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Abstract: - Based on the feature matching theory about SIFT (Scale-Invariant Feature Transform) keypoints, 
the concentric circle structure and the color feature vector of scale-invariant descriptor are proposed in this 
paper. In the concentric circle structure, the radiuses of the concentric circles are proportional to the scale 
factor, which can achieve the scale invariance. To achieve the rotation invariance, the coordinates of descriptor 
are also rotated in relation to the point’s orientation. Compared with the square structure of SIFT descriptor, the 
concentric circle structure not only has simpler computation, but also is more robust to image rotation. The 
color feature vector chooses the mean values of different color components R, G, B in each subregion of 
descriptor as the vector’s elements. Compared with the gray feature vector of SIFT descriptor, the color feature 
vector fully utilizes the image’s color information, having stronger rotation invariance, and obviously 
decreasing the vector’s dimension, with less computation. After the theory analyses, the experimental results 
have certified their validity, too.  
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1 Introduction 
Texture feature, line feature and point feature are 
three classical image features. The texture feature is 
fit for the processing of image information with 
obvious textures, and has been widely utilized in the 
remote sensing image processing. Line feature can 
be used to describe the beeline or curve figures with 
regularity in images. Many cutting-edge methods, 
such as Susan detector, Canny detector, Sobel 
detector and their extended, have been applied in the 
image detection and image segmentation. The 
texture feature and line feature are both the global 
features and sensitive to image clutter, occlusion 
and scale changes. As a kind of local feature, the 
point feature is more adapted to clutter and 
occlusion. Especially, the scale-invariant point 
feature is robust to many image transformations, 
such as illumination changes, image rotation and 
scale changes, and has been applied in many fields, 
such as object recognition and classification [1,2], 
object tracking [3] and panorama building [4]. 

The scale-invariant keypoints detecting and 
matching algorithms include three steps: the first 
step is to detect the interest points invariant to many 
image transformations. The second step is to use the 
scale-invariant descriptor to compute the feature 
vector of each point. The last one is to match the 
feature vectors in two images’ vector spaces. 

The Harris corner is one of the classical point 
features, and has been used in image matching or 
object recognition successfully. It has strong 
robustness for many image transformations, but 
can’t be adapted to scale changes. To solve the 
problem, Carneiro and Jepson [5] have extended the 
Harris detector to image scale space. Mikolajczyk 
and Schmid [6] have proposed the Harris-Laplacian 
detector too. However, the scale-invariant keypoints 
extended from Harris corner require much 
computation. Lowe [7] presented the SIFT detector, 
which selects the local extreme points in the output 
of DoG (Difference of Gaussian) filter in scale 
space as the interest points. The SIFT detector and 
the LoG (Laplacian of Gaussian) detector both have 
better real time performances. 

After the keypoints’ location, scale and 
orientation are assigned, we need to describe every 
point by feature vector. In fact, the interest points 
matching in two images are the matching of their 
feature vectors. According to the biology theory, 
Lowe [7] presented the SIFT descriptor. It quantizes 
the gradient orientation histogram values in each 
subregion to form the feature vector. Mikolajczyk 
and Schmid [8] have extended the SIFT descriptor 
to bring the GLOH (gradient location-orientation 
histogram) descriptor. Yu and Morel [9,10] have 
also proposed the Affine-SIFT which is robust to 
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affine distortions. Compared with other descriptors, 
the scale-invariant descriptors based on the SIFT 
theory perform the best. However, the descriptors 
are high-dimensional descriptors and evidently 
increase the complexity of points matching 
computation. The PCA (Principal Components 
Analysis) can be used to reduce the matching 
computation of high-dimensional descriptors [8,11], 
but need plenty of image samples. Li [12] has 
introduced the fixed scale feature transformation, 
which is a scale space building method, to decrease 
the computation, but it doesn’t change the high-
dimensional descriptor. 

The calculation of SIFT feature vectors mainly 
utilizes the image’s gray information. To utilize the 
image’s color information, Abdel-Hakim and Farag 
[13] have proposed the CSIFT as a colored point 
feature descriptor. Alitappeh et al [14] have also 
introduced the SIFT descriptor in HSI color space to 
enhance the illumination invariance. Verma et al 
[15] have extended the SIFT descriptor to different 
color spaces too. The color SIFT descriptors can 
identify the color images better and achieve stronger 
illumination invariance, but the dimensions of their 
feature vectors are higher, which leads to more 
computation. 

To decrease the calculation complexity and 
increase the robustness about image transformations 
in the matching process of scale-invariant keypoints, 
we present the concentric circle structure and the 
color feature vector of scale-invariant descriptor in 
this paper.  

On one hand, the new concentric circle structure 
takes the interest point as the center, divides the 
sample area into 16 subregions, and rotates the 
coordinates in relation to the point’s orientation. The 
presented and extended SIFT descriptors [7-10] are 
all square and divided into 4x4 array subregions or 
more. The new descriptor is circular, and has less 
calculation error about image rotation. Therefore, 
compared with the SIFT descriptor, the new 
descriptor structure has stronger rotation invariance.  

On the other hand, the new color feature vector 
calculates the mean values of different color 
components R, G, B in each subregion as the feature 
vector’s elements. The proposed color SIFT 
descriptors [13-15] all calculate the gradient 
orientation histogram values on different color 
component levels. The new descriptor only 
calculates the mean values of different color 
components, and has small vector’s dimension. 
Therefore, compared with the SIFT descriptor, the 
color feature vector has less computation. 

This paper is organized as follows: Section 2 
introduces the SIFT detector and the LoG detector, 

which can detect scale-invariant point features. 
Section 3 proposes the concentric circle structure 
and the color feature vector of scale-invariant 
descriptor, and compares them with the square 
structure and gray feature vector of SIFT descriptor 
respectively. Experimental results are provided in 
Section 4 and Section 5 draws the conclusions. 
 
 
2 Keypoint Detector 
In normal conditions, the image transformations, 
which should be considered in the detection of 
scale-invariant keypoints, include image translation, 
illumination changes, image noise, image rotation, 
scale changes and so on. Especially in real 
applications, the points’ matching should be 
adequately robust to these usual image 
transformations. The difference operation has been 
used to achieve translation invariance and 
illumination invariance, the isotropic derivative 
operators have been used to achieve rotation 
invariance, the Gaussian convolution operation has 
been used to decrease image noise, and the interest 
points detecting in image scale space has been an 
effective approach to achieve scale invariance. 
 
 
2.1 Scale Space 
As shown in Fig.1(a), the image scale space is a set 
of different representations of one image in different 
resolution levels. I(X) is the original image and g(X; 
σ) is the Gaussian kernel function. Then, the 
resolution representation L(X; σ) in the scale space 
of I(X) is created by the Gaussian convolution: L(X; 
σ) = I(X)*g(X; σ). The standard deviation σ of g(X; σ) 
represents the scale factor of L(X; σ).  
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(a). original frame                           (b). pyramid frame 
Figure 1 Image scale space. 

In real operations, the scale space is sampled in 
scale orientation and the scale factors of different 
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image resolution levels are distributed exponentially: 
σw= kwσ0. σ0 is the initial scale factor and k is the 
scale factor ratio between the neighboring image 
resolution levels in scale space. 

The Ref.[16] has analyzed the γ-normalized 
derivatives’ characteristic of image pixel. When γ is 
equal to 1, the pixel’s γ-normalized derivatives lead 
to perfect scale invariance. Therefore, the pixels, 
whose values of normalized derivative function are 
the local extrema in scale space, are scale invariant 
and often chosen as the interest points. 
 
 
2.2 The LoG Detector 
The LoG detector chooses as the keypoints the 
pixels whose scale normalized LoG are the local 
extrema in scale space. The normalized Laplacian is: 

( ) ( )( )2 2
2 ; ;

x y
L X L Xσ σ σ∂ + ∂              (1) 

The comparing calculation is among the centre 
point and its 26 neighboring pixels. The 26 
neighboring pixels include the 8-neighbourhood 
pixels at the same level, the 9 corresponding pixels 
at the immediate lower level and the 9 
corresponding pixels at the immediate upper level. 
 
 
2.3 The SIFT Detector 
Because of the Gaussian convolution operation, the 
scale space building process needs much 
computation. The SIFT detector utilizes the SIFT 
pyramid frame, which includes Gaussian pyramid 
and DoG pyramid, to reduce the computation and 
storage in scale space [7]. The differences of the 
neighboring resolution levels in Gaussian pyramid 
form the resolution levels in DoG pyramid: 

D(X; σ) = I(X)*(g(X; kσ) - g(X; σ))           (2) 
The pixels, whose DoG values are local extrema, 

are detected as the keypoints. Just as the SIFT 
detector, the LoG detector can be used in pyramid 
frame to reduce the computation. 

Location, orientation and scale are three 
characteristic parameters of point feature. The 
location is denoted by the point’s coordinates in the 
original image. The scale is indicated by the scale 
factor of the corresponding image level. 
Furthermore, the orientation histogram, which has 
been presented in Ref.[7], can be used to calculate 
the point’s orientation. 
 
 
3 Scale-Invariant Descriptor 
After the characteristic parameters of all keypoints 
are computed, we need utilize the local feature 
descriptors to describe the points. The matching of 

feature vectors decides the corresponding matching 
of the points. Therefore, the descriptors not only 
should cover the distinctive image information 
around points, but also have strong robustness for 
many image transformations just like the 
corresponding keypoints. Corresponding to the 
scale-invariant points, the descriptors should be 
scale-invariant. The computation of descriptor 
includes the design of descriptor’s structure and the 
choice of feature vector’s type. The descriptor’s 
structure can confirm the figure and area of local 
image, which is used to compute feature vectors, 
around points. The calculation of feature vectors can 
utilize the image gray information such as the 
gradient magnitude and orientation, and can also 
utilize the image color information such as the mean 
values of different color components. 
 
 
3.1 Descriptor Structure 
The square structure has been selected in the SIFT 
descriptor. However, the concentric circle structure 
is proposed in the paper and compared with square 
structure. 
 
 
3.1.1 Square Structure 
Among the proposed descriptors, the SIFT-based 
descriptors have been proved better than others [8]. 
Based on the biological vision theory, the SIFT 
descriptor, which creates the square structure as 
shown in Fig.2, takes the keypoint as the center and 
choices a square area for feature vector computation 
on the corresponding image resolution level. The 
total square descriptor area has been divided into 
4X4=16 subregions, and the calculation of feature 
vector is executed in each subregion. On the other 
hand, the descriptor’s coordinates are rotated 
relative to the point’s orientation, and the 
descriptor’s radiuses are proportional to the point’s 
scale factor. 

If the 8-bin orientation histogram is selected to 
compute feature vectors, then the feature vector’s 
dimension of the descriptor with square structure 
has reached or exceeded 16X8=128. The high-
dimensional descriptors would increase the 
matching accuracy to a certain degree, but would 
also result in high computational complexity of 
feature matching in a large database. 
 
 
3.1.2 Concentric Circle Structure 
As shown in Fig.3, a new concentric circle structure 
is proposed in the paper. According to the angle 
interval of 90 degree, the inner circle is divided into 
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4 subregions: 0°~90°，90°~180°，180°~270° and 
270°~360°. According to the angle interval of 30 
degree, the ring between the outer circle and the 
inner circle is divided into 12 subregions: 0°~30°, 
30°~60°, 60°~90°, 90°~120°, 120°~150°, 
150°~180°, 180°~210°, 210°~240°, 240°~270°, 
270°~300°, 300°~330° and 330°~360°. Therefore, 
the descriptor includes 16 subregions. If the radius 
of the outer circle is two times longer than that of 
the inner circle, then the 16 subregions’ area are the 
same. As shown in Fig.3, according to the 
anticlockwise orientation, the 4 subregions in the 
inner circle are respectively named as S1~S4, and 
the 12 subregions in the ring are respectively named 
as S5~S16. The reference direction of the descriptor 
is set to point to the 0° direction. 

During the calculation of feature vectors, the 
keypoint is taken as the descriptor’s center to 
achieve translation invariance. The coordinates of 
the descriptor are rotated in relation to the point’s 
orientation to achieve rotation invariance. The 
radiuses of the concentric circles are proportional to 
the point’s scale factor to achieve scale invariance. 
The Gaussian convolutions are used to reduce the 
influence of image noise. 

The feature vector computation process of the 
descriptor with concentric circle structure can be 
divided into five steps: 

Step 1: decrease the influence of image noise, 
extract the R, G, B color components of original 
image and make Gaussian convolutions with the R, 
G, B color values respectively; 

Step 2: place the descriptor’s center on the 
location of keypoint, rotate the coordinates of the 
descriptor to point to the keypoint’s orientation, and 
set the radiuses of the concentric circles k times 
longer than that of the point’s scale factor; 

Step 3: build the external square A of the 
concentric circle descriptor, and set the square’s 
center on the location of keypoint, as shown in Fig.3; 

Step 4: select each pixel in square A in turn, and 
compute the distance l from the pixel to the point 
and the included angle β from the connection line of 
the pixel and the point to the descriptor’s orientation. 
According to distance l and angle β, judge which 
subregion the pixel belongs to; 

Step 5: compute the vector elements’ values in 
each subregion to form the feature vector, and 
normalize the vector elements to unit length. 
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Figure 2 Square structure. 
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Figure 3 Concentric circle structure. 
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3.1.3 Comparison of Descriptor Structures 
Digital images use the pixel array model to store 
image information. Because the descriptor would be 
rotated, the square structure needs to make sure the 
corresponding relation between sample pixels and 
descriptor subregion through coordinate 
transformation. The coordinate transform 
calculation not only increases the computation, but 
also brings computation error. According to the 
distance and angle from sample pixel to keypoint, 
the descriptor with concentric circle structure judges 
which subregion the pixel belongs to, which needs 
no coordinate transform calculation and simplifies 
the feature vector computation. 
 
 
3.2 Feature Vector 
The gray feature vector is the common feature 
vector and a new color feature vector is proposed in 
the paper. 
 
 
3.2.1 Gray Feature Vector 
According to the gray image information, SIFT 
descriptor computes the 8-bin orientation histogram, 
which is shown in Fig.4, to obtain the feature vector. 
Each bin’s value of orientation histogram equals to 
the addition of gradient magnitudes of pixels which 
fall into this bin. The gradient magnitude and 
orientation are computed using pixel differences: 

( ) ( ) ( )( ) ( ) ( )( )2 2
, 1, 1, , 1 , 1M x y I x y I x y I x y I x y= + − − + + − − (3) 

( ) ( ) ( ) ( ) ( )( ), arctan 2 , 1 , 1 , 1, 1,x y D x y D x y D x y D x yθ = + − − + − − (4) 
 

0 180 360  
Figure 4 8-bin gradient orientation histogram. 

To differentiate the proportion in orientation 
histogram of sample pixels with different distance to 
keypoint, the gradient magnitude should be 
weighted by a Gaussian coefficient. To avoid the 
boundary affects of neighbouring bins of gradient 
orientation histogram, the trilinear interpolation is 
also used to distribute the gradient magnitude of 
each sample pixel into adjacent histogram bins. 

For the 4X4 square descriptor structure which is 
shown in Fig.2, the 8-bin orientation histograms are 
computed in each subregion, and we can get 
4X4X8=128 dimension feature vectors. For the 

concentric circle descriptor structure, we can also 
compute the orientation histograms in 16 subregions 
and get 128 dimension feature vectors 
 
 
3.2.2 Color Feature Vector 
The feature vector based on the image color 
information is proposed in the paper. The feature 
vector selects the mean values of R, G, B color 
components in each subregion as the vector’s 
elements. The color feature vector has 48 dimension 
elements for the descriptor with 16 subregions. 
Compared with the 128 dimension SIFT descriptor, 
the color feature vector reduces the vector’s 
dimension and simplifies the matching calculation 
of feature vectors. 

To increase the robustness for illumination 
changes, the color feature vector’s elements need to 
be normalized. However, the normalization process 
is different from that of gray feature vector which 
normalizes total elements to unit length. In color 
feature vector, the vector’s elements based on the 
same color component need to be normalized to unit 
length respectively, which can enhance the 
invariance for color spectrum changes in 
illumination. 

The well-known color space models include 
RGB, YUV, rgb, HSI and so on. According to the 
real application field, we can choose different color 
models. However, the color models all have some 
limitations. In computer vision, to make the analysis 
tractable, a typical assumption that the object’s 
surfaces are the Lambertian surfaces and only the 
body reflections are considered. Under this 
assumption, the pixel’s RGB values have no 
relationship to the viewing direction and the 
illumination direction. The objects in the real world 
always can not meet the assumption, but the normal 
circumstances can meet the assumption 
approximately. Furthermore, the RGB model can 
reflect the image information better. Therefore, the 
color feature vector selects the RGB color model 
firstly. 

Let I'(X') be rescaled from image I(X) by a 
constant factor f, and then I'(fX)=I(X), X=(x, y). If a 
γ-normalized homogeneous differential expression 
assumes a local extremum at (Xa; σa) in the scale 
space representation of I(X), the corresponding local 
extremum in the scale space representation of I'(X') 
will be located at (X'a; σ'a), then X'a= fXa and σ'a = 
fσa [16]. There is a region W, whose area is Dw, in 
I(X). In the region W, x is in the interval [x1, x2] and 
y is in the interval [φ1(x), φ2(x)]. The corresponding 
region of W in I'(X') is W', where y' = fy and x' = fx. 
In the region W', x' is in the interval [x'1, x'2], y' is in 
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the interval [φ'1(x'), φ'2(x')] and the area of W' is Dw'. 
If C(x, y) and C'(x', y') denote the same color 
component (one of R, G, B) value in I(X) and I'(X') 
respectively, then C'(x', y') = C'(fx, fy) = C(x, y), and 
we can get: 

( )( )
( )( ) ( )
( )( ) ( )

2 2

1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1
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C x y dxdy D

ϕ

ϕ
= ∫ ∫  

( ) ( )( ), , , ,x fx y fy C x y C x y′ ′ ′ ′ ′= = =                         (5) 
Therefore, the mean values of color component 

of the subregion W' in I'(X') are equal to that of the 
corresponding subregion W in I(X). 
 
 
3.2.3 Comparison of Feature Vectors 
The gray feature vector calculates all 8-bin 
orientation histograms in each subregion to form 
higher dimensions vector. It has strong invariance 
for many image transformations on one hand, 
increases the computation complexity of vectors 
matching on the other hand. Furthermore, the 
gradient orientation is utilized to form feature vector, 
therefore the gray feature vector is more sensitive to 
image rotation. The color feature vector calculates 
the mean values of R, G, B color components in 
each subregion to form lower dimension vector. It 
not only decreases the computation complexity of 
matching, but also influences the robustness to 
image transformations. The mean values of color 
components wouldn’t decrease the invariance for 
image rotation, but need to compute on color images. 
 
 
3.3 Keypoints Matching 
After detecting the keypoints and computing their 
feature vectors in two images, we can use the 
corresponding point pairs to match the two images. 
For each keypoint in one image, its matching point 
in other image has the most similar feature vector. 
Therefore, the matching of points is to find the most 
similar feature vector in scale space of two images. 

The Euclidean distance comparison method 
presented in SIFT descriptor is a better method to 
measure the similarity of feature vectors. The 
measure method calculates the distance ratio of the 
closest neighbor and the second-closest neighbor to 
match point pairs. If the distance ratio is above the 
threshold, the feature vector is matched with the 
closest neighbor. If the distance ratio is below the 

threshold, the closest neighbor is close to the 
second-closest neighbor and the matching can not 
be ensured. 

After obtaining a set of initial matching pairs, we 
also need to use the RANSAC (Random Sample 
Consensus) method to reject the outliers. 
 
 
4 Experimental Results and Analysis 
In the comparison with descriptors’ performance, 
the recall-precision criterion is often used to 
estimate their performance. RP denotes the number 
of corresponding keypoint-to-keypoint pairs in two 
images I1 and I2. MP denotes the number of 
matching point-to-point pairs in two images. TM 
and FM denote the number of correct matches and 
false matches respectively. Then, the recall ratio and 
the 1-precision ratio in recall-precision criterion are 
as follows: 

TMrecall
RP

=   1 FM FMprecision
MP TM FM

− = =
+

   (6) 

The recall ratio is computed as a ratio between 
the number of correct matches and the number of 
corresponding point pairs. The 1-precision ratio 
represents the ratio between the number of false 
matches and the total number of matches. 

When the errors are in location, scale and 
orientation do not exceed the thresholds, two points 
are regarded as the corresponding point pair. In our 
experiment, the location error threshold is 1.5×2p (p 
is the octave number in SIFT pyramid) pixels, the 
scale error threshold is 21/2σ (σ is the corresponding 
scale factor), and the orientation error threshold is 
15◦. 

The experimental results are the statistical data 
collected from 100 real color scene images and their 
transformations. We compare and analyze four 
descriptors which are the combinations of different 
structures and different feature vectors. The four 
descriptors include square-gray, square-color, circle-
gray and circle-color.  

Fig.5(a)-(d) presents the recall and 1-precision of 
four different descriptors. The square-gray 
descriptor is shown by the black line, the square-
color descriptor by the green line, the circle-gray 
descriptor by the blue line and the circle-color 
descriptor by the red line. The solid lines are used to 
show the recall results, while the dashed lines are 
used to show the 1-precision results. The image 
transformations include illumination changes, image 
noise, image rotation and scale changes. The 
Euclidean distance is used to measure the similarity, 
and the distance ratio threshold is set to 0.7.  
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Illumination Change Factor                                                                                                Gaussian Deviation                                            

(a). Illumination Changes                                                                                                     (b). Image Noise                                                 

                
Rotation Angle (degree)                                                                                                      Scale Factor                                              

(c). Image Rotation                                                                                                    (d). Scale Changes                                           
Figure 5 The recall-precision results of four descriptors. 

From the experimental results, we can see that 
the four combined descriptors have the similar 1-
precision results, but different recall results. As to 
illumination changes, the recall ratios of square-gray 
descriptor and circle-gray descriptor are basically 
the same, those of square-color descriptor and 
circle-color descriptor are also closed, but the recall 
ratios of two gray feature vectors are greater than 
those of the two color feature vectors. The 
descriptor’s structure wouldn’t influence the 
robustness for illumination changes. However, the 
gradient orientation histogram has stronger 
invariance for illumination changes than that of the 
mean values of color components. As to image 
noise, the recall ratios of the four descriptors are 
similar, but the color feature vector has slightly 
better recall ratio than that of the gray feature vector. 
On one hand, the descriptor’s structure has less 
influence on the robustness for image noise. On the 
other hand, the color feature vector decreases the 
influence of image noise because of the use of the 
mean values. As to image rotation, the gradient 
orientation error caused by image rotation is greater 
than that of the mean values of color components, 
therefore the color feature vector has clearly better 
recall than that of the gray feature vector in terms of 
image rotation. Compared with the square structure, 
the concentric circle structure also has slightly better 
invariance for image rotation. As to scale changes, 
the recall ratio of the gray feature vector is better 
than that of the color feature vector, and the image 
scaling influences the mean values more. 

The descriptor’s structure has slight influence on 
the robustness for image transformations, but the 
calculation of feature vector with concentric circle 
structure is simpler and more convenient. The gray 
feature vector has better performance in terms of 
illumination changes and scale changes, but the 
color feature vector has obviously stronger 
robustness for image rotation and slight better 
invariance for image noise. Compared with 128 
dimension gray feature vector, the color feature 
vector only has 48 dimensions, which can evidently 
reduce the computation complexity. Furthermore, 
because of the influence of the re-sampling 
operation, the result lines in the scale change 
experiment are flexural. 

Fig.6 shows the keypoints matching results for 
image rotation of the four combined descriptors. We 
use the SIFT detector to gain the SIFT points in two 
images, and then utilize the four descriptors to 
match the SIFT points. As to the square-gray 
descriptor, the number of right matching pairs is 140 
and 3 inconsistent matching pairs are rejected by the 
RANSAC method. As to the circle-gray descriptor, 
there are 142 right matching pairs and 2 inconsistent 
matching pairs. The square-color descriptor has 179 
right matching pairs and 2 inconsistent matching 
pairs. The circle-color descriptor has 184 right 
matching pairs and 3 inconsistent matching pairs. 
According to the experimental results, we can see 
that the color feature vector has better robustness for 
image rotation than that of the gray feature vector.  
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(a) square-gray descriptor                                                                                    (b) circle-gray descriptor                                           

           
(c) square-color descriptor                                                                                    (d) circle-color descriptor                                           

Figure 6 The keypoints matching results for image rotation. 
 

           
(a) square-gray descriptor                                                                                    (b) circle-gray descriptor                                          

           
(c) square-color descriptor                                                                                    (d) circle-color descriptor                                          

Figure 7 The keypoints matching results for scale change. 
 

Fig.7 shows the keypoints matching results for 
image scaling of the four combined descriptors. As 
to the square-gray descriptor, the number of right 
matching pairs is 131 and 6 inconsistent matching 
pairs are rejected by the RANSAC method. The 
circle-gray descriptor has 128 right matching pairs 
and 7 inconsistent matching pairs. The square-color 
descriptor has 99 right matching pairs and 11 
inconsistent matching pairs. The circle-color 
descriptor has 102 right matching pairs and 6 
inconsistent matching pairs. According to the 
experimental results, we can see that the robustness 
for scale change of the gray feature vector is better 
than that of the color feature vector. 

Table 1 shows the keypoints matching time for 
image rotation and image scaling in Fig.6 and Fig.7 
respectively. The matching time of the square-gray 
descriptor and the circle-gray descriptor are similar. 
Because of the same dimension of their feature 
vectors, the matching time of the square-color 
descriptor and the circle-color descriptor are same 
too. However, because the color feature vector’s 
dimension is less than the SIFT feature vector’s 

dimension, the matching time of the new color 
feature vector is less than it of the SIFT feature 
vector obviously. 

Table 1 The keypoints matching time of four descriptors. 

 square-gray 
descriptor 

circle-gray 
descriptor 

square-color 
descriptor 

circle-color 
descriptor 

image 
rotation 297ms 297ms 156ms 156ms 

image 
scaling 266ms 265ms 141ms 141ms 

 
 
5 Conclusions 
In this paper, we have developed the concentric 
circle structure and the color feature vector of scale-
invariant descriptor, and compared their 
performance with the square structure and the gray 
feature vector. The concentric circle structure is 
built by two concentric circles which take the 
keypoint as the center. The radius of outer circle is 
twice longer than that of inner circle. According to 
the angle interval of 90 degree, the inner circle is 
divided into 4 subregions. On the basis of the angle 
interval of 30 degree, the ring between the outer 
circle and the inner circle is divided into 12 
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subregions. Because the concentric circle structure 
needn’t coordinate transform calculation, it 
decreases the computation complexity of feature 
matching. The color feature vector selects the mean 
values of R, G, B color components in each 
subregion as the vector’s elements, has strong 
invariance for many image transformations, and 
especially has strong robustness for image rotation. 
Moreover, the color feature vector reduces the 
vector’s dimension evidently and reduces the 
computation of points matching. 
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