

Retargeting GCC Compiler for Specific Embedded System on Chips

BENBIN CHEN
1,2

, XIAOCHAO LI
1
, DONGHUI GUO

1,3

1
Department of Electronic Engineering

Xiamen University

 Xiamen Fujian 361005, China
2
School of Electrical Engineering and Automation

Xiamen University of Technology

 Xiamen Fujian 361024, China
3
IC Design & IT Research Center of Fujian Province

Xiamen, China

chenbenbin@163.com, leexcjeffrey@xmu.edu.cn, dhguo@xmu.edu.cn

Abstract: - This paper describes the High-performance C Compiler (HCC) and its specific implementation for

industrial application-specific embedded System on Chips (SoCs). HCC compiler is a language C compiler
based on the retargetable GCC compiler. Because of the specialized architectures and features of specific

embedded SoCs, machine-dependent compiler implementation is an important and challenging work in

embedded system. To quickly implement a compiler for specific embedded SoCs, compiler extension methods
are proposed in HCC compiler. We extend the identifier and attribute with Abstract Syntax Tree (AST) for

language-specific programming syntax of the compiler front-end, which is the syntax of the extended standard

ANSI C. And then, the machine-dependent classification of assembly generation for the specific embedded

SoCs is designed and implemented. After finishing the ABI (Application Binary Interface) and MD (Machine
Description) of the compiler back-end, the HCC compiler is completed by retargeting GCC compiler for the

application-specific embedded SoCs. These implementation methods could be referenced for other embedded

chips. According to the crossing contrasts and tests with multiple compilers of the same type, conclusion can be
drawn that the proposed HCC compiler has a stable performance with excellent improvement of the generated

assembly codes.

Key-Words: - Compiler; Specific Embedded SoCs; Language-Specific; Machine-dependent; Abstract Syntax

Tree; Attributes;

1 Introduction
Application-Specific Instruction-set Processor

(ASIP) is quite common in embedded system design

[1]. The embedded SoCs based on the ASIPs are
more complexity and diversely existed in the

semiconductor market, which have to meet very

high efficiency requirements for high quality

optimizing compiler. Compared with the compiler
of general processor, the compilers of specialized

architectures of embedded SoCs based on ASIPs are

often insufficient in fully exploiting the processor
capabilities demands via more dedicated code and

optimization techniques [2]. The effectiveness of

compiler implementation for embedded SoCs is also

determined by the combination of target
architectures, target application, and the compilation

environment [3], [4]. GCC (GNU Compiler

Collection） [5], [6], [7], [12] which can support

multiple programming languages in the front-end

and more than 30 processors in the back-end, is the

most widely used compiler collection. Because of its

excellent flexibility and retargetability, it can be

often seen in the transplant of the cross compiler as
retargeting compiler. However, thought GCC is a

robust and well-supported compiler, which can be

retargeted by means of a Machine Description (MD)

files that captures the compiler view of a target
processor, it is very complex, hard and generally

results in huge retargeting effort and it needs the

effective improvement to customize and change the
compiler back-end and front-end for the irregular

architectures. For example, the DSP processors

often have the irregular registers set which need
additional modifications of compiler back-end to

adapt the new situation [1]. The specific embedded

SoCs used in this paper are the harvard architecture

microcontroller with own instruction-set which is
very similar with the DSP processors, so it is

urgently required the high performance C Compiler

for programmers to advance the development

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 420 Volume 14, 2015

mailto:leexcjeffrey@xmu.edu.cn
app:ds:complexity
app:ds:Harvard

efficiency for more and more complicated

embedded software applications with high-level C

language.

 Based on their own purposes, there are many
previous studies to discuss the GCC transplants. The

construction specification of a compiler front-end is

described in [9], [10] and [11], which demonstrate
how to design appropriate front-end language for

specific fields and applications. Reference [2] and

[11] describe how to add a support to the bit data
type by following the processing hardware

mechanisms. Reference [12] and [13] implements

the transplantation of the GCC to the hardware

platform with different architecture, for example,
the CRIS and VLIW processors. A discussion on the

optimization of the compiler for low power

consumption and multi-core parallel processing is
made in [18] and [19]. Based on intensive studies of

the processing mechanisms of the compiler,

reference [2], [7], [8], [12], [13] and [16] introduce
the back-end design and carries out the

transplantation to specific processors. [14], [15], [20]

and [21] extend the application fields of compiler to

machine learning, domain-specific semantics for
various kinds of programming environments and

applications. However, the compiler presented in

these references mainly focuses on the back-end
design, such as the design of the MD (Machine

Description), or the single extension of the front-end

[2], [17], it is not proposed the general extension

methods of GCC compiler and it is natural to
observe the difficulties in the transplantation and

development of the complier for embedded SoCs

based on GCC [1].
 Here in this paper, a compiler extension methods

aiming at expanding the front-end and back-end of

the GCC compiler is proposed. The methods, which
combines the commercial specific embedded SoCs

and the programming syntax extension of standard

ANSI C, achieves not only the extension and

limitation of the identifier in the compiler front-end,
but the implementation of the MD and ABI for

machine-dependent design to produce the suitable

assembly codes in the compiler back-end. More
importantly, we propose a new attribute of the

syntax tree for the language-specific programming

syntax and combine the new attribute to the already
existing AST tree so that compiler back-end could

use it to produce the correct assembly codes. The

High-performance C Compiler (HCC) with the

extension methods is completed and comparisons
have been made. The experiment results have shown

the excellent performance of the proposed methods

in meeting the high demands of the embedded SoCs.
It is very useful for the compiler porting and

implementation of various other kinds of

application-specific embedded processors which are

in urgent need of powerful, flexible and stable

compiler.

2 The Specific Embedded SoCs

Architecture
The Specific Embedded SoCs used in this paper are
Harvard architecture processor that saves its

instructions and data separately. The commercial

embedded SoC is based on the RISC instruction set

and adopts a paged saving mapping, independent
One-Time Programmable (OTP) program memory,

data memory, stack and bus, so it is able to visit the

program and data at the same time. The Fig. 1 is the
typical diagram for embedded SoCs which

processor could be called HCC processor. They are

many optional peripheral controllers that affect the

layout of interrupt vector table.

Program

Memory
Data

Memory

I/O

Ports

OTP

Programming

Circuitry

RISC

CPU

Core

SPI UART
Others’

controllers

Watchdog

Timer

Stack

PWM

Reset

Circuit

Crystal System, Interrupt

Controller, Low Voltage Reset

Fig. 1 The block diagram of embedded SoCs

The HCC processor also leaves out the most

internal general registers and uses the specific

section of the data memory or the specified address
instead. The special memory space and the multi-

paged saving require the compiling syntax to be able

to manage the sections of the internal storage

flexibly and to have a strong protection mechanism,
to avoid the illegal operation of the internal storage,

which make the design of the complier more

difficult with correctly implementation.
The program memory in Fig. 2 is the location

where the user codes or programs are stored. OTP

devices offer users the flexibility to freely develop
their applications which may be useful during debug

or for products requiring frequent upgrades or

program changes. The program memory is

subdivided into several individual banks each of 8K

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 421 Volume 14, 2015

app:ds:powerful
app:ds:flexible

capacity. Within the program memory, certain

locations are reserved for special usage such as reset

and interrupts. The program memory bank is

selected using the bank pointer, which is also used
to control the data memory bank pointer. The data

memory showed in Fig. 2 is a volatile area of 8-bit

wide RAM internal memory and is the location
where temporary information is stored. Divided into

two sections, the first section of these is an area of

RAM where special function registers (SFR) are
located with fixed locations. The second area of data

memory is reserved for general purpose use, which

is divided into several separate banks, known as

bank 1~bank n.

Program

Memory

Data

Memory

程序存

储

程序存

储

Bank n

Bank 0

Bank n

Bank 0

SFR

00H

3FH

40H

FFH

General

Purpose

Data

Memory

00H

04H

Volatile

Vector

Region

Vector Timer

08H

1FF

FH

Vector XX

Fig. 2 The program and data memory structure

3 The Extension Methods of HCC

Complier
The compiler is carried out in stages while each

stage is in charge of transferring the source program
from one to another. The retargetable GCC mainly

consists of three modules namely, the front-end, the

middle layer and the back-end showed in Fig. 3. The
GCC front-end is in charge of the preprocessing,

lexical analysis, grammatical analysis, generating

the corresponding abstract syntax tree (AST) and
eventually generating the generic tree which is the

unified tree structure for GCC all kinds of language

front-end such as C, Java, C++, Ada, Fortran and so

on. The middle layer is responsible for the
transformation and optimization of the syntax tree,

including the transformation of the gimple tree, the

SSA (Static Single Assignment) transformation, the
N-pass optimization based on SSA transformation,

and generating the RTL (Register Transfer

Language) intermediate representation, which is not

related to the target platforms (e.g. the ARM
processor, the MIPS processor etc.) but closes to the

final syntax tree in the form of assembly codes and

will generate the object assembly codes in

combination with the back-end MD template.

 GCC compiler uses the machine description

method in back-end to complete the retargeting
requirement. As a retargeting compiler, it can use

machine description in back-end including the MD

file (e.g. target.md), ABI (e.g. target.h) and auxiliary
file (e.g. target.c) for specified target processor to

retargeting a compiler of particular processor. For

an unknown processor with own instruction set (e.g.
the embedded SoCs used in this paper), we need to

finish the whole MD file and ABI file of compiler

back-end.

GCC

Compiler

Front-end

Middle-layer

Gimple

RTL

Back-end

MD&ABI

ARM MIPS

Target.md

Target.h

Target.c

HCC

Extended
ANSI C

syntax &
AST

attribute

 Fig. 3 Extension and implementation descriptions
of HCC compiler

 The extension methods of the HCC complier
proposed in this paper is shown in Fig. 3. As shown

in the picture, according to the character of the

architecture of the specific embedded SoCs and the
extension grammar of the ANSI C syntax, the

proposed HCC complier is able to carry out the

extension of the lexical analysis of the special

identifier for the extension programming syntax
used in HCC front-end. For adding the new attribute,

the new attribute keyword „@‟ is parsed. HCC

compiler creates the new attribute nodes and
combines the new attribute to the existing AST as

special explanation of new programming syntax.

The machine-dependent implementation with MD

file and ABI file are completed to produce
corresponding assembly output according to the

instruction set of the embedded SoCs. Besides, the

front-end and back-end of the proposed HCC
complier are thoroughly detailed designed based on

the syntax rules and the architecture of the

embedded SoCs which it is going to support.

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 422 Volume 14, 2015

4 Language-Specific Implementation
Using GCC intermediate representation, HCC also

adopts the AST structure to describe the language

front-end. The basic structure of AST is the struct

tree_node, which could be represented as a data
type for a variable, an expression, even a statement

in each tree node [8]. On behalf of the object, the

enumeration type constant tree_code is used in
every tree_node to express the types of nodes.

Typically, INTEGER_TYPE represents integer type,

ARRAY_TYPE represents array type, VAR_DECL

is for variable and FUNCTION_DECL is for
functions and so on. In the AST representation, all

the information put in its code by the programmers

could be covered, everything concerning the control
flow, everything about structures and types [5], [6].

As showed in Fig. 4, generic, gimple and SSA are

also simple form of AST which records the
language-independent information for optimization.

Java

AST

C

AST

C++

AST

GENERIC

generalize generalize generalize

GIMPLE

Gimplify

SSA

RTL

Optimization

Optimization

Fig. 4 AST intermediate representation

GCC attribute is similar to a kind of context,

which also is in the form of nodes in AST and

records a wealth of semantic information. there are
three types of attributes, respectively are variable

attributes, type attributes for structure, such as union

and enumerated types and function attribute which
is attributes applying to functions. Each attribute is

one of the following formats showed in Table 1.

GCC itself has a large number of variable, type

and function attributes, which have their own
expressions and the processing functions. Combined

with the mechanism of attribute, this paper extends

and customizes the inserted attribute for AST
expression of HCC language-specific programming

syntax, which extends the language-specific syntax

of front-end. Meanwhile, the automatic combination

of the special attribute of AST to given object
(function, variable or type) is implemented. Then

the attribute could be passed forward to target back-

end for assembly codes generation.

Table 1. Example of the attribute formats.

Formats Example

Empty __attribute__ (())

A word __attribute__ ((unused))

A word with __attribute__ ((format_arg (2))

parameters __attribute__ ((format (printf, 2, 3))

When extending the language-specific syntax, the
callback functions and hooks are used in this paper.

These interfaces are the important interactive mode

for language related front-end or the interaction
between the front-end and back-end, which are

frequently used in compiler implement in porting or

optimization. Taking advantage of the way of the

program callback, combining with the GCC
attribute, a controlled extension mechanism for

target-specific C compiler is addressed in this

section.

4.1 The extension of the identifier and SFRs
In order to express the special variable, type in

memory and the location with address made by

function, the HCC would need to add the
character ‟@‟ as the keyword to extend the front-

end syntax. The grammatical features of „@‟ is as

follows.
Syntax:

Data_type Variable|Type|Function @

memory_location

This is the HCC specific description way for

variable, type, and function with corresponding

saving address. Firstly, the character ‟@‟ must be
recognized as the special identifier in the function

lex_identifier in GCC sources codes during the

lexical analysis stage. Finally, it needs to be

recognized as the keyword in the function
c_lex_one_token.

Since the identifier I in C language has following

syntax rules:
L A | B | … | Z | a | b | … | z |;

D 0 | 1 | … | 9;

I L | _ | ID;
Adding the „@‟ will break the definition of the

original identifier. Considering that the GCC carries

out the lexical analysis via the lex_identifier

function (shown in Fig. 5), certain modifications
have been made to it to avoid the break caused by

„@‟ and guarantee it can be recognized as the

identifier. „@‟ in HCC is similar to objective C,

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 423 Volume 14, 2015

app:ds:basic
app:ds:structure
app:ds:variable
app:ds:intermediate
app:ds:representation
app:ds:advantage
app:ds:of

which need the „@‟ as <CPP_ATSIGN> in the

token scanner, but in objective C it doesn‟t take pass

to the parser as a grammar element such as GCC

attribute in the compiler.

lex_identifier

hash = HT_HASHFINISH

 len = cur - base;

x@

!

starts_uc

n
NO

->buffer->cur = cur;

Modification for

new identifier

identifier_p

NO

 return result;

ISIDNUM (*cur)

YES

Return

Identifier

Fig. 5 HCC identifier transformation

The SFRs in the application-specific embedded

SoC adopt a mode of specified data address in data

memory, which means the distribution of the data

storage has already been known. An example of
SFR is given as follow:

//define a SFR register “_reg0”

volatile int reg0 @ 0x00

The character „@‟ is used in programming and

compiling stages of HCC compiler to set the address

of the SFRs. Meanwhile, it is also allowed to set the
address for the variables defined by the users with

„@‟. Combining the handling „@‟ as attribute

keyword <RID_ATRRIBUTE>, we can identify the
attribute keyword and parse the corresponding

legality of SFR address. And then, the SFR address

(0x00 in above example) could be added to variable

AST as a special variable attribute.

4.2 Pragma and the control of functions
The embedded SoCs adopt the banks storage

structure, in which a great deal of pragma control

grammatical features is designed. For example, the
specific attribute of both the normal functions and

interrupt functions can be controlled by pragma.

The pragma control syntax of the interrupt function
in HCC compiler is as follows:

#pragma vector symbol @ address //interrupt

indication with reserved word “vector”

void symbol ()

{
 function codes; //implementation codes of interrupt

}

The above syntax has used vector symbol and

address to indicate the interrupt function and the

storage address. As an extension programming
syntax, the syntax uses pragma to express the

interrupt and to identify the address of the interrupt

function. In combination with the attribute handling

with <CPP_ATSIGN> in HCC compiler, this paper
proposes a method of constructing an attribute tree

chain of the functions or interrupt functions to

manage the attribute of the normal functions and
interrupt functions with addresses as shown in Fig. 6.

Purpose
Value
chain

Purpose
Value
chain

Purpose
Value

(NULL)

Interrupt_Tree
Token

“func1”

Token

0x4(addr)
Token

“func2”

Token

“func3”

Token

0x4(addr)

Fig. 6 Tree chain based on interrupt attributes

From the Fig. 6, there are two key fields in the

nodes of tree chain. The first one is the purpose field
which is used to record the function name and

another one is used to save the function address. For

interrupt functions, tree chain is used to link all of
the vectors that are indicated by pragma statements

with reserved word “vector”. And then, the nodes of

tree chain could be parsed as the interrupt attribute
of specified function. The interrupt processing with

pragma statements are listed below in language-

specific front-end of HCC compiler.

a. register the pragma callback function
target_pragma_interrupt with the reserved word

vector statically.

b. analysis the <CPP_ATSIGN> as the attribute
keyword in the lexical analysis like section 4.1.

c. analysis the callback function

target_pragma_interrupt for pragma vector
statemests (by target.c) and judge the validity of the

pragma syntax. Then generate the corresponding

attribute tree chain with function names and vector

numbers showed in Fig. 6.

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 424 Volume 14, 2015

app:ds:grammar
app:ds:element

d. identify and insert the attribute, check the

corresponding function and the tree chain. Use the

process showed in Fig. 7 to combine the

corresponding interrupt attribute to function AST by
target_insert_attributes.

decl_attributes

start_function

grokdeclarator

decl_attributes

(eturned_attrs, 0)

decl_attributes

(attributes, 0)

 init_attributes

targetm.

insert_attributes

target_insert_attribut

es

target_add_attribute

delete_list_member

(*spec->handler)

attributes

DECL_ATTRIBUTES

END

target_handle_fndecl

_attribute

yes

Arribute combination

no

Legality judgment

of attribute

Fig .7 Combine the corresponding interrupt attribute

tree to function AST

After the combination of the interrupt attribute to

the AST syntax tree is done, the compiler back-end

will handle the push stark and pop stark for interrupt
function according to the attribute. In Section 5.2,

the new attribute handling of interrupt function will

be expressed. Considering the specific embedded
SoCs have multi-paged RAM/ROM with different

memory configuration and lacks the general

registers, the implementation and limitation modules

of the target platform are added to guarantee the
correctness of the assembly codes in the HCC

compiler back-end.

5 Machine-Dependent Implementation
The compiler back-end translates intermediate

representation (IR) into machine-dependent

assembly codes for embedded SoCs. Compiler
back-end captures the compiler-relevant machine

resources, including the instruction set, register files

and all kinds of requirements and constraints. In
most cases, the IR represents the input source codes

as assembly-like yet machine-independent low-level

codes, which is the three-address code [1]. In GCC,
intermediate representation called register transfer

language (RTL) is an important part for the

assembly codes generation. In this language, the

instructions (called insn) are described one by one

as assembly-like statements [5], [6].

RTL uses five kinds of objects: expressions,

integers, wide integers, strings and vectors [6].
Expressions are the most important one. As shown

in Fig. 8, An RTL expression (RTX, for short) is a C

structure, but it is usually referred with a pointer (a
type that is given the typedef name RTX). In the IR

of the RTL, a series of optimization works related to

the target machine are performed, including
instruction matching and selection, instruction

scheduling, register allocation, branch prediction

and peephole optimizations and so on. Finally, RTL

is converted into target-specific machine assembly
codes. For a given IR, there is only an infinite

number of mappings as well as numerous

constraints exist, which is clearly a complex
optimisation problem [1]. In fact, even many

optimization subproblems in code generation are

NP-hard [1]. As shown in Fig. 9, machine
descriptions in the back-end are mainly composed

of two parts, one is a C header file of machine-

dependent macro definitions called target.h (*.h),

which describes the ABI of target machine, and
another one is a file of instruction patterns called

target.md (MD file), which contains a pattern for

each instruction that the target machine supports or
at least each instruction that the compiler needs to

be informed. In addition, machine descriptions

usually contains a target.c (*.c), which is an

important role for machine-independent
implementation and provides the supports to files

target.md and target.h with common and specific

functions. i.e., guiding the generation or
optimization of RTL and producing complex

assembly codes.

(insn 7 5 8 (set (reg:QI 41) (const_int 1 [0x1])) -1 (nil) (nil))

RTL statement（insn id pre nex op1 op2 op3 op4）

Op1，RTX expression，action of statement

execution

RTL Generation

RTL Optimization

Assembler Code

Generation

Insn-codes.h

Insn-emit.c

...

Target.md

Target.h
Insn-recog.c, insn-

extract.c ...

Insn-output.c
Target.c

Fig. 8 The related modules diagram of back-end

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 425 Volume 14, 2015

app:ds:in
app:ds:addition

Due to the irregular architectures (lacked of

registers with Harvard architecture) of the

embedded SoCs, it is very complex and generally

results in huge retargeting effort and need the

effective improvement to customize for machine-

dependent implementation of the irregular

architectures in spite of the fact that GCC is a robust

and well-supported compiler, which can be

retargeted by means of a machine description file

that captures the compiler view of a target processor

in a behavioural fashion.

define_insn，
define_expand

Template and restraint

Target.m

d

Target.h

Target.c

Machine-

specific

implementat

ion&design

call

RTL

Matching

Register allocation;

Data length limit;

Platform related macro

contain

call

call

contain

call

ROM/RAM

Classification;

Interrupt

handling；
File and section;

contain

call

Fig. 9 Target-specific design and implementation

As shown in Fig. 9, considering the specific

platform has specific memory configuration and

lacks the general registers, the machine-specific

implementation and design module (e.g. for memory

classification etc.) is added to process the correct

assembly generation and to guarantee the quality of

the assembly codes in this paper. HCC completes

the machine-dependent assembly generation with

the new module, MD and the ABI implementation.

5.1 Memory classification and MD
As shown in Fig. 8, MD file target.md takes part

in two important conversions that happen in the

compiler. one is process of the parse tree being used

to generate an RTL insn list (PT to RTL) based on

named instruction patterns of target.md, another one

is the process of the insn list being matched against

the RTL templates to produce assembler codes [5],

[6] (RTL to ASM). File target.md defines a number

of instruction patterns which are used to describe the

target machine to support the operation type and

assembly instructions, etc. These instruction

patterns play the key roles in the conversions

mentioned above, from PT to RTL and from RTL to

ASM. It generally can be divided into the standard

instruction patterns and non-standard instruction

patterns. The formats of instruction patterns and

RTL templates have been discussed in previous

studies [5], [6], [7], [12], [13], which are not the

emphasis here.

Field Example

Name (define_insn "addqi3"

RTL-

template

[(set (match_operand:QI 0

"register_operand" "=r,d,r,r")

(plus:QI (match_operand:QI 1

"register_operand" "%0,0,0,0")

(match_operand:QI 2

"nonmemory_operand" "r,i,P,N")))]

Condition ""

Output

"@

add %0,%2

subi %0,lo8(-(%2)) " inc %0 dec %0"

"*return

target_output_addqi3(insn,operands,NU

LL);"

Attributes

[(set_attr "length" "1,1,1,1")

(set_attr "cc"

"set_czn,set_czn,set_zn,set_zn")])

Fig. 10 define_insn for addition arithmetic

Fig. 10 is the addition instruction patterns

define_insn including in the standard instruction

patterns. The output field in the example is a string

that shows how to output matching insns as

assembly codes, which are described after a

additional notation „@‟ or what can specify a piece

of C codes to compute the output when simple

assembly codes substitution can‟t generate enough

expression. For example, you can see the function

target_output_addqi3 in the Fig. 10. „%‟ in this

string specifies where to substitute the value of an

operand. Meanwhile, the assembly codes will be

produced based on the constraint conditions

(constraint in match_operand expression) of the

actual operand in operation.

Thought there are many patterns and constraints

in the MD, the requirement of the target machine

can‟t be fully met because of the irregular

architectures of the actual hardware with different

memory configuration and the characteristics of

optional peripheral controllers in different

embedded SoC. In the Fig. 2, there are many

varietas of the memory configuration in different

SoCs. For the compiler implementation, we classify

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 426 Volume 14, 2015

app:ds:key
app:ds:varietas

three types as SRSC, MRSC and MRMC off-the-

shelf embedded SoCs according to the memory

configuration showed in the table 2.

Table 2. Classification of memory types.

Types Explanation

SRSC Single RAM and Single Code (ROM)

MRSC Multi RAM and Single Code (ROM)

MRMC Multi RAM and Multi Code (ROM)

This paper uses the C function in the output field

explained in Fig 10, to distinguish the different

target memory configuration and to decide the

correct and optimal generation of assembly codes.

In fact, the classification is used in the entire HCC

compiler back-end that contains in the target.md,

target.h and target.c.

5.2 Assembly file structure and machine-

dependent processing
HCC compiler translates the source codes to

assembly codes using the target.c in compiler back-

end to control the assembly file structure. Target.c

(*.c) not only provides supports for MD file, but

also empowers the further capabilities, which

contains the manipulation of assembly file structure,

machine-dependent attribute processing such as the

processing of new interrupt attribute and so on.

targ
et_

file_
start

targ
et_

file_
en

d

fu
n

ctio
n

_
p

ro
lo

g
u

e

fu
n

ctio
n

_
ep

ilo
g

u
e

targ
et_

p
rin

t_
o

p
eran

d

targ
et_

p
rin

tV
ariab

le

Target.c

Variables

operation

Functions&

Interrupt

Sections

Assembly

file

structure

Fig. 11 Target.c extension and implementation

In Fig. 11, the capabilities of target.c are

explained as example. HCC uses functions

target_file_start and target_file_end to control the

assembly program framework, and use

function_prologue and function_epilogue to

implement the section structure for function

including saving and recovering environment for

interrupt function according to the new interrupt

attribute added in Section 4.2.

6 Comparisons and Analysis
This paper has chosen two test sets according to the

features of the commercial embedded SoCs. One is

the GCC TestSuite set which is the standard test
suite for GCC compiler. Another one is the

commercial programs sets from the practical

applications. We complete the standard test and the
practical test and compare the test results of HCC,

ECC (compiler based on the LCC) and the HiTech

complier (HiTech is a complier for the reference

embedded SoCs that from professional compiler
provider). In the reference SoC structure with

multiple banks of program memory and multiple

banks of data memory, the performance of HCC
exceeds the ECC and the Hi-tech in most of the test

programs showed in Fig. 12(A) and Fig. 12(B).

(A)

(B)

Fig. 12 Assembly codes size of GCC testsuite

and customer programs. (A) comparison of the

instructions size; (B) comparison of the data

size;

The optimization ratio of codes size is defined as a

metric of assembly codes quality generated from

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 427 Volume 14, 2015

app:ds:processing

HCC, ECC and HiTech as shown in Fig. 12. Let,

SIHCC = the size of instructions compiled by HCC

SDHCC = the size of data compiled by HCC

Use HCC-ECCRI to express the instructions ratio (RI)

which is the instructions size comparing of program
compiled by HCC and ECC:

ECC HCC
HCC-ECC

ECC

SI SI
RI

SI

If N is the number of test programs, The average

ratio of instruction (ARI) is thus given by:

ECC HCC
HCC-ECC

ECC1

1 SI SI
ARI

SI

N

nN

Corresponding, HCC-ECCARD is the average ratio

of data (ARD) which is the data size comparing of
programs compiled by HCC and ECC.

ECC HCC
HCC-ECC

ECC1

1 SD SD
ARD

SD

N

nN

ECCAR is average ratio (AR) of codes size which

is the average codes size (instructions and data)

comparing of programs compiled by HCC and ECC:

ECC ECC HCC HCC
HCC-ECC

ECC ECC1

1 (SI SD)-(SI SD)
AR

(SI SD)

N

nN

HCC-HiTechARI , HCC-HiTechARD , HCC-HiTechAR are the

average instructions, data and programs ratio

respectively compiled by HCC and HiTech.

AVGARI , AVGARD , AVGAR express average

numerical results of the instructions, data and

programs ratio that HCC compare to ECC and

HiTech. Example:

HCC-ECC HCC-HiTech
AVG

AR AR
AR

2

Table 3. Average optimization ratio of codes size.

index ARI ARD AR

HCC-ECC 32.5% 18.5% 31.8%

HCC-HiTech 19.8% 10.1% 19.1%

AVG 26.2% 14.3% 25.7%

Table 3 shows the caculation results. From the

calculation results, we know that HCC produces the
smallest assembly codes with the highest assembly

codes quality compared with ECC and HiTech. As

shown in Table 3, because of the correct
implementation and classification for the embedded

SoCs and the inherent optimization of GCC, HCC

compiler could obtain the average 31% optimization
ratio of codes size relative to ECC, average 19%

optimization ratio relative to HiTech, and the

average 25% codes size decrease compared to

compiler ECC and HiTech.

HCC compiler is based on the GCC version 4.2.4

and it can be transplanted from newest GCC version

with more advanced optimization. HCC compiler

compares to existing compilers for the specific
embedded SoCs with more optimization options.

Example, ECC is based on LCC compiler which is a

lightweight embedded compiler and it hasn‟t the IR
representation (e.g. Gimple, SSA and RTL) with the

corresponding optimization.

1
2
3
4
5
6
7
8
9
10

#include "HT68F50.h"
long int a, b, y;
void main(void)
{

a=0x9a; //a=0x9a;
b=0xa1; //b=0xa1;
b*=a+1;

 y=a*(a+b);
y%=b+2;

}
Fig. 13 Compiling effects analysis of example
program

Another example is constant folding as shown the
program from line 5 to line 9 in the Fig. 13. In this

program, line 5 and line 6 have defined the specific

values of variables a, b. HCC could directly use

constant folding during the compiling process to get
the result of constants multiplication and division,

thereby directly calculate the result of variable y as

the assembly output. But, other compilers such as
ECC compiler still need to produce the assembly

codes of program statements one by one from line 7

to 9 to calculate the value y with the library supports
running in the actual embedded SoCs. So, HCC

compared with ECC, and HiTech could omit a lot of

program instructions and data during compiling

process and it has obvious advantages.

7 Conclusion
The HCC complier proposed in this paper not only
realizes the language-specific programming syntax

of compiler front-end and the machine-dependent

back-end design of the complier, but implements the

new attribute based on the commercial embedded
SoCs, parses and combines the attribute to the

corresponding AST syntax tree. This method

proposed in this paper could be used for the
language-specific programming extension of others‟

specific embedded SoCs to quickly implement a

compiler. For future work, it needs to abstract the

more unified extension framework for the specific
embedded SoCs with less modifications of GCC.

The results have shown that the proposed complier

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 428 Volume 14, 2015

app:ds:instructions
app:ds:instructions

has achieved excellent performance, which is able to

meet the demand of the complier of the specific

embedded SoCs. More importantly, the proposed

cross complier has been applied to actual products
and received a nice feedback from the market.

Acknowledgements
This research was supported by National Natural
Science Foundation of China (General Program)

under Grants No. 61274133. The authors would like

to thank the engineers from company holtek and all

team members‟ assistance.

References:
[1] R. Leupers, M. Hohenauer, J. Ceng, H.

Scharwaechter, H. Meyr, G. Ascheid, and G.

Braun, Retargetable compilers and architecture
exploration for embedded processors, IEE

Computers and Digital Techniques, Vol. 152,

No. 2, 2005, pp. 209-223.

[2] J. Wagner, and R. Leupers, C compiler design
for a network processor, IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, Vol. 20, No. 11, 2001, pp. 1302-
1308.

[3] N.P. Desai, A Novel Technique for

Orchestration of Compiler Optimization
Functions Using Branch and Bound Strategy,

Proceedings of IEEE International Conference

on Advance Computing Conference (IACC

2009), 2009, pp 467-472.
[4] M. Haneda, P.M.W. Knijnenburg, and H.A.G.

Wijshoff, Automatic selection of compiler

options using non-parametric inferential
statistics, Proceedings of 14th International

Conference on Parallel Architectures and

Compilation Techniques (PACT), 2005, pp.

123-132.
[5] GNU Compiler Collection. http://gcc.gnu.org.

[6] GNU Compiler collection internals,

http://gcc.gnu.org/onlinedocs/gccint.
[7] X.H.Pei, Porting GCC to Godson processor,

University of Science and Technology of China,

2010.
[8] K. Ren, X. L. Yan, X. Qin, and L. L. Sun,

Design and implementation of a novel ASIP

compiler, Journal of Zhejiang University, Vol.

42, No. 5, 2008, pp. 553-557.
[9] J.S. Cuadrado, and J.G. Molina, Building

Domain-Specific Languages for Model-Driven

Development, IEEE Software, Vol. 24, No. 5,
2007, pp. 48-55.

[10] G. Hedin, J. Akesson, and T. Ekman,

Extending Languages by Leveraging Compilers:

From Modelica to Optimica, IEEE Software,

Vol. 28, No. 3, 2011, pp. 68-74.

[11] L. Antani, H.Ansari, and A.Parameswaran,

Tricore Port for GCC-An Analysis, Department
of Computer Science and Engineering, Indian

Institute of Technology, Mumbai, Indian, 2007.

[12] H. Nilsson, Porting The GNU C Compiler to
the CRIS architecture, Department of

Information Technology, Lund Institute of

Technology, Sweden, 1998.
[13] R. Trienekens, Porting the GCC Compiler to a

VLIW Vector Processor, Department of

Electrical Engineering, Delft University of

Technology, Netherlands, 2009.
[14] G. Fursin, C. Miranda, O. Temam, M.

Namolaru, E. Yom-Tov, A. Zaks, and F. Bodin,

MILEPOST GCC: machine learning based
research compiler, Proceedings of International

Conference on GCC Developers's Summit,

2008, pp. 7-20.
[15] S.Z. Guyer, and C. Lin, Broadway: A Compiler

for Exploiting the Domain-Specific Semantics

of Software Libraries, Proceedings of the IEEE,

Vol. 93, No. 2, 2005, pp. 342-357.
[16] M. Lin, Z.Y. Yu, D, Zhang, Y.M. Zhu, S.Y.

Wang, and Y. Dong, Retargeting the Open64

Compiler to PowerPC Processor, Proceedings
of 8th International Conference on Embedded

Software and Systems Symposia (ICESS), 2008,

pp. 152-157.

[17] J.S. Seng, D.M. Tullsen, The effect of compiler
optimizations on Pentium 4 power

consumption, Proceedings of 7th International

Conference on Interaction Between Compilers
and Computer Architectures (INTERA), 2003,

pp. 51-56.

[18] A. Marongiu, L. Benini, An OpenMP Compiler
for Efficient Use of Distributed Scratchpad

Memory in MPSoCs, IEEE Transactions on

Computers, Vol. 61, No. 2, 2012, pp. 222-236.

[19] O. Ozturk, M. Kandemir, G. Chen, Compiler-
Directed Energy Reduction Using Dynamic

Voltage Scaling and Voltage Islands for

Embedded Systems, IEEE Transactions on
Computers, Vol. 62, No. 2, 2013, pp. 268-278.

[20] K. Kratchanov, T. Golemanov, B. Yksel, and E.

Golemanova, Control network programming
development environments, WSEAS

Transactions on Computers, Vol. 13, No. 1,

2014, pp. 645-659.

[21] A. Poggi, Developing scalable applications
with actors, WSEAS Transactions on

Computers, Vol. 13, No. 1, 2014, pp. 660-669.

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 429 Volume 14, 2015

