
A Comparative study on Syntax Matching Algorithms in Semantic Web

V.P.SUMATHI1, Dr.K.KOUSALYA2, R.KALAISELVI3
1 Department of Computer Science and Engineering

Kumaraguru College of Technology, Coimbatore, Tamilnadu, INDIA
2 Department of Computer Science and Engineering

Kongu Engineering College, Perundurai, Tamilnadu, INDIA
3 Department of Computer Science and Engineering

Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamilnadu, INDIA
1sumathi.vp.cse@kct.ac.in 2kouse@kongu.ac.in 3kalaiselvi.rangaraj@gmail.com

Abstract: - In semantic web, extraction of meaningful information involves many tedious processes due to
similarity between the information, context of the words used, structure similarity and relationship between the
words. Ontology helps to understand the context of heterogeneous information available in the web. The
domain specific ontologies can be merged to extract integrated information from various semantic websites.
Different algorithms are in practice to find similarity between class names that are exist in different ontologies.
The class names which are syntactically and semantically equal are identified and merged to produce global
ontology that can be used for information retrieval. In this paper we have implemented and compared various
syntax matching algorithms and identified the best syntax matching algorithm appropriate for semantic web
environment. Performances of identified algorithms are analyzed and evaluated with respect to precision, recall
and F-measure.

Keywords:- Syntax matching algorithm, Semantic Web, Information theory, Heterogeneity, Similarity
measures.

1 Introduction
Semantic Web is a mesh of information linked up in
such a way that easily processable by machines, on
a global scale. Semantic web drives the evolution of
the current web by enabling users to find, share, and
combine information more easily. Semantic web is
constructed with the help of ontology. The prevalent
definition presented by Gruber: Ontology is a
formal explicit specification of a shared
conceptualization. Extracting information from
semantic webs is a tedious process due to their
heterogeneity. The ontologies of different websites
are merged to extract information. One of the
important steps in merging two domain specific
ontologies is to identifying the input ontologies
which are belonging to same domain or different
domain. Ontologies belonging to two different
domains cannot be merged together as such. It is
required to identify every classes, sub classes,
object properties, data properties and relationship
between the classes described in ontologies. It is
also necessary to find the similarity between both
ontologies which in turn identify the similarity
between object, class, data properties, object

properties and relationships between the classes.
Various similarity measure algorithms can be
employed to identify similarity between the class
names. Currently, in semantic web similarity
measure is classified as syntax similarity measure
and semantic similarity measure. Syntax similarity
measure reflects the relation between the patterns of
the two strings where as semantic similarity
measure is based on the meaning of class name and
context, which can be obtained with the help of pre-
constructed libraries. For measuring syntax
similarity, around 67 similarity measure algorithms
are available for information retrieval [8]. From the
list, some similarity measures are more appropriate
for identification of string similarity.
This paper concentrates only on syntax matching
algorithms and a study on seven syntax similarity
measures is carried out. Similarity measures are
used for identifying syntax similarity between two
class names, object names, instances and
relationships between names. In this paper name
refers to either class name, object name available in
the ontologies. But few number of research works
are employed more than one similarity measures for

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 474 Volume 14, 2015

mailto:2kouse@kongu.ac.in

finding similarity between class names. Similarity
identification is a tedious and time consuming job.
Moreover, if the result justification is done using
only syntax matching algorithms, it may not be
precise. This is due to different ontologies
describing different data with same class names or
different class name describing same data. Both
cases occur in semantic web. It is necessary to go
for semantic matching in addition to syntax
matching measures. Most of the previous works on
ontology merging did not address the way to find
efficient syntax matching algorithms. In this paper,
the term used as name refers to either class name or
object name available in the ontologies.

The main contributions of this paper are
1. Implements seven different syntax matching

algorithms namely Hamming distance,
Levenshtein distance, Dameran – Levenshtein
distance, Jaro Winkler distance, Optimal String
Alignment Algorithm, N-Gram string matching
algorithms and Soundex.

2. Compared the performance of all seven
algorithms with respect to precision, recall and
F-measure.

3. Helps the researcher to understand and choose
the best syntax similarity measure.

This paper is organized as follows. Section 2
presents the related works and information about
choice of various syntax matching algorithms used
by many researchers. Section 3 explains various
syntax matching algorithms with appropriate
examples and information theory. Section 4
provides discussion of results obtained through
experiments. Section 5 includes conclusion and
recommendations for researchers to choose best
syntax similarity measures based on their domains.

2 Related Work
Similarity measures are used in variety of fields like
comparison of strings, symbolic word, patterns,
images, DNA sequences and codes. Identifying the
similarity between the pair is one of the problematic
tasks. All similarity measures cannot be used to
identify the similarity in all cases due to their own
restrictions. Some measures are used only for
numeric comparison and some other for string
comparison. Only countable number of techniques
is used for both numeric and string. There are
various types of models for identifying similarities.
In semantic web, widely used model is probabilistic
model where the calculated similarity value lies
between zero and one.

Information theory of similarity is playing a vital
role behind the similarity measures. The definition
of similarity can be discussed in the form of
intuitions and assumptions [8]. The edit distance
measures is widely used to identify the similarity in
various fields like biological sequences, schema
mapping, text retrieval, document clustering,
ontology mapping, ontology alignment, ontology
merging and so on. In this work, only strings
similarity has been analysed. After identifying the
similarity between class names, the equivalence
classes are merged to get the global ontology which
is used to extract information from various semantic
webs.

Identifying the syntax similarity is the initial step in
ontology merging for performing merging operation
on two domain specific ontologies. In this context
the syntax similarities are measured by using variety
of similarity algorithms. Mostly edit distance
techniques are used which is based on three
operations insertion, deletion and substitution.
These operations are performed while transforming
a class name from one to another belongs to same
domain. The sub polynomial approximation
algorithm is used to improve the performance of edit
distance algorithm. Due to this approach edit
distance algorithm runs in near-linear time [1]. In
the field of string comparison, to improve the
performance of edit distance algorithm first step is
to compress the strings, and then to compute the edit
distance between the compressed strings [7]. SEDIL
software was released to learn edit distance
calculations [17]. In string matching, two different
input strings represent the same context are
considered as equal. Based on the requirement
names may be given elaborately or simple manner.
Hamming distance algorithm is used to identify the
similarity between the names are equal in length. In
query processing context the field names were
compared by using Hamming distance technique
[2]. The parallel string matching concept was used
to reduce the computation time of Hamming
distance algorithm [28].
The word comparison was done by using
Levenshtein distance in dictionary searching
scenario [24]. In ontology matching techniques,
both Levenshtein distance and soundex were used in
companied manner [16]. In recent research papers,
Dameran Levenshtein distance was used to identify
the similarities. This is the improved version of
Levenshtein distance. The character comparison was
done by considering transposition of the character in
both names. Most of the ontology merging papers
used Jaro Winkler similarity measures. By using

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 475 Volume 14, 2015

Jaro Winkler approximation the similarity values
calculated lies between zero to one. This technique
comes under probabilistic model based similarity
measures. In semantic web all types of operations
like ontology mapping, alignment and merging were
performed by using Jaro Winkler algorithm for
similarity measures [4,10,11,13,19,20,27,32].
In schema matching the class names and object
names were compared by using N-gram similarity
measures [3,6]. Most of the research related to
medicine field use the N-gram string matching
algorithm [15,25,30,33]. Ontology alignment, string
matching, automatic spelling correction, automatic
key phrase extraction, indexing techniques and
semantic layer constructions were used the N-gram
similarity measures for calculating similarity
between names as discussed in [12,18,21,23,30,31].
In natural language processing the phonetic
matching approaches for Indian languages was done
by using N-gram and Soundex similarity measures.
These two techniques can be used to perform spell
checking and correction for given two input class
names [26]. Some of the ontology merging
techniques which are working based on N-grams
similarities measures combined with Dice
coefficient similarity measures for calculating
similarity values [9]. Most of the phonetic sound
based researches used Soundex similarity measuring
technique to correct the spelling error occur
[5,14,16,26]. The natural language processing field
involves variety of functions like translation of
words between languages, the pronunciation
difference between continents. These were
successfully handled by Soundex technique [22].
The above said reference article provides most
widely used techniques in various fields. Most of
the researcher may not be aware of all these
techniques at the initial stage of their research work.
This paper provides idea about all these algorithms
with detailed explanations including examples in
forthcoming section.

3 Syntax Matching Algorithms
Let m and n are the input names. The similarity
between m and n is measured by the ratio between

the amount of information needed to provide the
commonality of m and n and the information needed
to fully describe m and n. The similarity is
calculated using the formula in equation (1). In this
equation I(x) is the amount of information contained
in a proposition x. The function f is explained in
equation (2). Commonality p is calculated by taking
negative logarithm of the probability of the
statement shown in equation (3) and q provides
description which is calculated by taking logarithm
of the probability of the description on m and n. The
difference between m and n is calculated by
subtracting commonality values from the
description is given in equation (4). If both names
are identical then p value is greater than zero
therefore f(p,p) = 1. If there is no common character
occurrence between the names then p becomes zero,
f(0,q) = 0.
In this paper, various syntax matching algorithms
are implemented and their performance differences
are analysed. Edit distance is a way to measure
similarity between two names by counting the
minimum number of operations required to
transform one name into the other. The possible
operations are insertion, deletion and substitution.
Edit distance provides basic for most of the syntax
similarity algorithms. The syntax similarity
algorithms suitable for string comparison are
(i)Hamming distance, (ii)Levenshtein distance,
(iii)Dameran – Levenshtein distance, (iv)Jaro
Winkler distance, (v)Optimal String Alignment
Algorithm, (vi)N-Gram string matching algorithms
and (vii)Soundex. These are widely used in
semantic web environment.
Hamming distance algorithm is used if both string
names are equal in length; otherwise this method is
not applicable to calculate similarity. Transpositions
of characters are not taken into account and this
method never detects human typing errors. In
Levenshtein distance similarity measure the number
of insertion, deletion and substitution operations are
counted when strings are not equal in length. Here
also transpositions of character occurrences are not
considered. In Dameran-Levenshtein distance
measure transpositions are considered while
transforming from one string to another.

{ }

)4(),((),((),(
)3(),((log
)2(,0,0|),(),(
)1()),((),,(((),(

nmcommonInmndiscriptioInmDifference
nmcommonPp

qpqpqpqpf
nmndiscriptioInmcommonIfnmSim

−=
−=

<=>>==
=

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 476 Volume 14, 2015

 The transpositions of character occurrence should
be within the window size. The window size is
calculated by considering length difference between
two given input names. In most of the research
papers related to ontology mapping and merging,
the Jaro Winkler distance similarity measure is used.
In this algorithm, characters of first string are
compared to the characters of second string at
unaligned position. The matching is performed only
within the match range calculated between two
strings. In optimal string alignment algorithm
dynamic programming technique is used to measure
the similarity. In N-gram similarity the given input
string is divided into number of substrings of length
N. The similar substrings of length N are counted.
In Soundex algorithm spellings mistake occurs due
to pronunciation are eradicated. So the strings given
by various continents are compared easily and
similarities are identified. These algorithms are
explained in the following sections.

3.1 Edit Distance
Edit distance is a way to measure similarity between
two strings by counting the minimum number of
operations required to transform one string into the
other. The edit distance involves three different
operations, insertion(I), deletion(D) and
substitution(S). Consider two strings of length i, j
where string 1 = s1[1…..i] , string 2 = s2[1..j]. The
numbers of operations performed while
transforming string1 to string2 are counted.

I : if i < j by one then an insertion operation will
take place
D : if i > j by one then a deletion operation will
take place
S : if i = j and s1[i] != s2[j] then substitution
operation will take place

Various combinations of operations are involved
while transforming string s1 to s2. This can be
represented as combination of I, D and S. Total
number of operations can be calculated by using the
formula N(I) + N(D) + N(S) where N means
number of insertions, deletions and substitutions
operations and these values various from 1 to L
where L is max(length(s1),length(s2)). The number
of occurrence of I and D are equal to difference
between lengths of two strings. The maximum
number of occurrence of S depends on the minimum
length of the string. From the table1 the

combination of operation possible while
transforming from one class name to another can be
easily identified.

Table 1 Operations Vs String lengths

 L1 – String1 length and L2 – String2 length

3.2 Hamming Distance
The Hamming Distance (HD) is calculated by
counting the number of substitutions take place
while transforming the names. While comparing
each and every character position, no substitution is
needed if both characters are same, otherwise the
character in name1 is substituted by character in
name2 and it is counted as one substitution. This
type of measurement is suitable only when both
names are in equal length. Strings of unequal length
will leads to high cost of substitution. The
difference between two names are equal to the
number of substitutions taken place while
converting from one class name to another class
names
 Differences (name1, name2) = Length of the string
 - Number of characters similar
Consider the names “toned” and “roses” where
second and fourth character are same and the
character position 1,3,5 are different. So the
numbers of substitutions required is three while
transforming “toned” into “roses”.

Difference(“toned”,”roses”) =

I(description(“toned”,”roses”)) –
I(common(“toned”,”roses”))

The difference is equal to 3. The similarity is the
ratio between commonality and description which is
2/5 equal to 0.4. Let us consider the names people
and people, the differences between the names are
zero. The similarity value between the names people
and people is 6/6 equal to 1.

∑

 =∃∃

=

∈∈

)5(1
0,,

),(

21

otherwise
yxiftyx

yxHD

tpositionatnameyandnamex

Operations
Performed

Comparison of string length

L1 = L2 L1 > L2 L1 < L2

Insertion Not
possible

Not
possible Possible

Deletion Not
possible Possible Not

possible
Substitution Possible Possible Possible

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 477 Volume 14, 2015

3.3 Levenshtein Distance
This algorithm identifies the similarity between
strings by performing minimum number of
insertions, deletion and substitution operations while
transforming from name1 to name2. This algorithm
can measure the similarity value for unequal length
class names.
Let L1, L2 be the length of the name1, name2. While
comparing the lengths I, D and S operations are
possible to take place. The length differences
between the names are used to calculate the number
of insertion and deletion operations performed while
transforming from name1 to name2. If L1 < L2,
insertions and substitution will be performed. For L1
> L2 deletion and substitution will be performed.
Case L1<L2 :
 No. of insertion operations N(I) = L2 – L1
Case L1>L2 :
 No. of deletion operations N(D) = L1 – L2
Number of substitutions S is calculated using
equation (6). The Levenshtein distance between the
given two class names are calculated using the
equation (7). For example consider the names colour
and color. The number of operations needed to
transform from one to another is calculated.
Lev(colour, color) is ((2*5)-(2*4))/2 + (6-5) = 2.

3.4 Dameran –Levenshtein Distance
This technique is similar to Levenshtein distance,
where transpositions of character occurrence should
be considered within the window size. Window size
is calculated by considering length difference
between two given names. The original motivation
is to measure distance between human misspelled
names and original names to improve performance

of information retrieval applications. Let L1 and L2
be the length of name1 and name2. The Dameran-
Levenshtein distance between the class names are
calculated using the equation (8).

Consider colour and color where window size is 1.
The nth character in name1 is compared to nth and
n+1th character position of the name2. Due to
window size one, the letter ‘r’ of name2 is compared
with both ‘u’ and ‘r’ in name1. Instead of
substituting ‘u’ by ‘r’ the deletion of ‘u’ take place
at position 5 in name1. Hence the number of
operations needed to transform from one to another
is calculated using equation (8). Dam-Lev (colour,
color) is (10-(2*5))/2 + (6-5) = 1.

3.5 Jaro Winkler Distance
For calculating string similarity it is necessary to
calculate two important values. The first one is
match range and second one is number of
transpositions. The match range means the number
of character positions are considered for a single
character in name1 to find the matches in name2.
The match range is calculated using the equation
(9). The character matches are checked within the
match range. For each character encountered in the
first string, it is matched to the first unaligned
character in the second string which is an exact
match. If no such occurrence within the match range
the character is not matched. The numbers of
transpositions are calculated by counting the number
of character which are not matched in the exact
positions but matched within the match range. For
similarity measure consider only half of the
transpositions.

)9(1
2

()).2,().1(

)8()21(
2

1
0,,

*2)21(*2
)2,1(

1var21

)7()21(
2

1
0,,

*2)2,1(*2
)2,1(

)6(
1
0,,

)2,1(

21

−=

−+

 =∃∃

−−
=−

∈∈

−+

 =∃∃

−
=

 =∃∃

−=

∈∈

∑

∑

∑

lengthnamelengthnameMaxMatchrange

LLAbs
otherwise

yxiftyx
LLMin

namenameLevDam

sizewindowtofromiouswhichtpositionatnameyandnamex

LLAbs
otherwise

yxiftyx
LLMin

namenameLev

otherwise
yxiftyx

llMinS

tpositionatnameyandnamex

c o l o u r
c o l o r

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 478 Volume 14, 2015

 The Jaro Distance between the given two names are
calculated by subtracting Jaroproximity from 1.
JaroDistance (name1.name2) = 1 -
 Jaroproximity(name1.name2)
Jaroproximity between the given two names are
calculated using the equation (10). Winkler
modifications consider the prefix substring matches
of given two names which boost the similarity
scores between name1 and name2 that matches
character by character in at the starting index. The
prefix size is calculated by considering the number
of character exactly matched by original index from
the starting index 0.
Jarowinkler proximity = Jaroproximity +
 0.1*prefix size * (1.0 – Jaroproximity)

For example consider the names jones and johnson.
The match range value for the given two names is 2.
Matchrange = Max(5,7)/2 -1 =7/2 - 1 = 3- 1 = 2
 So, the nth character in one name will be compared
to nth and n+1th character of other name. If the
character matches in the same position index or
within match range then number of matched
character is counted as one. The transpositions are
calculated by considering the nth character is equal
to any one positions like n+1, n+2, n+3 …. (n +
match range) character in other name then
transposition count is incremented by one.
Matchrange = 2
Number of matches = 4
Half of the transpositions = ½ = 0

Prefix size = 2 (only first two characters are exactly
matched)
Jeroproximity (jones,Johnson)
 = 1/3 *(4/5+4/7+ (4-0)/4) = 0.790

Jarowinkler proximity = 0.790+0.1*2*(1-0.790)
 = 0.832

3.6 Optimal string alignment algorithm
In this algorithm dynamic programming techniques
is used to find the similarity between given class
names. Dynamic programming is a technique to find
solution to any big problem by combining solutions
of the similar sub problems exists in that problem. It
is the tabular computation of D(n,m). Using bottom
up approach compute D(i,j) for small values of i and
j where i, j value varies from 1 to length of the input
names. Compute the large D(i,j) based on
previously computed smaller values of D(i,j).
Computation of D(i,j) as given in equation (11).
Consider the example name1 = execution and
name2 = intention. In table 2, name1 occupy column
wise cell and name2 occupy row wise cell positions.
Initially all cells are occupied by index value of
characters in names. Each matrix element D(i,j) is
calculated using the equation (11). If insertion or
deletion operation is possible, the cell value is
computed by selecting minimum value of left, down
and diagonal cell values plus 1.

)11(

)()(0
)(!)(2

)1,1(

1)1(
1),1(

),(

)2,1(
)2,1()2,1(

().2
)2,1(2

().1
)2,1(1

)10(
3

21

)2,1(

=
=

+−−

+−+
+−

=

−
=

=

=

++

=

onsubstitutifor
jyixif

jyixif
jiD

inserionforjiD
deletionforjiD

MinjiD

namenamematches
namenameonstranpositinamenamematchestransposednotwerethatmatchesofpercentage

lengthname
namenamematchesmatchednameofpercentage

lengthname
namenamematchesmatchednameofpercentage

where

transposednotwerethatmatchesofPercentage
matchednameofpercentagematchednameofpercentage

namenameityJaroproxim

j o n e s
1 2 3 - 4
j o h n s o n

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 479 Volume 14, 2015

 Optimal string alignment algorithm
 Input : string1 length(n) , string2 length(m)
 Output : D(n,m) cell provides similarity value

{ initialize D(i,0) = i D(j,0) = j
// compute recurrence relation
for each i = 1..n
for each j=1..m
compute D(i,j) using equation (11)
// Terminate after the computation of D(n.m)
// adding back trace to find minimum edit distance
D(n,m) provides similarity value
Back trace from D(n,m) to D(0,0)

0,0

),(

>>>>

↓

←

=

jminwhere

performedoperationnsubstituioarrowdiagonal
performedoperationDeletion
performedoperationinsertion

jiDoftraceBack

}

Table 2 Optimal string alignment algorithm output matrix
n 9 ↓8 ←↓9 ←↓10 ←↓11 ←↓12 ↓11 ↓10 ↓9 8
o 8 ↓7 ←↓8 ←↓9 ←↓10 ←↓11 ↓10 ↓9 8 ←9
i 7 ↓6 ←↓7 ←↓8 ←↓9 ←↓10 ↓9 8 ←9 ←10
t 6 ↓5 ←↓6 ←↓7 ←↓8 ←↓9 8 ← 9 ←10 ←↓11
n 5 ↓4 ←↓5 ←↓6 ←↓7 ←↓8 ←↓9 ←↓10 ←↓11 ↓10
e 4 3 ←4 ←5 ←6 ←7 ←↓8 ←↓9 ←↓10 ↓9
t 3 ←↓ 4 ←↓5 ←↓6 ←↓7 ←↓8 7 ←↓8 ←↓9 ↓8
n 2 ←↓ 3 ←↓4 ←↓5 ←↓6 ←↓7 ←↓8 ↓7 ←↓8 7
i 1 ←↓ 2 ←↓3 ←↓4 ←↓5 ←↓6 ←↓7 6 ←7 ←8

0

1
e

2
x

3
e

4
c

5
u

6
t

7
i

8
o

9
n

If substitution operation means 2 is added with
minimum value otherwise zero is added if two
characters are equal. These cell value computation
continued until D(n,m) computation is finished. To
derive edit distance minimum try to backtrack the
matrix. After the computation of D(n,m), it is traced
back from upper right corner to lower leftmost
corner ie from D(n,m) to D(0,0). The value
available in D(n,m) gives the similarity measure of
the given two names. As per the given output matrix
the similarity value of the given two input names is
8. While performing the backtrack function the type
of operations is performed can be identified using
three different arrows shown in output matrix.

3.7 N-gram string matching algorithm
N–gram means all substrings are of length N. In N-
gram model it is necessary to find the appropriate

value for N. The N value should be stable one. For
larger strings the value of N is three which is more
appropriate than any other value. It is also called
trigrams. All N-gram set for a particular name is
called as sample space. The first step of this
algorithm is to find all possible substrings of length
N of the given two input class names. The order of
the character in the substrings is corresponding to
main string. It is used to find the match between
given two names. For string similarity calculation
all substrings are derived from both names. The
numbers of substring similar are counted. The edit
distance algorithm is used to find the similar
substring of given two main string. The similarity
between two names is calculated using the equation
(12). Probability is a way of assigning every event a
value between zero and one. The probability that
one of the events will occur is given by the sum of

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 480 Volume 14, 2015

the probability of the individual events. The N-gram
algorithm is working based on probability model.
According to the information theory, the
commonality and description between two names
are calculated. I(Common (name1,name2)) is equal
to number of similar N-grams between two names.
I(Description (name1,name2)) is equal to total
number of N-grams available in both names.
Sim(name1,name2) is calculated using equation
(13). The optimized value of N is three which is
trigrams. For the similarity computation of trigrams
the names are divided into three letter words. Two
arrays of trigrams are compared. Numbers of equal
trigrams are counted. Using Dice’s coefficients the
similarity between two names is calculated as in
equation (14). Computed similarity value is more if
the similarity between the names is higher. Consider
the example name1 = Alexander and name2 =
Aleksander. The corresponding trigrams are Ale,
lex, exa, xan, and, nde, der and Ale, lek, eks, ksa,
san, and, nde ,der.

The similarity between the given two names
SimN-gram is equal to 1/(1+15-(2*4) = 0.125. Only
four trigrams are common between the given two
input names. Both names are described using fifteen
trigrams. Using Dice co-efficient formula the
similarity is calculated. SimDice is equal to
(2*4)/(7+8) = 0.533.

3.8 Soundex Algorithm
In this algorithm, converting name to code is an
important task. Where it considers the first character
of the name as it is and the remaining character
encoded to a three digit number. For this encoding
the prerequisite is to fix some numerical values for
each and every character. Both capital and small
characters are having the same numeric value.
Similar sound characters are sharing common value.
The numeric values of all the letters given in table 3.

Table 3 Characters equivalent numeric value

The Soundex algorithm consists of four steps to
generating code for the given name. The algorithm
has two operation namely encoding and matching
operations. In encoding, the name is converted into
corresponding code. Matching operation identify
exact match between the code derived from names.
The codes are in equal length so Hamming distance
algorithm is used to identify the similarity between
the codes. Consider two set of inputs. The set1
consists of Robert, Rubert and its corresponding
code is R163 for both names. The set 2 consists of
week, weak and its code is W200.

Soundex code generation procedure
1. Retain the first letter of the string.
2. Remove all occurrences of the following letters,

unless it is the first letter a,e,h,i,o,u,w,y.
3. Assign numbers to the remaining letters specified

in the table 3.
4. If two or more letters with the same number were

adjacent in the original name or adjacent except
for any intervening h and w then omit all but the
first.

Using Hamming distance similarity measure it is
claimed that these two are similar names. This
algorithm neglect the spelling difference produced
by the vowels. In set2 similarity between names is
one. But the meaning of both words is not related to
any particular concept. This result is conveying
wrong similarity value. For using this type of
measures, it is been tried to understand weather it is
suitable for chosen semantic web environment are
not.

)14(
|)2(||)1(|
|)2()1(|*2

)13(
)2,1((

)2,1(()2,1(

)12(

|)2()1(|*2
|)2(||)1(|1

1)2,1(

nametrigramnametrigram
nametrigramnametrigramSim

namenamendescriptioI
namenamecommonInamenameSim

namegramNnamegramN
namegramNnamegramN

namenamegramN

Dice +
∩

=

=

−∩−+
−+−+

=−

1 2 3 4 5 6 7
Ale lex exa xan and nde der
Ale lek eks ksa san and nde der

1 2 3 4 5 6 7 8

Characters Value
b,f,p,v 1

c,g,j,k,q,s,x,z 2
d,t 3
l 4

m,n 5
r 6

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 481 Volume 14, 2015

4 Result and Discussions
Experiment was conducted on two set of class
names in domain specific person ontologies. All
seven algorithms were implemented and compared
the properties like class name, object name, attribute
name and type of relationship between class and
subclass available in two input ontologies. The
precision, recall and F-measure are computed for all
algorithms. It was found that the similarities
between the class names are not equal in all
algorithms. Also it was identified that the results
produced by some algorithms depend on number of
operations were performed while transforming from
one name to another. For some algorithms output
was fraction, lies between 0 and 1. For comparison
purpose all algorithm outputs were normalized
between 0 and 1.

In this experiment the initial comparison was done
between class names available in person ontologies
belong to family domain. The ontologies were taken
for comparison is shown in figure 1 and 2. Matched
class names were identified by performing many to
many comparison then object property and data
property of all matched classes were considered for
computing similarity between them. Protégé tool
was used to view the person ontologies. The class
properties, object properties and data properties are
indentified and extracted from ontologies. The class
names in first person ontology were compared to the
class names available in second person ontology.
Fifty two names were taken for comparison. The
precision, recall and F-measure were calculated
using the equation (15), (16) and (17).

)17(
RePr

Re*Pr*2

)16(Re

)15(Pr

callesition
callecisionMeasureF

datarawfromresultsAccurateofNumberTotal
resultsAccurateofNumbercall

systemthebyretrievinganswersofNumberTotal
resultsAccurateofNumberecision

+
=−

=

=

Fig.1 person.owl

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 482 Volume 14, 2015

Fig. 2 person1.owl

Table 4 Performance comparison of syntax similarity algorithms

TH

Hamming
Distance

Levenshtein
distance

Dameran –
Levenshtein

Distance

JaroWinkler

distance

N-gram

N-gram Dice’s
coefficient

P R F P R F P R F P R F P R F P R F

0.7 1 0.12 0.21 1 0.53 0.69 0.8 0.71 0.75 0.81 0.88 0.84 1 0.12

0.21

1 0.38 0.55

0.8 1 0.12 0.21 1 0.32 0.48 0.7 0.38 0.5 0.93 0.76 0.84 1 0.12

0.21

1 0.35 0.52

0.9 1 0.12 0.21 1 0.26 0.41 1 0.26 0.41 1 0.41 0.58 1 0.12

0.21

1 0.18 0.31

Table 5 Performance of Soundex algorithm

TH

Soundex Algorithm

Hamming Distance Dameran –
Levenshtein Distance

JaroWinkler distance

P R F P R F P R F

0.7 0.9 0.76 0.84 0.8 0.91 0.86 0.8 0.94 0.86
0.8 0.9 0.47 0.63 0.9 0.76 0.84 0.9 0.76 0.82
0.9 0.9 0.47 0.63 0.9 0.47 0.62 0.94 0.5 0.65

P-Precision R-Recall F- F-measure TH-Threshold value

Threshold values were set to 0.7, 0.8, and 0.9. By
varying the threshold values, the performance of the
various algorithms were analyzed. The similarity

values were calculated between each and every pair
of words. The obtained values were whole numbers
which indicate numbers of operations performed

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 483 Volume 14, 2015

while transforming from one class name to another
class name. Fixing suitable threshold value for all
algorithms results in removal of unmatched pairs
from the input class names.
The precision, recall and F-measures obtained using
different algorithms is given in the table 4.
Dameran–Levenshtein distance and Jaro Winkler
distance algorithms are having high recall rate and it
is more suitable for ontology classes. The remaining
four algorithms are having low recall rate. Class
names vary based on pronunciations can be easily
identified using N-gram and Soundex algorithms.
Class names vary with sound then soundex
algorithm in combination with Dameran–
Levenshtein distance algorithm and Jaro Winkler
Distance algorithm shows good result. Results are
shown in table 5.

5 Conclusion and Recommendations
The retrieval of information from a particular
domain is done by merging domain specific
ontologies. The first step of merging process
involves the identification of similarity between
class names of ontologies. From this experiment,
some algorithms like hamming, Levenshtein and N-
gram hold high precision but low recall rate. These
algorithms are identified the class names which are
exactly matched. But in real environment, some
class names have different spelling. Due to the
pronunciation of the class names, the spelling gets
variation. These class names are not identified by
these algorithms. The algorithms like Dameran –
Levenshtein Distance and Jaro Winkler produced
acceptable precision and recall rate. At 0.7 threshold
value 80% of the class names were identified. While
merging the ontologies from different region with
different pronunciation the combination of
algorithms like soundex with either Dameran –
Levenshtein Distance or Jaro Winkler algorithms
produces better result than any other algorithms. In
semantic web environment, precision and recall are
more important than execution time, because once if
the merging was done without the human
intervention, then the success ratio of automatic
ontology merging will be very high. The researchers
can try to understand the nature of class names in
domain specific ontologies and then choose the
appropriate algorithm for syntax matching in
semantic web environment. The syntax matching is
not enough for identification of similarity. Some
contribution on identification of semantic matching
is also necessary. The combination of both syntax
and semantic will produce better results than any
one techniques.

References:
[1] Alexandr Andoni and Krzysztof Onak,

Approximating Edit distance in Near-Linear
Time, SIAM Journal of computing, no. 6
2012, pp. 1635-1648.

[2] Alex X. Liu, Ke Shen,Eric Torng, Large
Scale Hamming Distance Query Processing,
ICDE 27th International Conference, IEEE,
2011, pp. 553-564.

[3] Antonis, Koukourikos, Giannis Stoitsis,
Pythagoras Karampiperis, Data-Driven
Schema Matching in Agricultural Learning
Object Repositories, Metadata and
Semantics Research Communications in
Computer and Information Science, Volume
343, 2012, pp. 301-312.

[4] Babak Bagheri, Hariri, Hassan Sayyadi,
Hassan Abolhassan, Combining Ontology
Alignment Metrics Using the Data Mining
Techniques, ECAI International Workshop
on Context and Ontologies, 2006, pp.65-67.

[5] Blerim Rexha, Valon Raca, Agni Dika,
Enhancement of string matching queries on
Albanian Names for Kosovo Civil Registry,
Recent Advances in Computers,
Communications, Applied Social Science
and Mathematics, ISBN: 978-1-61804-030-
5, 2011.

[6] Daniel Rinser, Dustin Lange, Felix
Naumann, Cross-lingual entity matching
and infobox alignment in Wikipedia,
Information Systems, Volume 38, Issue 6,
2013, pp. 887–907.

[7] Danny, Hermelin, Gad M. Landau, Shir
Landau, Oren Weimann, A Unified
Algorithm For Accelerating Edit-Distance
Computation via Text-Compression,
Symposium on Theoretical Aspects of
Computer Science, 2009 (Freiburg), pp.
529–540.

[8] Dekang, Lin, An Information-Theoretic
Definition of Similarity, ICML, Volume 98,
1998.

[9] Fabiana Freire, de Araujo, Fernanda Ligia
R.Lopes, Bernadette Farias Loscio, MeMO:
A Clustering-based Approach for Merging
Multiple Ontologies, Workshops on
Database and Expert Systems
Applications(DEXA), IEEE, 2010, pp. 176-
180.

[10]Feiyu Lin, State of the Art: Automatic
Ontology Matching, Research Report, ISSN
1404-0018, 2007.

[11]Feiyu Lin, Kurt Sandkuhl, Shoukun Xu,
Context-based Ontology Matching: Concept

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 484 Volume 14, 2015

http://link.springer.com/search?facet-author=%22Antonis+Koukourikos%22
http://link.springer.com/search?facet-author=%22Giannis+Stoitsis%22
http://link.springer.com/search?facet-author=%22Pythagoras+Karampiperis%22
http://link.springer.com/book/10.1007/978-3-642-35233-1
http://link.springer.com/book/10.1007/978-3-642-35233-1
http://link.springer.com/book/10.1007/978-3-642-35233-1
http://link.springer.com/bookseries/7899
http://link.springer.com/bookseries/7899
http://link.springer.com/bookseries/7899
http://www.sciencedirect.com/science/article/pii/S0306437912001299
http://www.sciencedirect.com/science/article/pii/S0306437912001299
http://www.sciencedirect.com/science/article/pii/S0306437912001299
http://www.sciencedirect.com/science/article/pii/S0306437912001299
http://www.sciencedirect.com/science/journal/03064379
http://www.sciencedirect.com/science/journal/03064379/38/6

and Application Cases, 10th International
Conference on Computer and Information
Technology(CIT), IEEE, 2010, pp. 1292-
1298.

[12]Fuqi Song, Gregory Zacharewicz, David
Chen, An ontology-driven framework
towards building enterprise semantic
information layer, Advanced Engineering
Informatics, Science Direct, Volume 27,
Issue 1, January 2013, pp. 38–50.

[13]Giorgos, Stoilos, Giorgos Stamou, Stefanos
Kollias, Y. Gil et al., A String Metric for
Ontology Alignment, The Semantic Web-
ISWC 2005, Springer-Verlag Berlin
Heidelberg, LNCS 3729, 2005, pp. 624–
637.

[14]Hettiarachchi, Gayan Prasad, Attygalle,
Dilhari, SPARCL: An Improved Approach
for Matching Sinhalese Words and Names
in Record Clustering and Linkage, Global
Humanitarian Technology Conference
(GHTC), IEEE, 2012, pp. 423–428.

[15]Hong.N, Fang.A, Wu.S, Zheng.J, Qian.Q,
An Integrated Biomedical Ontology
Mapping Strategy Based on Multiple
Mapping Methods, Web Information
Systems Engineering – WISE 2013
Workshops Lecture Notes in Computer
Science, Springer Berlin Heidelberg,
Volume 8182, 2014, pp. 373-386.

[16]Kamel Hussein, Shafa anri, Jalal Omer
Atoum, A Framework for Improving the
Performance of Ontology Matching
Techniques in Semantic Web, International
Journal of Advanced Computer Science
and Applications, Volume 3, No. 1, 2012,
pp. 8-14.

[17]Laurent Boyer, Yann Esposito et al. SEDIL:
Software for Edit Distance Learning,
Proceedings of the 19th European
Conference on Machine Learning and
Knowledge Discovery in Databases,
Springer Berlin Heidelberg, 2008, pp. 672-
677.

[18]Mahesh, Lalwani, Nitesh Bagmar, Saurin
Parikh, Efficient Algorithm for Auto
Correction Using n-gram Indexing,
International Journal of Computer &
Communication Technology, 2009, pp. 23-
27.

[19]Maurice, Hermans, Frederik C. Schadd, A
Generalization of the Winkler Extension
and its Application for Ontology Mapping,
Proceedings of The 24th Benelux Conference
on Artificial Intelligence(BNAIC), 2012.

[20] Mohammed Maree, Mohammed Belkhatir,
A Coupled Statistical Semantic Framework
for Merging Heterogeneous Domain
Specific Ontologies, International
Conference on Tools with Artificial
Intelligence(ICTAI), IEEE Computer
Society, Volume 2, 2010, pp. 159-166.

[21]Nirmala Pudota, Antonina Dattolo, Andrea
Baruzzo, Felice Ferrara, Carlo Tasso,
Automatic keyphrase extraction and
ontology mining for content-based tag
recommendation, International Journal of
Intelligent Systems, Special Issue: New
Trends for Ontology-Based Knowledge
Discovery, Volume 25, Issue 12, 2010, pp.
1158–1186.

[22]Nowak.G, Grabowski.S, Draus.C,
Zarebski.D, Bieniecki.W, Designing a
computer-assisted translation system for
multi-lingual catalogue and advertising
brochure translations, Proceedings of VIth
International Conference on Perspective
Technologies and Methods in MEMS
Design (MEMSTECH), IEEE, 2010, pp.
75–180.

[23]Richard C., Angell, Georege E, Freund,
Peter Will, Automatic Spelling Correction
Using a Trigram Similarity Measure,
Journal of Information Processing &
Management, Volume 19, Issue 4, 1983, pp.
255-261.

[24]Rishin, Haldar, Debajyoti Mukhopadhyay,
Levenshtein Distance Technique in
Dictionary Lookup Methods: An Improved
Approach, arXiv preprint arXiv: 1101.1232,
2011.

[25]Samer Mahmoud, Wohoush, Mahmoud
Hasan Saheb, Indexing for Large DNA
Database Sequences, International Journal
of Biometrics and Bioinformatics (IJBB),
Volume 5, Issue 4, 2011, pp. 202.

[26]Sandeep, Chaware, Srikantha Rao, Analysis
of Phonetic Matching Approaches for Indic
Languages, International Journal of
Advanced Research in Computer and
Communication Engineering, Volume 1,
Issue 2, April 2012.

[27]Siham Amrouch, Siham Mostefai,
Syntactico-semantic algorithm for
automatic ontology merging, International
Conference on Information Technology and
e-Services(ICITeS), IEEE, 2012, pp. 1-5.

[28]Szymon Grabowski, Kimmo Fredriksson,
Bit-parallel string matching under Hamming
distance in O(n) worst case time, Journal of

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 485 Volume 14, 2015

http://www.sciencedirect.com/science/article/pii/S1474034612001048
http://www.sciencedirect.com/science/article/pii/S1474034612001048
http://www.sciencedirect.com/science/article/pii/S1474034612001048
http://www.sciencedirect.com/science/article/pii/S1474034612001048
http://www.sciencedirect.com/science/article/pii/S1474034612001048
http://www.sciencedirect.com/science/journal/14740346
http://www.sciencedirect.com/science/journal/14740346
http://www.sciencedirect.com/science/journal/14740346
http://www.sciencedirect.com/science/journal/14740346/27/1
http://www.sciencedirect.com/science/journal/14740346/27/1
http://www.sciencedirect.com/science/journal/14740346/27/1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hettiarachchi,%20Gayan%20Prasad.QT.&searchWithin=p_Author_Ids:38542595700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Attygalle,%20Dilhari.QT.&searchWithin=p_Author_Ids:38542988100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Attygalle,%20Dilhari.QT.&searchWithin=p_Author_Ids:38542988100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Attygalle,%20Dilhari.QT.&searchWithin=p_Author_Ids:38542988100&newsearch=true
http://link.springer.com/book/10.1007/978-3-642-54370-8
http://link.springer.com/book/10.1007/978-3-642-54370-8
http://link.springer.com/book/10.1007/978-3-642-54370-8
http://link.springer.com/book/10.1007/978-3-642-54370-8
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://onlinelibrary.wiley.com/doi/10.1002/int.v25:12/issuetoc
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nowak,%20G..QT.&searchWithin=p_Author_Ids:38246797700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Grabowski,%20S..QT.&searchWithin=p_Author_Ids:37284960100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Draus,%20C..QT.&searchWithin=p_Author_Ids:38246692300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zarebski,%20D..QT.&searchWithin=p_Author_Ids:38246692000&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487365
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487365
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487365
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487365

Information Processing Letters, volume
105, Issue 5, 2008, pp. 182-187.

[29]Thierry Lecroq, Fast Exact String Matching
Algorithms, Journal of Information
Processing Letters, Volume 102, Issue 6,
2007, pp. 229-235.

[30]Vadivu, G., S. Waheeta Hopper, Ontology
Mapping of Indian Medicinal Plants with
Standardized Medical Terms, Journal of
Computer Science 8, no.9, 2012, pp. 1576-
1584.

[31]Vassilis Spiliopoulos, George A. Vouros,
Vangelis Karkaletsis, On the discovery of
subsumption relations for the alignment of

ontologies, Web Semantics: Science,
Services and Agents on the World Wide
Web, Volume 8, Issue 1, March 2010, pp.
69–88.

[32]Wad Hassan Gomaa, AlyAly Fanmy,
Arabic Short Answer Scoring with Effective
Feedback for Students, International
Journal of Computer Applications, Volume
8, Jan 2014, pp. 35-41.

[33]Yoshimasa T Saruoka, John Mc Naught,
Ananiadou.S, Learning string similarity
measures for gene/protein name dictionary
look-up using logistic regression, Journal of
Bioinformatics, Volume 23, Issue 20, 2007,
pp. 2768-2774.

WSEAS TRANSACTIONS on COMPUTERS V. P. Sumathi, K. Kousalya, R. Kalaiselvi

E-ISSN: 2224-2872 486 Volume 14, 2015

http://www.sciencedirect.com/science/article/pii/S1570826810000028
http://www.sciencedirect.com/science/article/pii/S1570826810000028
http://www.sciencedirect.com/science/journal/15708268
http://www.sciencedirect.com/science/journal/15708268
http://www.sciencedirect.com/science/journal/15708268
http://www.sciencedirect.com/science/journal/15708268
http://www.sciencedirect.com/science/journal/15708268/8/1

