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Abstract: - This paper describes the High-performance C Compiler (HCC) and its specific implementation for 

industrial application-specific embedded System on Chips (SoCs). HCC compiler is a language C compiler 
based on the retargetable GCC compiler. Because of the specialized architectures and features of specific 

embedded SoCs, machine-dependent compiler implementation is an important and challenging work in 

embedded system. To quickly implement a compiler for specific embedded SoCs, compiler extension methods 
are proposed in HCC compiler. We extend the identifier and attribute with Abstract Syntax Tree (AST) for 

language-specific programming syntax of the compiler front-end, which is the syntax of the extended standard 

ANSI C. And then, the machine-dependent classification of assembly generation for the specific embedded 

SoCs is designed and implemented. After finishing the ABI (Application Binary Interface) and MD (Machine 
Description) of the compiler back-end, the HCC compiler is completed by retargeting GCC compiler for the 

application-specific embedded SoCs. These implementation methods could be referenced for other embedded 

chips. According to the crossing contrasts and tests with multiple compilers of the same type, conclusion can be 
drawn that the proposed HCC compiler has a stable performance with excellent improvement of the generated 

assembly codes. 
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1 Introduction 
Application-Specific Instruction-set Processor 

(ASIP) is quite common in embedded system design 

[1]. The embedded SoCs based on the ASIPs are 
more complexity and diversely existed in the 

semiconductor market, which have to meet very 

high efficiency requirements for high quality 

optimizing compiler. Compared with the compiler 
of general processor, the compilers of specialized 

architectures of embedded SoCs based on ASIPs are 

often insufficient in fully exploiting the processor 
capabilities demands via more dedicated code and 

optimization techniques [2]. The effectiveness of 

compiler implementation for embedded SoCs is also 

determined by the combination of target 
architectures, target application, and the compilation 

environment [3], [4]. GCC (GNU Compiler 

Collection） [5], [6], [7], [12] which can support 

multiple programming languages in the front-end 

and more than 30 processors in the back-end, is the 

most widely used compiler collection. Because of its 

excellent flexibility and retargetability, it can be 

often seen in the transplant of the cross compiler as 
retargeting compiler. However, thought GCC is a 

robust and well-supported compiler, which can be 

retargeted by means of a Machine Description (MD) 

files that captures the compiler view of a target 
processor, it is very complex, hard and generally 

results in huge retargeting effort and it needs the 

effective improvement to customize and change the 
compiler back-end and front-end for the irregular 

architectures. For example, the DSP processors 

often have the irregular registers set which need 
additional modifications of compiler back-end to 

adapt the new situation [1]. The specific embedded 

SoCs used in this paper are the harvard architecture 

microcontroller with own instruction-set which is 
very similar with the DSP processors, so it is 

urgently required the high performance C Compiler 

for programmers to advance the development 
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efficiency for more and more complicated 

embedded software applications with high-level C 

language.  

  Based on their own purposes, there are many 
previous studies to discuss the GCC transplants. The 

construction specification of a compiler front-end is 

described in [9], [10] and [11], which demonstrate 
how to design appropriate front-end language for 

specific fields and applications. Reference [2] and 

[11] describe how to add a support to the bit data 
type by following the processing hardware 

mechanisms. Reference [12] and [13] implements 

the transplantation of the GCC to the hardware 

platform with different architecture, for example, 
the CRIS and VLIW processors. A discussion on the 

optimization of the compiler for low power 

consumption and multi-core parallel processing is 
made in [18] and [19]. Based on intensive studies of 

the processing mechanisms of the compiler, 

reference [2], [7], [8], [12], [13] and [16] introduce 
the back-end design and carries out the 

transplantation to specific processors. [14], [15], [20] 

and [21] extend the application fields of compiler to 

machine learning, domain-specific semantics for 
various kinds of programming environments and 

applications. However, the compiler presented in 

these references mainly focuses on the back-end 
design, such as the design of the MD (Machine 

Description), or the single extension of the front-end 

[2], [17], it is not proposed the general extension 

methods of GCC compiler and it is natural to 
observe the difficulties in the transplantation and 

development of the complier for embedded SoCs 

based on GCC [1]. 
  Here in this paper, a compiler extension methods 

aiming at expanding the front-end and back-end of 

the GCC compiler is proposed. The methods, which 
combines the commercial specific embedded SoCs 

and the programming syntax extension of standard 

ANSI C, achieves not only the extension and 

limitation of the identifier in the compiler front-end, 
but the implementation of the MD and ABI for 

machine-dependent design to produce the suitable 

assembly codes in the compiler back-end. More 
importantly, we propose a new attribute of the 

syntax tree for the language-specific programming 

syntax and combine the new attribute to the already 
existing AST tree so that compiler back-end could 

use it to produce the correct assembly codes. The 

High-performance C Compiler (HCC) with the 

extension methods is completed and comparisons 
have been made. The experiment results have shown 

the excellent performance of the proposed methods 

in meeting the high demands of the embedded SoCs. 
It is very useful for the compiler porting and 

implementation of various other kinds of 

application-specific embedded processors which are 

in urgent need of powerful, flexible and stable 

compiler. 
 

 

2 The Specific Embedded SoCs 

Architecture  
The Specific Embedded SoCs used in this paper are 
Harvard architecture processor that saves its 

instructions and data separately. The commercial 

embedded SoC is based on the RISC instruction set 

and adopts a paged saving mapping, independent 
One-Time Programmable (OTP) program memory, 

data memory, stack and bus, so it is able to visit the 

program and data at the same time. The Fig. 1 is the 
typical diagram for embedded SoCs which 

processor could be called HCC processor. They are 

many optional peripheral controllers that affect the 

layout of interrupt vector table. 
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Fig. 1 The block diagram of embedded SoCs 

 
The HCC processor also leaves out the most 

internal general registers and uses the specific 

section of the data memory or the specified address 
instead. The special memory space and the multi-

paged saving require the compiling syntax to be able 

to manage the sections of the internal storage 

flexibly and to have a strong protection mechanism, 
to avoid the illegal operation of the internal storage, 

which make the design of the complier more 

difficult with correctly implementation. 
The program memory in Fig. 2 is the location 

where the user codes or programs are stored. OTP 

devices offer users the flexibility to freely develop 
their applications which may be useful during debug 

or for products requiring frequent upgrades or 

program changes. The program memory is 

subdivided into several individual banks each of 8K 

WSEAS TRANSACTIONS on COMPUTERS Benbin Chen, Xiaochao Li, Donghui Guo

E-ISSN: 2224-2872 421 Volume 14, 2015

app:ds:powerful
app:ds:flexible


 

 

capacity. Within the program memory, certain 

locations are reserved for special usage such as reset 

and interrupts. The program memory bank is 

selected using the bank pointer, which is also used 
to control the data memory bank pointer. The data 

memory showed in Fig. 2 is a volatile area of 8-bit 

wide RAM internal memory and is the location 
where temporary information is stored. Divided into 

two sections, the first section of these is an area of 

RAM where special function registers (SFR) are 
located with fixed locations. The second area of data 

memory is reserved for general purpose use, which 

is divided into several separate banks, known as 

bank 1~bank n. 
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Fig. 2 The program and data memory structure 

 

 

3 The Extension Methods of HCC 

Complier 
The compiler is carried out in stages while each 

stage is in charge of transferring the source program 
from one to another. The retargetable GCC mainly 

consists of three modules namely, the front-end, the 

middle layer and the back-end showed in Fig. 3. The 
GCC front-end is in charge of the preprocessing, 

lexical analysis, grammatical analysis, generating 

the corresponding abstract syntax tree (AST) and 
eventually generating the generic tree which is the 

unified tree structure for GCC all kinds of language 

front-end such as C, Java, C++, Ada, Fortran and so 

on. The middle layer is responsible for the 
transformation and optimization of the syntax tree, 

including the transformation of the gimple tree, the 

SSA (Static Single Assignment) transformation, the 
N-pass optimization based on SSA transformation, 

and generating the RTL (Register Transfer 

Language) intermediate representation, which is not 

related to the target platforms (e.g. the ARM 
processor, the MIPS processor etc.) but closes to the 

final syntax tree in the form of assembly codes and 

will generate the object assembly codes in 

combination with the back-end MD template. 

  GCC compiler uses the machine description 

method in back-end to complete the retargeting 
requirement. As a retargeting compiler, it can use 

machine description in back-end including the MD 

file (e.g. target.md), ABI (e.g. target.h) and auxiliary 
file (e.g. target.c) for specified target processor to 

retargeting a compiler of particular processor. For 

an unknown processor with own instruction set (e.g. 
the embedded SoCs used in this paper), we need to 

finish the whole MD file and ABI file of compiler 

back-end. 

GCC

Compiler
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Middle-layer

Gimple

RTL

Back-end

MD&ABI

ARM MIPS

Target.md

Target.h

Target.c

HCC

Extended 
ANSI C 

syntax & 
AST 

attribute

 

 Fig. 3 Extension and implementation descriptions 
of HCC compiler 

 
  The extension methods of the HCC complier 
proposed in this paper is shown in Fig. 3. As shown 

in the picture, according to the character of the 

architecture of the specific embedded SoCs and the 
extension grammar of the ANSI C syntax, the 

proposed HCC complier is able to carry out the 

extension of the lexical analysis of the special 

identifier for the extension programming syntax 
used in HCC front-end. For adding the new attribute, 

the new attribute keyword „@‟ is parsed. HCC 

compiler creates the new attribute nodes and 
combines the new attribute to the existing AST as 

special explanation of new programming syntax. 

The machine-dependent implementation with MD 

file and ABI file are completed to produce 
corresponding assembly output according to the 

instruction set of the embedded SoCs. Besides, the 

front-end and back-end of the proposed HCC 
complier are thoroughly detailed designed based on 

the syntax rules and the architecture of the 

embedded SoCs which it is going to support. 
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4 Language-Specific Implementation 
Using GCC intermediate representation, HCC also 

adopts the AST structure to describe the language 

front-end. The basic structure of AST is the struct 

tree_node, which could be represented as a data 
type for a variable, an expression, even a statement 

in each tree node [8]. On behalf of the object, the 

enumeration type constant tree_code is used in 
every tree_node to express the types of nodes. 

Typically, INTEGER_TYPE represents integer type, 

ARRAY_TYPE represents array type, VAR_DECL 

is for variable and FUNCTION_DECL is for 
functions and so on. In the AST representation, all 

the information put in its code by the programmers 

could be covered, everything concerning the control 
flow, everything about structures and types [5], [6]. 

As showed in Fig. 4, generic, gimple and SSA are 

also simple form of AST which records the 
language-independent information for optimization.  

 

Java

AST

C

AST

C++

AST

GENERIC

generalize generalize generalize

GIMPLE

Gimplify

SSA

RTL

Optimization

Optimization

Fig. 4 AST intermediate representation 

 
GCC attribute is similar to a kind of context, 

which also is in the form of nodes in AST and 

records a wealth of semantic information. there are 
three types of attributes, respectively are variable 

attributes, type attributes for structure, such as union 

and enumerated types and function attribute which 
is attributes applying to functions. Each attribute is 

one of the following formats showed in Table 1. 

GCC itself has a large number of variable, type 

and function attributes, which have their own 
expressions and the processing functions. Combined 

with the mechanism of attribute, this paper extends 

and customizes the inserted attribute for AST 
expression of HCC language-specific programming 

syntax, which extends the language-specific syntax 

of front-end. Meanwhile, the automatic combination 

of the special attribute of AST to given object 
(function, variable or type) is implemented. Then 

the attribute could be passed forward to target back-

end for assembly codes generation. 

 

Table 1. Example of the attribute formats. 

Formats Example  

Empty __attribute__ (()) 

A word __attribute__ ((unused)) 

A word with __attribute__ ((format_arg (2)) 

parameters __attribute__ ((format (printf, 2, 3)) 

   

When extending the language-specific syntax, the 
callback functions and hooks are used in this paper. 

These interfaces are the important interactive mode 

for language related front-end or the interaction 
between the front-end and back-end, which are 

frequently used in compiler implement in porting or 

optimization. Taking advantage of the way of the 

program callback, combining with the GCC 
attribute, a controlled extension mechanism for 

target-specific C compiler is addressed in this 

section. 
 

 

4.1 The extension of the identifier and SFRs 
In order to express the special variable, type in 

memory and the location with address made by 

function, the HCC would need to add the 
character ‟@‟ as the keyword to extend the front-

end syntax. The grammatical features of „@‟ is as 

follows. 
Syntax: 

Data_type Variable|Type|Function @ 

memory_location 

 
This is the HCC specific description way for 

variable, type, and function with corresponding 

saving address. Firstly, the character ‟@‟  must be 
recognized as the special identifier in the function 

lex_identifier in GCC sources codes during the 

lexical analysis stage. Finally, it needs to be 

recognized as the keyword in the function 
c_lex_one_token. 

Since the identifier I in C language has following 

syntax rules: 
L  A | B | … | Z | a | b | … | z |; 

D  0 | 1 | … | 9; 

I  L | _ | ID; 
Adding the „@‟ will break the definition of the 

original identifier. Considering that the GCC carries 

out the lexical analysis via the lex_identifier 

function (shown in Fig. 5), certain modifications 
have been made to it to avoid the break caused by 

„@‟ and guarantee it can be recognized as the 

identifier. „@‟ in HCC is similar to objective C, 
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which need the „@‟ as <CPP_ATSIGN> in the 

token scanner, but in objective C it doesn‟t take pass 

to the parser as a grammar element such as GCC 

attribute in the compiler. 

lex_identifier

hash =    HT_HASHFINISH

      len = cur - base;

x@

! 

starts_uc

n
NO

->buffer->cur = cur;

Modification for 

new identifier

identifier_p

NO

 return result;

ISIDNUM (*cur)

YES

Return 

Identifier

 

Fig. 5 HCC identifier transformation 

 
The SFRs in the application-specific embedded 

SoC adopt a mode of specified data address in data 

memory, which means the distribution of the data 

storage has already been known. An example of 
SFR is given as follow: 

//define a SFR register “_reg0” 

volatile int reg0 @ 0x00   

 
The character „@‟ is used in programming and 

compiling stages of HCC compiler to set the address 

of the SFRs. Meanwhile, it is also allowed to set the 
address for the variables defined by the users with 

„@‟. Combining the handling „@‟ as attribute 

keyword <RID_ATRRIBUTE>, we can identify the 
attribute keyword and parse the corresponding 

legality of SFR address. And then, the SFR address 

(0x00 in above example) could be added to variable 

AST as a special variable attribute. 
 

 

4.2 Pragma and the control of functions 
The embedded SoCs adopt the banks storage 

structure, in which a great deal of pragma control 

grammatical features is designed. For example, the 
specific attribute of both the normal functions and 

interrupt functions can be controlled by pragma. 

The pragma control syntax of the interrupt function 
in HCC compiler is as follows: 

 

#pragma vector symbol @ address //interrupt 

indication with reserved word “vector” 

void symbol () 

{ 
  function codes; //implementation codes of interrupt 

} 

 
The above syntax has used vector symbol and 

address to indicate the interrupt function and the 

storage address. As an extension programming 
syntax, the syntax uses pragma to express the 

interrupt and to identify the address of the interrupt 

function. In combination with the attribute handling 

with <CPP_ATSIGN> in HCC compiler, this paper 
proposes a method of constructing an attribute tree 

chain of the functions or interrupt functions to 

manage the attribute of the normal functions and 
interrupt functions with addresses as shown in Fig. 6.

 

Purpose
Value
chain

Purpose
Value
chain

Purpose
Value

(NULL)

Interrupt_Tree
Token

“func1”

Token

0x4(addr)
Token

“func2”

Token

“func3”

Token

0x4(addr)

 

Fig. 6 Tree chain based on interrupt attributes 

 

From the Fig. 6, there are two key fields in the 

nodes of tree chain. The first one is the purpose field 
which is used to record the function name and 

another one is used to save the function address. For 

interrupt functions, tree chain is used to link all of 
the vectors that are indicated by pragma statements 

with reserved word “vector”. And then, the nodes of 

tree chain could be parsed as the interrupt attribute 
of specified function. The interrupt processing with 

pragma statements are listed below in language-

specific front-end of HCC compiler. 

a. register the pragma callback function 
target_pragma_interrupt with the reserved word 

vector statically. 

b. analysis the <CPP_ATSIGN> as the attribute 
keyword in the lexical analysis like section 4.1. 

c. analysis the callback function 

target_pragma_interrupt for pragma vector 
statemests (by target.c) and judge the validity of the 

pragma syntax. Then generate the corresponding 

attribute tree chain with function names and vector 

numbers showed in Fig. 6. 
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d. identify and insert the attribute, check the 

corresponding function and the tree chain. Use the 

process showed in Fig. 7 to combine the 

corresponding interrupt attribute to function AST by 
target_insert_attributes. 
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Fig .7 Combine the corresponding interrupt attribute 

tree to function AST 

 
After the combination of the interrupt attribute to 

the AST syntax tree is done, the compiler back-end 

will handle the push stark and pop stark for interrupt 
function according to the attribute. In Section 5.2, 

the new attribute handling of interrupt function will 

be expressed. Considering the specific embedded 
SoCs have multi-paged RAM/ROM with different 

memory configuration and lacks the general 

registers, the implementation and limitation modules 

of the target platform are added to guarantee the 
correctness of the assembly codes in the HCC 

compiler back-end.  

 
 

5 Machine-Dependent Implementation 
The compiler back-end translates intermediate 

representation (IR) into machine-dependent 

assembly codes for embedded SoCs. Compiler 
back-end captures the compiler-relevant machine 

resources, including the instruction set, register files 

and all kinds of requirements and constraints. In 
most cases, the IR represents the input source codes 

as assembly-like yet machine-independent low-level 

codes, which is the three-address code [1]. In GCC, 
intermediate representation called register transfer 

language (RTL) is an important part for the 

assembly codes generation. In this language, the 

instructions (called insn) are described one by one 

as assembly-like statements [5], [6]. 

RTL uses five kinds of objects: expressions, 

integers, wide integers, strings and vectors [6]. 
Expressions are the most important one. As shown 

in Fig. 8, An RTL expression (RTX, for short) is a C 

structure, but it is usually referred with a pointer (a 
type that is given the typedef name RTX). In the IR 

of the RTL, a series of optimization works related to 

the target machine are performed, including 
instruction matching and selection, instruction 

scheduling, register allocation, branch prediction 

and peephole optimizations and so on. Finally, RTL 

is converted into target-specific machine assembly 
codes. For a given IR, there is only an infinite 

number of mappings as well as numerous 

constraints exist, which is clearly a complex 
optimisation problem [1]. In fact, even many 

optimization subproblems in code generation are 

NP-hard [1]. As shown in Fig. 9, machine 
descriptions in the back-end are mainly composed 

of two parts, one is a C header file of machine-

dependent macro definitions called target.h (*.h), 

which describes the ABI of target machine, and 
another one is a file of instruction patterns called 

target.md (MD file), which contains a pattern for 

each instruction that the target machine supports or 
at least each instruction that the compiler needs to 

be informed. In addition, machine descriptions 

usually contains a target.c (*.c), which is an 

important role for machine-independent 
implementation and provides the supports to files 

target.md and target.h with common and specific 

functions. i.e., guiding the generation or 
optimization of RTL and producing complex 

assembly codes. 

 

(insn 7 5 8 (set (reg:QI 41) (const_int 1 [0x1])) -1 (nil) (nil))

RTL statement（insn id pre nex op1 op2 op3 op4）

Op1，RTX expression，action  of statement 

execution

RTL Generation

RTL Optimization

Assembler Code 

Generation

Insn-codes.h

Insn-emit.c

...

Target.md

Target.h
Insn-recog.c, insn-

extract.c ...

Insn-output.c
Target.c

Fig. 8 The related modules diagram of back-end 
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Due to the irregular architectures (lacked of 

registers with Harvard architecture) of the 

embedded SoCs, it is very complex and generally 

results in huge retargeting effort and need the 

effective improvement to customize for machine-

dependent implementation of the irregular 

architectures in spite of the fact that GCC is a robust 

and well-supported compiler, which can be 

retargeted by means of a machine description file 

that captures the compiler view of a target processor 

in a behavioural fashion. 
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Target.m

d

Target.h

Target.c

Machine-

specific 

implementat

ion&design

call

RTL

Matching
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Data length limit;

Platform related macro

contain

call

call

contain

call

ROM/RAM 

Classification;

Interrupt 

handling；
File and section;

contain

call

Fig. 9 Target-specific design and implementation 

 

As shown in Fig. 9, considering the specific 

platform has specific memory configuration and 

lacks the general registers, the machine-specific 

implementation and design module (e.g. for memory 

classification etc.) is added to process the correct 

assembly generation and to guarantee the quality of 

the assembly codes in this paper. HCC completes 

the machine-dependent assembly generation with 

the new module, MD and the ABI implementation.  

 

 

5.1 Memory classification and MD  
As shown in Fig. 8, MD file target.md takes part 

in two important conversions that happen in the 

compiler. one is process of the parse tree being used 

to generate an RTL insn list (PT to RTL) based on 

named instruction patterns of target.md, another one 

is the process of the insn list being matched against 

the RTL templates to produce assembler codes [5], 

[6] (RTL to ASM). File target.md defines a number 

of instruction patterns which are used to describe the 

target machine to support the operation type and 

assembly instructions, etc. These instruction 

patterns play the key roles in the conversions 

mentioned above, from PT to RTL and from RTL to 

ASM. It generally can be divided into the standard 

instruction patterns and non-standard instruction 

patterns. The formats of instruction patterns and 

RTL templates have been discussed in previous 

studies [5], [6], [7], [12], [13], which are not the 

emphasis here. 

 

Field Example 

Name (define_insn "addqi3" 

RTL-

template 

[(set (match_operand:QI 0 

"register_operand" "=r,d,r,r") 

(plus:QI (match_operand:QI 1 

"register_operand" "%0,0,0,0") 

(match_operand:QI 2 

"nonmemory_operand" "r,i,P,N")))] 

Condition "" 

Output 

"@ 

add %0,%2 

subi %0,lo8(-(%2)) " inc %0 dec %0" 

"*return 

target_output_addqi3(insn,operands,NU

LL);" 

Attributes 

[(set_attr "length" "1,1,1,1") 

(set_attr "cc" 

"set_czn,set_czn,set_zn,set_zn")]) 

Fig. 10 define_insn for addition arithmetic 

 

Fig. 10 is the addition instruction patterns 

define_insn including in the standard instruction 

patterns. The output field in the example is a string 

that shows how to output matching insns as 

assembly codes, which are described after a 

additional notation „@‟ or what can specify a piece 

of C codes to compute the output when simple 

assembly codes substitution can‟t generate enough 

expression. For example, you can see the function 

target_output_addqi3 in the Fig. 10. „%‟ in this 

string specifies where to substitute the value of an 

operand. Meanwhile, the assembly codes will be 

produced based on the constraint conditions 

(constraint in match_operand expression) of the 

actual operand in operation. 

Thought there are many patterns and constraints 

in the MD, the requirement of the target machine 

can‟t be fully met because of the irregular 

architectures of the actual hardware with different 

memory configuration and the characteristics of 

optional peripheral controllers in different 

embedded SoC. In the Fig. 2, there are many 

varietas of the memory configuration in different 

SoCs. For the compiler implementation, we classify 
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three types as SRSC, MRSC and MRMC off-the-

shelf embedded SoCs according to the memory 

configuration showed in the table 2. 

 

Table 2. Classification of memory types. 

Types Explanation  

SRSC Single RAM and Single Code (ROM) 

MRSC Multi RAM and Single Code (ROM) 

MRMC Multi RAM and Multi Code (ROM) 

 

This paper uses the C function in the output field 

explained in Fig 10, to distinguish the different 

target memory configuration and to decide the 

correct and optimal generation of assembly codes. 

In fact, the classification is used in the entire HCC 

compiler back-end that contains in the target.md, 

target.h and target.c. 

 

 

5.2 Assembly file structure and machine-

dependent processing 
HCC compiler translates the source codes to 

assembly codes using the target.c in compiler back-

end to control the assembly file structure. Target.c 

(*.c) not only provides supports for MD file, but 

also empowers the further capabilities, which 

contains the manipulation of assembly file structure, 

machine-dependent attribute processing such as the 

processing of new interrupt attribute and so on. 
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Fig. 11 Target.c extension and implementation 

 

In Fig. 11, the capabilities of target.c are 

explained as example. HCC uses functions 

target_file_start and target_file_end to control the 

assembly program framework, and use 

function_prologue and function_epilogue to 

implement the section structure for function 

including saving and recovering environment for 

interrupt function according to the new interrupt 

attribute added in Section 4.2. 

 

6 Comparisons and Analysis 
This paper has chosen two test sets according to the 

features of the commercial embedded SoCs. One is 

the GCC TestSuite set which is the standard test 
suite for GCC compiler. Another one is the 

commercial programs sets from the practical 

applications. We complete the standard test and the 
practical test and compare the test results of HCC, 

ECC (compiler based on the LCC) and the HiTech 

complier (HiTech is a complier for the reference 

embedded SoCs that from professional compiler 
provider). In the reference SoC structure with 

multiple banks of program memory and multiple 

banks of data memory, the performance of HCC 
exceeds the ECC and the Hi-tech in most of the test 

programs showed in Fig. 12(A) and Fig. 12(B). 

 

 
(A) 

 
(B) 

Fig. 12 Assembly codes size of GCC testsuite 

and customer programs. (A) comparison of the 

instructions size; (B) comparison of the data 

size; 
 

The optimization ratio of codes size is defined as a 

metric of assembly codes quality generated from 
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HCC, ECC and HiTech as shown in Fig. 12. Let, 

SIHCC = the size of instructions compiled by HCC 

SDHCC = the size of data compiled by HCC  

Use HCC-ECCRI to express the instructions ratio (RI) 

which is the instructions size comparing of program 
compiled by HCC and ECC: 

ECC HCC
HCC-ECC

ECC

SI SI
RI

SI


  

If N is the number of test programs, The average 

ratio of instruction (ARI) is thus given by: 

ECC HCC
HCC-ECC

ECC1

1 SI SI
ARI

SI

N

nN 


   

Corresponding, HCC-ECCARD is the average ratio 

of data (ARD) which is the data size comparing of 
programs compiled by HCC and ECC.  

ECC HCC
HCC-ECC

ECC1

1 SD SD
ARD

SD

N

nN 


   

ECCAR is average ratio (AR) of codes size which 

is the average codes size (instructions and data) 

comparing of programs compiled by HCC and ECC: 

ECC ECC HCC HCC
HCC-ECC

ECC ECC1

1 (SI SD )-(SI SD )
AR

(SI SD )

N

nN 

 





 

HCC-HiTechARI , HCC-HiTechARD , HCC-HiTechAR are the 

average instructions, data and programs ratio 

respectively compiled by HCC and HiTech. 

AVGARI , AVGARD , AVGAR  express average 

numerical results of the instructions, data and 

programs ratio that HCC compare to ECC and 

HiTech. Example: 

HCC-ECC HCC-HiTech
AVG

AR AR
AR

2


  

 
Table 3. Average optimization ratio of codes size. 

index ARI ARD AR 

HCC-ECC 32.5% 18.5% 31.8% 

HCC-HiTech 19.8% 10.1% 19.1% 

AVG 26.2% 14.3% 25.7% 

 

Table 3 shows the caculation results. From the 

calculation results, we know that HCC produces the 
smallest assembly codes with the highest assembly 

codes quality compared with ECC and HiTech. As 

shown in Table 3, because of the correct 
implementation and classification for the embedded 

SoCs and the inherent optimization of GCC, HCC 

compiler could obtain the average 31% optimization 
ratio of codes size relative to ECC, average 19% 

optimization ratio relative to HiTech, and  the 

average 25% codes size decrease compared to 

compiler ECC and HiTech.  

HCC compiler is based on the GCC version 4.2.4 

and it can be transplanted from newest GCC version 

with more advanced optimization. HCC compiler 

compares to existing compilers for the specific 
embedded SoCs with more optimization options. 

Example, ECC is based on LCC compiler which is a 

lightweight embedded compiler and it hasn‟t the IR 
representation (e.g. Gimple, SSA and RTL) with the 

corresponding optimization. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

#include "HT68F50.h" 
long int a, b, y; 
void main(void) 
{ 

a=0x9a;  //a=0x9a; 
b=0xa1;  //b=0xa1; 
b*=a+1; 

        y=a*(a+b); 
y%=b+2; 

} 
Fig. 13 Compiling effects analysis of example 
program  

 

Another example is constant folding as shown the 
program from line 5 to line 9 in the Fig. 13. In this 

program, line 5 and line 6 have defined the specific 

values of variables a, b. HCC could directly use 

constant folding during the compiling process to get 
the result of constants multiplication and division, 

thereby directly calculate the result of variable y as 

the assembly output. But, other compilers such as 
ECC compiler still need to produce the assembly 

codes of program statements one by one from line 7 

to 9 to calculate the value y with the library supports 
running in the actual embedded SoCs. So, HCC 

compared with ECC, and HiTech could omit a lot of 

program instructions and data during compiling 

process and it has obvious advantages. 
 

 

7 Conclusion 
The HCC complier proposed in this paper not only 
realizes the language-specific programming syntax 

of compiler front-end and the machine-dependent 

back-end design of the complier, but implements the 

new attribute based on the commercial embedded 
SoCs, parses and combines the attribute to the 

corresponding AST syntax tree. This method 

proposed in this paper could be used for the 
language-specific programming extension of others‟ 

specific embedded SoCs to quickly implement a 

compiler. For future work, it needs to abstract the 

more unified extension framework for the specific 
embedded SoCs with less modifications of GCC. 

The results have shown that the proposed complier 
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has achieved excellent performance, which is able to 

meet the demand of the complier of the specific 

embedded SoCs. More importantly, the proposed 

cross complier has been applied to actual products 
and received a nice feedback from the market. 
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