPU usage (CPU-based), and value function (VF)
was employed to select 10 nodes for task
assignment. The task was divided into 10 subtasks
and distributed to 10 nodes. If any of the nodes
could not complete the assigned task, new nodes
would be selected and substituted for according to
various task scheduling algorithms, and the task
would be re-distributed and executed. Based on the
above-mentioned four conditions, the simulation
experiments comparison of the task completion time
are shown in Fig. 3-6.

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 584 Volume 14, 2015

Fig. 3. Condition 1:

(Demand for computing resource is large, and amount of data transmission is small)

Fig. 4. Condition 2:

(Demand for computing resource is small, and amount of data transmission is large)

Fig. 5. Condition 3:

(Demand for computing resource is large, and amount of data transmission is large)

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 585 Volume 14, 2015

Fig. 6. Condition 4:

(Demand for computing resource is small, and amount of data transmission is small)

5. Conclusion
The resources in a cloud-computing environment
are composed of a lot of resources on the network,
and nodes that provide these resources will
dynamically change with time. Therefore, a new
node has to be located to take over the already
assigned task, and task re-execution and re-
distribution will occur. Therefore, node selection
cannot simply depend on the resources that a node
can provide (such as the available CPU capacity),
other factors of the node has to be considered too, so
as to find suitable and effective nodes for assisting
the execution of tasks. To maintain the load
balancing of the system in a cloud-computing
environment, this study proposed a hybrid load
balancing policy, which integrates static and
dynamic load balancing techniques, to locate
effective nodes, identify system imbalance in the
shortest time when any node becomes ineffective,
and fill in with a new node. The experiment on the
above-mentioned four conditions has proven that the
proposed method is far more effective than the other
methods in selecting nodes with better effectiveness
and performance for task execution, reducing task
completion time, and avoiding the occurrence of
task re-distribution and re-execution. Thus, it can
effectively maintain the load balancing and enhance
the performance of the system. The proposed
method has the main advantage of locating proper
resources according to the task properties. It can
reduce the drop of system performance resulted
from miss-selection of ineffective nodes, and
maintain the load balancing of the system.

In this paper, a hybrid load balancing policy is
proposed for the cloud computing environment.

Since the cloud computing environment is more
complicated than other distributed system, if the
policy can achieve the load balancing in the cloud
computing environment, the policy will also be able
to solve the load balancing in other distributed
systems.

References:
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, M. Zaharia, “A View of
Cloud Computing,” Communications of the
ACM, Vol. 53 No. 4, 2010, pp. 50-58.

[2] H. Chang, X. Tang, “A Load-balance based
Resource-scheduling Algorithm under Cloud
Computing Environment,” Lecture Notes in
Computer Science, Vol. 6537, 2011, pp. 85-90.

[3] R Kaur, S Kinger, “Analysis of Job Scheduling
Algorithms in Cloud Computing,” International
Journal of Computer Trends and Technology,
Vol. 9, No. 7, 2014, pp. 379-386.

[4] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang,
A. Ghalsasi, “Cloud Computing -The Business
Perspective,” Decision Support Systems, Vol.
51, Issue 1, 2011, pp. 176-189.

[5] T. Mathew, K.C. Sekaran, J. Jose, “Study and
Analysis of Various Task Scheduling Algorithms
in the Cloud Computing Environment,” in
Proceedings of International Conference on
Advances in Computing, Communications and
Informatics, 2014, pp. 658-664.

[6] P. Mell, T. Grance, The NIST Definition of
Cloud Computing, National Institute of
Standards and Technology (NIST), 2011, pp. 1-
7.

[7] X. Ren, R. Lin, H. Zou, “A Dynamic Load

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 586 Volume 14, 2015

https://ijcttjournal.org/Volume9/number-7/IJCTT-V9P169.pdf
https://ijcttjournal.org/Volume9/number-7/IJCTT-V9P169.pdf
https://ijcttjournal.org/Volume9/number-7/IJCTT-V9P169.pdf
http://www.sciencedirect.com/science/article/pii/S0167923610002393!!!

Balancing Strategy for Cloud Computing
Platform based on Exponential Smoothing
Forecast,” in Proceedings of 2011 IEEE
International Conference on Cloud Computing
and Intelligence Systems (CCIS), 2011, pp.
220-224.

[8] L.H. Wang, J. Tao, M. Kunze, “Scientific
Cloud Computing: Early Definition and
Experience,” in Proceedings of 10th IEEE
International Conference on High Performance
Computing and Communications, 2008, pp.
825-830.

[9] X. Wang, B. Xu, S. Zhong, “A Study on
Optimized Method of Task Scheduling
Oriented Cloud Computing Environment,”
Applied Mechanics and Materials, Vol. 143,
2012, pp. 245-249.

[10] P. Yang, P. Chavali, E. Gilboa, A. Nehorai,

“Parallel Load Schedule Optimization with
Renewable Distributed Generators in Smart
Grids,” IEEE Transactions on Smart Grid, Vol.
4, Issue 3, Sept. 2013, pp. 1431-1441.

[11] Y. Yu, Y. Wang, H. Guo, X He, “Optimisation
schemes to improve hybrid co-scheduling for
concurrent virtual machines,” International
Journal of Parallel, Emergent and Distributed
Systems, Vol. 28, Issue 1, 2013, pp. 46-66.

[12] A. Vouk, “Cloud Computing- Issues, Research
and Implementations,” Information Technology
Interfaces, 2008, pp. 31-40.

[13] The Network Simulator Version 2 (NS-2),
http://www-isi.edu/nsnam/ns/ns-
documentation, 2005.

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, S. C. Tseng, S. S. Wang, K. Q. Yan

E-ISSN: 2224-2872 587 Volume 14, 2015

