
Enhancement of Phase order Searching using an Effective Tuning 

Strategy 

Dr.J.ANDREWS 
Faculty of Computing 

Sathyabama University, Chennai-600119, India andrews_593@yahoo.com 

Abstract:- Modern compilers provide a large number of compiler options. Each option has two states called 

as enable or disable. Enabling on some options may improve or degrade the performance of the program. 

The objective is to increase the performance of the source program by means of adjusting the compiler 
options. The selection and ordering of the most efficient compiler options is required to improve the 

execution time, code and speed up. Some option combination may affect the execution time. The problem of 

getting the best combination of options is found by using modified genetic algorithm with the help of genetic 
operators. Finding the better ordering of best options will change the final performance of the program. 

Ordering of the best combination of options obtained from selection algorithm is fed to phase order search 

algorithm. The existing algorithms such as combined elimination, batch elimination, branch and bound, push 

and pop with combined elimination algorithm, optimality random search and iterative random search 
algorithm are modified and the results are compared with the newly created combined push and pop with 

modified genetic algorithm. It is found that the combined push and pop with modified genetic algorithm 

shows better performance when compared to other algorithms. The phase searching algorithm shows 
increase in the program performance for some benchmark applications than combined push and pop with 

modified genetic algorithm. The experimental results show that 9% improvement in both tuning time and 

normalized tuning time. The speedup exhibit 11% increase over the set of benchmark applications. The 
combination of combined push and pop with modified genetic algorithm and phase order searching provide 

a 10% overall improvement in the program performance from the existing algorithms. 

Index Terms—Optimization, Combined Push and pop with modified Genetic Algorithm, Phase order 
searching 

1 Introduction and related work 
Recent compiler has many levels of optimization 

techniques. Each level contains a set of compiler 
options for optimizing the source program. Each 

option has two states enable or disable. If enabling 

some options may tends to improve the program 
performance or degrade the program performance. 

Some options may even change the entire meaning 

of the program code which in turn affects the 

expected output. The main goal is to find which 
option to be enabled or disabled. For example the 

function in-lining can make a program faster but 

over use of in-lining function affect the final 
performance. Recent version of the modern 

compiler [1, 2] release comes with more flags for 

optimization. It is unpredictable that how a 

compiler behaves on applying these optimizations. 
This work deliberately involves evaluating various 

benchmark applications with different optimization 

levels to check how it impacts the program 
performance. The main aim is to find the best set of 

optimization techniques provided by GCC compiler 

with a better order for a given application. Ordering 
is the process of changing position of the compiler 

option and achieves better program performance. 

For example constant propagation replaces some 

operands by constants, making some variables 
become unused. A dead code elimination pass may 

then remove these variables [3, 4] but only if 

applied after the constant propagation pass.  
In recent years various algorithms have been 

proposed to solve this problem. The existing 

algorithms like Batch elimination strategy [5, 6, 7] 
eliminate the negative technique one at a time. This 

is failed to estimate the combined effects of the 

techniques used. Branch and bound algorithm also 

provides better output but the effects on individual 
code segments are ignored. It only considers overall 

performance obtained. Combined Elimination [8, 9] 

out performs all the existing orchestration 
algorithms giving the best result out of all. But it 

has high tuning time. It also needs more number of 

iterations to find out the negative relative 
improvement percentage given by each technique. 

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 411 Volume 14, 2015



Bashkansky et al. [10] proposed a framework 

(ESTO) to obtain suboptimal compilations by the 
help of genetic algorithm. Considering iterative 

elimination strategy, it helps to predict the best set 

of techniques to be turned on. However the correct 

order of these best set of techniques is not 
predicted. Optimality random search algorithm 

helps to find out the best set of sequences in 

random. It is not optimal at all -time which proves 
that it is not the best strategy being used. The push 

and pop combined elimination [5] selects the best 

set of techniques based on the relative improvement 
percentage. It is similar to combined elimination 

strategy but it overcomes the problem of 

eliminating single technique at a time.  The existing 

framework failed to give both static and dynamic 
program features. Almagor.L [11] et al considers 

sequences that affect optimization by examining a 

small fraction of compilation order. Z Pan et al 
provide an effective orchestration strategy to get 

the best performance considering only static 

program features. Grigori Fursin [12, 13, 14] et al 
presented a novel approach for knowledge reuse to 

obtain best optimization sequence. J.Andrews [5] et 

al proposed a push and pop algorithm that eliminate 

negative relative improvement percentage values 
sequences to enhance the best set of sequence but it 

takes more execution time. The proposed combined 

push and pop with modified genetic algorithm 
proved 10% efficient than any other considered 

alternative. It gives the best performance for many 

benchmark applications with better speed up. 

1.1 System Architecture 

 

Fig.1 System Architecture Diagram 

Modern compiler provides the users a large number 
of options [1]. The problem is how to find the best 

combination of optimization options provided by 

compiler for a given source program. This gives 

raise the requirements for selecting the best set of 
compiler optimizations for a program has been an 

open problem in compilation research for decades. 

Selecting the set of techniques that optimize the 
code is done by the selection algorithms. Once the 

selection is made tuning operation is carried out to 

fine tune all the available techniques to obtain best 
speed up. Tuning time is also measured in this 

process. The algorithms which provides lesser 

tuning time is taken into consideration. The process 

is repeated until best tuned optimal set is obtained. 

The tuning process is done by MGA. The tuned 
optimal set is then ordered and compiled for a 

given application to check the impact of the 

ordering of those techniques in a sequence. Phase 

order search algorithm is used to order the tuned 
techniques. The optimal set of techniques is 

obtained   from phase order search which is greater 

than or equal to the current speed up.  

S 

Fig.2 Selection frame work with PAPI Interface 

The six algorithms serve the same purpose of 

selecting the optimization techniques. But the fast 

and efficient algorithm is to be preferred for finding 
the best set with minimal execution time, 

compilation time, code size, tuning time and 

normalized tuning time. The best set of techniques 
selected by an algorithm can be used to compile a 

program with improved performance. The GCC 

compiler can be used to compile the program with 

the best set of techniques that were selected. This 
will ultimately improve the program’s performance. 

The performance analyzer tool like PAPI [15] can 

be used to find out the performance counter values. 
This will help us to predict the best sets for the 

programs with the similar features without 

consuming much of time. The feedback from the 

PAPI tool will help us to see whether any more 
iteration is to be made. The process repeats until a 

set of techniques which offers the minimum 

compilation time, execution time, tuning time and 
normalized time is found out. That is the best set of 

techniques is generated. The process of finding the 

best set of techniques requires more iteration. An 
algorithm which gives better performance for most 

of the programs tested is the reliable algorithm that 

can preferred for the optimization. 

Not found best 
set 

‘n’ Number of 
Optimization 
techniques 

Selection 
strategy using 
push and pop 

Tuning strategy 
using modified 

genetic  
algorithm 

Ordering strategy 
using phase order 
search algorithm 

Optimal set 
of 

techniques 

Optimization 
techniques 

Start 

Optimization techniques 

Tuned set of techniques 

Optimization techniques 

Optimization techniques 

Collect counter values 

Best Value 

 P&P 

 IRS 

 ORS 

 BE 

 CE 

B&B 

Yes 

Stop 

Source Program

To selection algorithm 

No 

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 412 Volume 14, 2015



1.2 Proposed Algorithms 

� Posh and Pop with Combined Elimination

� Combined   Push   and   Pop   with   Modified

Genetic Algorithm.
� Phase Order Searching Algorithm

1. Push and pop with combined elimination

� Input: n number of optimization techniques 
� Output: best set of techniques Steps: 

1. Set base time, Bt =F0=1, F1=1, F2 = 1, …,

Fn=1 and sequence S = {F1, F2, ..., Fn}.

2. Calculate the RIP value of each set of two
optimization options Fi in S  with respect to

the base time Bt

3. Store the sequence to an array with the set
of techniques and their execution time.

4. R = {R1, R2, ...,Rn} be the set of

optimization options with negative rips. R
contains list of values stored in an

ascending order. Remove R1 from s and set

R1to 0 in R.

5. Repeat the following from 1 to n-1.
5.1) Measure the RIP of Ri relative to the

base time Bt. 5.2)  If the RIP Ri is negative

then remove Ri from S. 5.3)  Set Ri to 0 in
R.

6. Repeat steps 2 and 3 until all options in

sequence s have non negative RIPs.
7. Sort out the stored sequences in the

ascending with the help of execution time.

8. Display the best set of sequences.

For a given set of ‘n’ optimization techniques 
create a baseline and calculate base time using that 

baseline. Calculate relative improvement 

percentage for each option using the obtained base 
time. Push each option in the sequence to an array 

with the execution time. Remove the options that 

produce negative relative improvement percentage 

in the array. The best sequence is obtained after all 
the options are pushed and verified in the array. 

2. Combined Push and Pop with Modified

Genetic Algorithm

� Input : Individual chromosomes 

� Output: Best set of chromosomes 
Steps: 

1. Initialize the population randomly

2. Compatibility function

if check(Chromosomes) then
For all Gi=1 € chromosome && Gj=1 €

chromosome do compatible=true;

 Pij=0 

Construct Pij matrix where Pij    is   i’th   gene 

incompatible with j’th gene 

End for Else if 

Find the pair of genes which causes 
incompatibility 

3. Incompatibility function

For all (Gii,Gj) € chromosome do For all j!=i ^

Pij>0  do

if(Gi,Gj==error)
Pij=0;

End for 

For all Pij with i<=j do If (Pij==0) then 

Incompatible=true Gij=0 || 1 

end if 
end if 

4. Fitness function Speedup=Tb/exe time 

F=min(Speed up)

5. Picking the best chromosome with respect to
the fitness function value.

6. Maintain the population size.

7. Remove (worst chromosome)
8. Add(new chromosome)

8.1 Mutation(Gij)

Gij=0 || 1

8.2 Crossover(Gij,G(i+1)(j+1))

Mix the two chromosomes

9. Repeat the process for 100 iterations to find the
best set of chromosome.

The solution for finding the best set of

technique is stored in the form of 0’s and 1’s
called as chromosome. In Combined Push and

Pop with Modified Genetic Algorithm the

chromosome of each individual genes (G)

represents the compiler option. Every gene (Gi)

has two possible values (0 or 1). When the
option has 1 in the matrix, then it is enabled for

the process otherwise it is taken as disable

option (0). Each chromosome consists of N (65
options) genes. Recently some incompatibilities

between the compiler options are reported by

certain compilers. Compatible genes not
produce any error during their execution. But

the incompatible genes produce error in the

execution time. Detection of these incompatible

genes in the compiler options may reduce the
search space and increase the efficiency of the

program. So there is a need for an efficient

algorithm to detect these incompatible genes.
Since most of the executions are successful, a

large number of iteration is need for the

detection of whole incompatible genes. In
MGA the Compatible Function and

Incompatible Function are made only for the

selected set of chromosome. Fitness function

value is taken the highest speed up from the
large number of chromosomes. This fitness

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 413 Volume 14, 2015



function values is differentiate the 

chromosomes from best set or worst set of 
chromosomes. The genetic algorithms 

performance is largely influenced by the 

genetic operators such as crossover and 

mutation. 

1.3 Phase Order Search Algorithm 

� Input : Best set of combination 
� Output: Phase ordered set of sequences 

Steps: 

1. Select the best set of techniques using selection
algorithm P = {S1, S2, ..., Sn}.

2. Measure the speedup for each and every

techniques selected and eliminate sequences

which have Speed up <1.
3. Randomly select the best speed up sequence for

phase ordering.

4. Repeat the following until get the best
sequence.

4.1 Select the position of the sequence Si[x]

where x=random(). 
4.2 Swap the technique Si[x] with Si[x+1]. 

4.3 Display the sequence with Execution time 

and Speedup. 

Phase order searching is the process of changing 

position of the compiler option and achieves better 

program performance for example Constant 
propagation replaces some operands by constants, 

making some variables become unused. A dead 

code elimination pass may then remove these 

variables, but only if applied after the constant 
propagation pass .Then chromosomes are stored in 

the forms of 0’s and 1’s.The output from the 

combined push and pop with Modified Genetic 
algorithm is given as the input to the phase order 

search algorithm. This will change the position of 

the options in the sequence. 

2. Experimental Setup
The experiment is conducted in Intel(R) Core(TM) 

i3 2.13GHZ CPU With 4GB DDR2 RAM,L1 cache 

64KB,L2 cache 256KB,L3 cache 3MB using 

ubuntu12.10 operating system, GCC compiler 
4.7.2. The list of performance counter values 

collected for every benchmark applications [16] 

using PAPI interface. 

Benchmark Application Tested 

basicmath: The basic math application process 
simple mathematical calculations for embedded 

processors that do not have dedicated hardware 

support . For example, integer square root, cubic 

function solving, and degrees to radians angle 

conversions are used for calculating road speed or 

vector values. The input data is a set of constant 
values. 

bitcount: The bit count algorithm process the bit 

manipulation capacity of a processor by calculating 
the number of bits in different strategies. The input 

is an array of integer values .It contains nine sub-

algorithms. Each algorithms output is the number 
of bits in input which is 1.The recursive and data 

decomposition techniques are used to develop the 

parallel algorithms such as Bitcnt 1, Bitcnts ,and 
Bitstring. 

qsort: The qsort application uses the famous quick 

sort algorithm for sorting a large number of strings 
into ascending order. The small data set contains a 

list of words and the large data set contains set of 

data with three tuples representing points. 

susan: Susan is stands for Smallest Univalve 

Segment Assimilating Nucleus .It is an image 
recognition package. It is used in the brain for 

identifying the corners and edges in Magnetic 

Resonance Images, vision-based quality assurance, 

and performs adjustments for brightness, threshold, 
spatial control, and image smoothness. The small 

input data contains a black white image of a 

rectangle but the large input data contains a 
complex picture. 

dijkstra: Dijkstra algorithm is an effective way to 

find the shortest path problems. The Dijkstra 
benchmark calculates single source and all pairs 

shortest paths in an adjacency matrix 

representation. The single source shortest path has 
two parallelized strategies such as single and 

multiple queue implementations. The all pair 

shortest path problem uses the data decomposition 
strategy. 

FFT/IFFT: FFT benchmark stands for Fast Fourier 

Transform and IFFT for inverse transform. FFT and 
IFFT are manipulating the array of input data. 

These are used in to find the frequencies in digital 

signal processing. The input data contains 
polynomial function with frequency sinusoidal 

components and pseudo random amplitude. 

CRC32: CRC is stands for Cyclic Redundancy 

Check (CRC). This benchmark is used only for the 

32 bit data on the file. CRC used to detect errors in 

data transmission process. The input data is the 
sound files from the Adaptive Differential Pulse 

Code Modulation benchmark. 

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 414 Volume 14, 2015



3 Performance Metrics 
Tuning Time: It’s the time required to run an 

application selected by an algorithm to find the best 

set of techniques 

Normalized Tuning Time: Normalized Tuning 

Time is calculated using the following formula:  

Normalized Tuning Time =  

Tuning time

Compilation time (3 execution time)+ ×

(1) 

Relative Improvement Percentage (RIP) 

RIP value is calculated using the following formula 

RIP(Fi=0) = 
T(Fi 0) Tb

100%
Tb

= −
×  (2) 

Where, 

� Tb is the base time, time required by an 

application for executing with o3 level of 

optimization. 

� T(Fi=0) is the execution time with that 

particular technique is disabled 

Speed Up 

� It is the parameter that helps to find whether the 

set of optimization is better than the highest 

level of optimization. 

� It can be determined using the formula: 

Speed Up= 
base time

time taken to fine tuning theapplication

(3) 

Cache Miss Rate 

Cache miss rate is calculated using the formula 

no.of cache hits
Cache miss rate 1

total cache references
= −

4 Results and Discussion 

Fig 3 Graph showing the cache miss rate per 1000 instructions 
for susan application. 

Fig.4 Graph showing cache miss rate per 1000 instructions for 
dijkstra application 

A cache miss rate is defined as the failure attempt 

to read or write data in the cache. The Figure 2 and 

3 shows the cache miss rate per 1000 instruction for 

the benchmark application dijkstra and susan. This 

cache miss rate is directly depending on the set of 

optimization sequences used in the program. Cache 

miss rate can be reduced by the help of optimal set 

of techniques. 

Fig.5 Graph showing branch prediction rates per 1000 
instructions for various benchmark applications 

Figure 5 shows branch prediction rate for the 

various benchmark application. It shows that the 

basicmath having highest level of branch prediction 

rate obtained by the not-taken prediction scheme. 

Some benchmark having large prediction rate due 

randomness of data. But some have few prediction 

rates due to large number of integer arithmetic 

logical operations. 

Table 1 Tuning time taken by each algorithm to run benchmark 
applications in seconds 

Benchmark MGA ODRS IRS BE B&B CD P&P CE 

SUSAN 2 3 2.36 2.6 2.56 2.68 2.3 

BITCOUNT 1.12 2.12 1.59 1.6 1.55 2.1 1.5 

DIJKSTRA 0.36 0.55 0.46 0.42 0.43 0.452 0.4 

FFT 8 10.1 9.2 8.6 9.11 9 8.5 

IFFT 4 5.6 4.36 5.07 4.465 5 4.33 

QSORT 10.1 11.16 10.53 10.38 10.5 11 10.3 

CRC32 1.1 1.58 1.3 1.4 1.36 1.46 1.2 

BASICMATH 1.63 1.9 1.82 1.96 1.81 1.88 1.78 

0

5

10

15

20

25

30

35

40

45

25
6

51
2

10
24

20
48

40
96

81
92

16
15
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

26
21
44

52
42
88

26
21
44

M
is

se
s 

p
er

 1
00

0 
in

st
ru

ct
io

n
s

Cache size in bytes

1 may associative

2 wat assiciative

3 way associative

0

1

2

3

4

5

6

7

8

25
6

51
2

10
24

20
48

40
96

81
92

16
15
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

26
21
44

52
42
88

26
21
44

M
is

se
s 

p
er

 1
00

0 
in

st
ru

ct
io

n
s

Cache size in bytes

1 may associative

2 wat assiciative

3 way associative

0

5

10

15

20

25

M
is

se
s 

p
er

 1
00

0 
in

st
ru

ct
io

n
s

Various benchmark applications

not taken

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 415 Volume 14, 2015



Fig.6 Graph showing the Tuning Time taken by algorithms for 
each benchmark applications. 

From the Table 1 and Figure 6, it can be proved 

that MGA takes the minimum tuning time for every 

benchmark application. The MGA also is capable 

of giving the best set of techniques which requires 

only less number of iterations than any other 

algorithm, which makes it more efficient than the 

other algorithms. Although, P&P CE gives close 

tuning time compared to MGA, it requires more 

time to eliminate the negative RIP. This value 

makes the MGA is more efficient. MGA show a 

9% decrease in tuning time than other algorithms. 

Table 2 Normalized Tuning Time taken by each algorithm to 
run benchmark applications in seconds 

Benchmark MGA ORS IRS BE B&B CE P&P CE 

SUSAN 4.12 5.21 4.62 4.62 5.01 5.26 4.6 

BITCOUNT 1.93 3.47 2.65 2.71 2.62 3.38 2.34 

DIJKSTRA 0.78 1.1 0.865 0.833 0.914 0.957 0.893 

FFT 1.07 1.357 1.19 1.25 1.19 1.93 1.08 

IFFT 0.77 0.996 0.844 0.954 0.822 0.918 0.783 

QSORT 0.809 0.9 0.838 0.825 0.826 0.856 0.8135 

CRC32 1.119 1.548 1.262 1.359 1.402 1.431 1.212 

BASICMATH 1.193 1.37 1.325 1.427 1.315 1.36 1.295 

Fig.7 Graph showing the Normalized Tuning Time taken by 
algorithms for each benchmark applications 

The normalized tuning time is calculated using the 

tuning and the execution time to run the 

application. From the Table 2 and Figure 7, it is 

proved that the MGA take less normalized tuning 

time than the existing algorithms, that is almost 9% 

overall difference . 

Table 3 Speed Up obtained from each algorithm while running 
benchmark applications in seconds 

Benchmark MGA ORS IRS BE B&B Ce P&P CE POS 

SUSAN 1.33 1.14 1.07 .67 .29 1 1.26 1.33 

BITCOUNT 1.03 0.67 1 0.79 1 0.8 0.9 1.04 

DIJKSTRA 1.03 1.01 1 1.00 0.67 0.78 1 1.03 

FFT 1.37 1 1.03 1.13 1 1.25 1.13 1.37 

IFFT 1.26 1 1.12 1.11 1 1 1.24 1.37 

QSORT 1.28 1.18 1.2 1 1.01 1 1.19 1.2 

CRC32 1.05 1.04 1.04 1 1.03 1.02 1.05 1.05 

BASICMATH 1.03 1 1.00 1 1.02 1 1.02 1.03 

Fig.8 Graph showing the speed up values for algorithms 
running each benchmark applications. 

From Table 3 and Figure 8 it has been inferred that 

MGA provides better speed up values for all the 

benchmark applications The POS algorithm 

however gives same or better speed up values after 

ordering is done to the best set obtained from 

MGA. These values are nearly close to the values 

of MGA. However speed up for CRC application 

while running in POS gives less speed up value 

than MGA which explains that ordering degraded 

the performance of the program but only in a small 

ratio which can be neglected. The combination of 

MGA and phase order searching algorithm achieve 

11% improvement from the existing algorithms. 

Fig. 9 Graph representing the speed up value provided by each 
algorithm for Susan application. 

0

2

4

6

8

10

12

T
u

n
in

g
 T

im
e 

in
 s

ec
o

n
d

s

Various benchmark applications

MGA ORS

IRS BE

B&B CE

P&PCE

0

1

2

3

4

5

6

N
o

rm
al

iz
ed

 T
u

n
in

g
 T

im
e 

in
 s

ec
o

n
d

s

Various benchmark applications

MGA ORS IRS

BE B&B CE

P&P CE

0
1
2
3
4
5
6
7
8
9
10

MGA ORS IRS BE B&B Ce P&P CE POS

Various algorithm used

susan bitcount dijkstra

fft ifft qsort

crc32 basicmath

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MGA ORS IRS BE B&B CE P&P 
CE

POS

S
p

ee
d

 u
p

Various benchmark applications

susan

sp
ee

d u
p

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 416 Volume 14, 2015



From Figure 9 it is proved clearly that the speed up 

obtained by the MGA and POS are higher or 

relatively equivalent to the other algorithms 

specified. MGA improves SUSAN benchmark up 

to 9.3% better speed up than P&P CE. POS 

maintains the speed up after the selection strategy. 

 

 
 

Fig. 10 Graph representing the speed up value provided by 
each algorithm for Bit Count application 

 
From the Figure 9 MGA provides up to 9 % better 

speed up than iterative random search and push & 

pop combined elimination and even better speed up 

of up to 9.7% for other algorithms for the bitcount 

benchmark. Phase order search algorithm also gives 

better speed up of up to 9.7% after ordering 

applied. 

 

 
 

Fig. 11 Graph representing the speed up value provided by 
each algorithm for Dijkstra application 

 
Figure 10 shows speed up obtained for the Dijkstra 

application with large data sets. The combined push 

and pop with modified genetic algorithm provides 

2% higher speed up than batch elimination. But 

MGA improves more than 2% speed up when 

compared to other algorithms such as optimality 

random search, iterative random search and push 

and pop combined elimination. Phase Order Search 

algorithm provides almost equivalent speed up after 

ordering MGA. 

 

 
 

Fig.12 Graph representing the speed up value provided by each 
algorithm for FFT application. 

 

From Figure 12 it has been inferred that MGA 

gives 9.1% better speed up than combined 

elimination and even much better output than other 

algorithms. Phase order search algorithm gives 

almost the same output after ordering from MGA. 
 

 
 

Fig.13 Graph representing the speed up value provided by each 
algorithm for IFFT application 

 
Figure 13 shows that IFFT application tested with 

large data sets. MGA provides better speed up than 

almost all other algorithms. MGA gives 9.8% better 

speed up than push and pop combined elimination 

and 8.9% better speed up than iterative random 

search algorithm. It also gives 8% better speed up 

than batch elimination and optimality random 

search algorithm. Phase order search improvises the 

speed up of up to 5% after ordering from MGA. 

 

 
Fig.14 Graph representing the speed up value provided by each 

algorithm for Quick Sort application. 

0

0.2

0.4

0.6

0.8

1

1.2

MGA ORS IRS BE B&B CE P&P CE POS

S
p

ee
d

 u
p

Various algorithms used

bitcount

0

0.2

0.4

0.6

0.8

1

1.2

MGA ORS IRS BE B&B CE P&P 
CE

POS

S
p

ee
d

 u
p

Various algorithms used

dijkstra

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MGA ORS IRS BE B&B CE P&P CE POS

S
p

ee
d

 u
p

Various algorithms used

fft

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MGA ORS IRS BE B&B CE P&P CE POS

S
p

ee
d

 u
p

Various algorithms used

ifft

0

0.2

0.4

0.6

0.8

1

1.2

1.4

MGA ORS IRS BE B&B CE P&P CE POS

S
p

ee
d

 u
p

Various algorithms used

qsort

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 417 Volume 14, 2015



Figure 14 shows that MGA gives 9.27% better 

speed up than push and pop combined elimination 

and 9.38% better speed up than iterative random 

search algorithm. Phase order search does not 

provide better result for quick sort application as it 

provides 3% lesser speed up after ordering from 

MGA. 

 

 
 

Fig.15 Graph representing the speed up value provided by each 
algorithm for CRC32 application 

 

From Figure 15 it has been inferred that MGA 

gives 2% better speed up than push and pop 

combined elimination and 3% better speed up than 

optimality random search algorithm. Phase order 

search algorithm almost the same speed up after 

ordering from MGA. 

 

 
Fig. 16 Graph representing the speed up value provided by 

each algorithm for Basic Math application 

 
 Figure 16 shows that basic math application tested 

with large data sets for all other algorithms. MGA 

gives 9.3% better speed up than push and pop 

combined elimination and 11.3% better speed up 

than iterative random search algorithm. 

 

The MGA provides better set of optimization 

techniques than the existing strategies. The MGA 

achieve overall 11 % improvement in the speed up. 

Phase order search algorithm gives the same output 

after ordering from MGA. From the above figures 

it has been inferred that overall 2 % to 12 % 

improvement for the speed up has been achieved if 

ordering performed from MGA.  

 

5 Conclusion 
 

This paper deals with the evaluation of different 

selection strategy, tuning strategy and phase 

ordering strategy is integrated in one framework. 

These different strategies are applied to eight 

different benchmark applications [16] with large 

data sets considered. The result proves that better 

performance is achieved for Combined Push and 

Pop with Modified Genetic Algorithm with phase 

order searching. The MGA algorithm proves 10% 

consistent performance for all of the benchmark 

programs. The MGA algorithm can be used further 

to fine tune the program performance which is 

intend select best set of optimization techniques. 

Applying various algorithms upon eight different 

benchmark applications run three time with large 

data sets concluded that MGA is the best strategy. 

The resultant sequences obtained from MGA are 

given to the phase order searching algorithm. The 

phase order searching algorithm gives 3 % better 

speed up than the selection algorithms considered. 

The experimental results show that 9% 

improvement in both tuning time and normalized 

tuning time. The speedup exhibit 11% increase over 

the set of benchmark applications. The combination 

of MGA and Phase order searching proves that 

10% overall improvement in the program 

performance when compared to other existing 

algorithms. 

 

This research work will opens several possibility to 

the future work related to this study of compiler 

options. In future apply additional machine learning 

algorithms to develop a prediction model [17] that 

will predict the good optimization combination. In 

this framework the algorithms are implemented 

only for GCC compiler and uses only dynamic 

program features. In future the framework can also 

be extended to other application domains such as 

Clang [18], ICC [19], ROSE Compiler [20] and 

Open 64 [21]. In future we consider both static and 

dynamic program features with more benchmark 

applications. 

 

REFERENCES 

 

[1] GCC Manual available at http://gcc.gnu.org/online 

docs/gcc-4.7.2/gcc. 

[2] Optimization in GCC, Online Linux Journal 
which can be read from http://www.linux 

journal.com/article/7269. 

[3] Michael R.Jantz, Prasad A.Kulkarni,  “Exploiting 

phase inter-dependencies for faster  iterative  

compiler optimization phase order searches,” 

CASES '13 Proceedings of the 2013 International 

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

MGA ORS IRS BE B&B CE P&P 
CE

POS

S
p

ee
d

 u
p

Various algorithms used

crc32

0.8

0.85

0.9

0.95

1

1.05

MGA ORS IRS BE B&B CE P&P CE POS

S
p

ee
d

 u
p

Various algorithms used

basicmath

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 418 Volume 14, 2015



Conference on Compilers, Architectures and 

Synthesis for Embedded Systems, Article No. 7, 

Year 2013, pp. 1-10. 

[4] David Whalley, Gary S.Tyson and Prasad 

A.Kulkarni,” Evaluating Heuristic Optimization 
Phase Order Search Algorithms,” International 

Symposium on Code Generation and 

Optimization(07), Year 2007,pp. 157 – 169. 

[5] Andrews J and Dr.Sasikala T “Efficient 

framework architecture for improved tuning time 

and normalized tuning time,” WSEAS  

transactions on  information  science and 

applications, Issue 7, Vol. 10, July 2013, pp.230-

240. 

[6] Retantyo Wardoyo and Suprapto ,“Algorithms of 
the combination of compiler optimization options 

for automatic performance tuning,” International 

Conference, ICT- EurAsia 2013, Vol. 7804,Year 

2013 ,pp. 91-100. 

[7] Rudolf Eigenmann and Zhelong Pan,” Fast and 

Effective Orchestration of Compiler 

Optimizations for Automatic Performance 

Tuning,” International Symposium on Code 

Generation and Optimization (06), Year 2006, 
pp.319-332. 

[8] Andrews J and Dr.Sasikala T, “ Evaluation of 

various compiler optimization techniques related 

to Mi-bench benchmark applications,” Journal of 

Computer Science, Vol. 9 Issue 6, Year  2013, 

pp.749-756. 

[9]  Andrews J and Dr.Sasikala T, “Analysis of Mi-

bench Benchmark Applications Using GCC 

Compiler,” 3rd International Conference on 
Computer Science and Information Technology 

(ICCSIT'2013) ,Year 2013, pp. 34-37. 

[10] G. Bashkansky and Y. Yaari, “Black box 

approach for selecting optimization options using 

budget-limited genetic algorithms, “SMART 

Workshop 2007 (HiPEAC). European Network of 

Excellence on High Performance and Embedded 

Architecture and Compilation, Ghent, 

Belgium,Year 2007, pp. 1–16. 

[11] Almagor L, Keith D. Cooper, Alexander Grosul, 
Timothy J. Harvey, Steven W. Reeves, Devika 

Subramanian, Linda Torczon and Todd 

Waterman,” Finding Effective Compilation 

Sequences,” ACM SIGPLAN/SIGBED 

conference   on   Languages,   compilers,   and   

tools   for embedded systems(LCTES '04),Vol. 39 

Issue 7, Year July 2004 ,pp. 231 – 239. 

 

 

 
 

 

 

 

 

 

 

[12] Grigori Fursin, Olivier Temam and  Inria  Saclay, 

“Collective Optimization: A Practical 

Collaborative Approach”, ACM Transactions on 

Architecture and Code Optimization, Vol. 7, Year 

2010, pp. 1-29. 

[13] Grigori Fursin, Olivier Temam, Mircea Namolaru, 

Elad Yom-Tov and Ayal Zaks et al. “MILEPOST 

GCC: machine learning based research 

compiler,” GCC Developers' Summit, Ottawa, 

Canada,  Year 2008, pp. 1-13. 

[14] Edwin Bonilla , Felix Agakov , Grigori Fursin, 

John Cavazos, , Michael F.P., O’Boyle and 

Olivier Temam,” Rapidly Selecting Good 

Compiler Optimizations using Performance 
Counters,” In CGO '07: Proceedings of the 

International Symposium on Code Generation and 

Optimization ,Year 2007, pp. 185-197. 

[15] PAPI: A Portable Interface to Hardware 

Performance Counters. http://icl.cs.utk.edu/papi. 

[16] Jeffrey S. Ringenberg and Matthew R. Guthaus et 

al.:”MiBench: A free, commercially 

representative embedded benchmark suite “IEEE 

4th Annual Workshop on Workload 

Characterization, Year 2001. 

[17] Eunjung Park, Sameer Kulkarni and John 

Cavazos, “ Evaluation of different modeling 

techniques for iterative compilation,” CASES 

2011 ACM ,Year 2011 ,pp. 65-74. 

[18] CLang, A C Language Family Frontend for 

LLVM,(http://clang.llvm.org/) 

[19] ICC, Intel C++ Compiler,(http://software. 
intel.com/) 

[20] Rose compilers at http://rosecompiler.org/ 

[21] Open 64 compilers at http://www.open64. 

net/home.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on COMPUTERS J. Andrews

E-ISSN: 2224-2872 419 Volume 14, 2015




