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Abstract: - In order to find an applicable way of generating high-quality all-structured hexahedral meshes, a 
method of generating structured hexahedral mesh using mean value coordinates is proposed. Firstly, a new 
edge classification method and its execution condition are proposed which greatly cuts down limits for sub-
mappable volumes by means of spreading local coordinate system. Secondly, virtual edges are created 
according to values of mean value coordinates in the computational domain and added into volume’s 
corresponding directed graph to eliminate inner loop vertices in the graph; therefore virtual volume 
decomposition process is avoided. Eventually, examples are given to illustrate the applicability of the proposed 
method. Meshing results manifest that the proposed method can stably generate high-quality hex-meshes and 
indicate potential application for hexahedral meshing of sub-mappable volumes. 
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1 Introduction 
Parameter modification, mesh generation, 
simulation and result evaluation are four key steps 
in the iterative process of three-dimensional 
mechanical model optimal design. Mesh generation 
is a critical input for finite element method and 
finite difference method, thus the precondition of 
simulation. 

Accuracy and duration of simulation are highly 
dependent on the average and worst quality of the 
mesh. Because of providing better element stiffness 
matrix, high quality meshes always quickly lead to a 
more accurate solution. The quality of hexahedral 
mesh is much better than tetrahedral. In order to 
achieve the same level of accuracy, tetrahedral mesh 
typically requires four to ten times more elements 
and much longer time than a hexahedral mesh [1]. 
Due to higher quality than ordinary hexahedral 
mesh, Structured hexahedral mesh can significantly 
reduce processing time and simplify parallelization, 
and consequently becomes a preferred choice of 
mesh generation [2]. 

As far as concerned, no general valid solution 
has been given which can realize hexahedral mesh 
generation stably and automatically. In actual 
projects, mesh generation had been done manually 
so as to pursue mesh quality. Therefore plenty of 
time had been wasted. 

Many research has been done to realize auto hex-
mesh generation [3], many algorithms are given 
including grid-based methods [4][5], medial surface 
methods [6], advancing front techniques [7][8], etc. 

Although mature and stable, none of the methods 
mentioned above can generate highly structured 
mesh. 

Submapping [9] method can automatically 
generate hexahedral mesh for blocky volumes. After 
the edge classification and volume decomposition 
process, product model can be decomposed into 
many blocks topologically similar to hexahedron. 
These simpler blocks can easily be meshed by using 
well-known methods. Mesh of the recognized model 
consists of meshes of all the blocks. Nevertheless, 
existing edge classification methods have difficulty 
in processing general blocky volumes, and the 
situation encountered during volume decomposition 
maybe too complex to find a valid solution, which 
becomes a major obstacle to apply submapping 
method. 

Submapping using Recognized Model [10] 
(Referred to as SRM) is a feasible approach of 
generating structured hexahedral mesh for general 
blocky volumes. Recognized model is a polycube in 
the computational domain which has the same 
topology structure as the original model. One can 
get structured mesh through meshing the polycube 
and mapping the mesh back onto the original model. 

Recognized model has a regular shape and can 
be meshed directly by submapping. The process of 
mapping mesh of polycube onto the original model 
can be regarded as the inverse process of 
constructing recognized model, which can be easily 
realized using well-known methods. How to get 
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recognized model from the original model is the key 
step of SRM, thus a focal point for the community. 

Y. Su proposed an algorithm of constructing 
recognized model in Ref. [11] by tessellating the 
original model into small triangles and then 
employing a fuzzy logic method to determine the 
normal directions of the triangles. Y. Su’s method 
consists of so many complex details that its 
reliability is difficult to guarantee. 

For three-dimensional product model 
topologically similar to polycube, E. Ruiz-Gironés’ 
method [12][13] constructed the linear 
programming: 

 
min

. .  ,  ,  
k k k k k k

e e e
e

e e e e e e
e I e I e J e J e K e K

n N

s t n n n n n n

ω

+ − + − + −∈ ∈ ∈ ∈ ∈ ∈

−

= = =

∑

∑ ∑ ∑ ∑ ∑ ∑
        (1) 

 
where eN  is the target element number on edge 

e , eω  is the weight related to edge e , both of 
which are designated before solving equation(1), kI +  
is the set of edges on edge loop kL  which has the 
same direction with I axis of the computational 
domain. { }1 2, , , kL L L⋅ ⋅ ⋅ ⋅ ⋅⋅  is a basis of all edge loops 
of the model. According to edge classification 
results and solution of Equation 1, recognized model 
can be obtained quickly. However, for volumes 
containing inner loop vertices, virtual volume 
decomposition is still needed which implies that 
problem of volume decomposition still exists. 

SRM significantly broadens submapping 
method’s scope of application, but its disadvantages 
still exist. Edge classification specifies the axis 
direction corresponding to each edge in the 
computational domain, which is a precondition of 
applying SRM, however, edge classification method 
is too simple to classify edges in complex situations. 
The shortage of general edge classification method 
in submapping also limits the SRM’s scope of 
application. Furthermore, problem in volume 
decomposition also bothers SRM: volume 
decomposition process eliminates inner loop 
vertices’ free state from the original structure and 
combines them tightly with sub-structures, and thus 
the instability of volume decomposition algorithm 
caused by the free state of inner loop vertices is 
avoided. In order to get rid of the vertices in free 
state, SRM has no other choice but virtual volume 
decomposition. 

All of the aforementioned methods have 
difficulties in generating all-structured hexahedral 
meshes especially when there are multi-loop faces 
in the model. In order to find a robust way of 

generating all-structured hexahedral meshes, our 
work introduces a new Hexahedral mesh generation 
method using Mean Value coordinates (HMV) 
which remedies the deficiencies of sub-mapping and 
broadens its scope of application. Firstly, a new 
edge classification method and its execution 
condition are proposed. Secondly, virtual edges are 
created according to values of mean value 
coordinates in the computational domain. Thirdly, 
virtual edges are added into volume’s corresponding 
directed graph to eliminate inner loop vertices in the 
graph. Therefore virtual volume decomposition 
process is avoided. Eventually, examples are given 
to illustrate the applicability of the proposed 
method. 
 
 
2 Methodology 
In order to get a robust approach of structured 
hexahedral mesh generation, a new Hexahedral 
mesh generation method using Mean Value 
coordinates (referred to as HMV) is proposed. It 
consists of the following steps:  

1. Edge classification 
2. Interval assignment initialization using linear 

programming 
3. Locate inner loop vertices using mean value 

coordinates 
4. Add virtual edges into initial directed graph 
5. Mesh generation 

 
 
2.1 Edge classification 
We suppose the existence of a polycube in the 
computational domain has a similar topology 
structure with three-dimensional product model M . 
Therefore, any edge in M corresponds to an edge 
parallel to axis in the computational domain. 

Let I, J, K represents for the axes of the 
computational domain. If the corresponding edge of 
edge e is parallel to axis I, then edge e can be called 
I-direction edge. The J-direction edge and K-
direction edge are similarly defined. 

Given model M and its edge set { }iE e= , let 
IE be an edge set consisting of all I-direction edges 

in the model. JE and KE  are similarly defined. 
I J KE E E E=
 

and any edge ie can only belongs to 
one axis-direction set.  

A demonstration of edge classification is shown 
in Figure 1. Local coordinates and its spread 
direction of initial vertex 0v are shown on the left, 
where , ,i I j J k Ke E e E e E∈ ∈ ∈ . The polycube 
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corresponding to the model in the computational 
domain is shown on the right. 

 

 
Fig.1  Edge classification and spread of coordinate system. 

1 2 3, ,e e e  are three adjacent edges of vertex 0v . The three arrows 
starting at 0v  represent the local coordinate system 
corresponding to 0v . According to the local coordinate system 
of 0v , the local coordinate systems corresponding to vertices 

1 2 3, ,v v v  can also be obtained by use of the Algorithm of 
Spreading local Coordinate System (ASCS). 
 

Edge classification is realized by means of 
spreading local coordinate system. The following 
describes detailed steps of spreading local 
coordinate system: 

1. Choose iv V∀ ∈ , assign its local coordinate 
system 

2. Determine which axis-direction edge set 
should each edge je  which adjacent to 

iv belongs to 
3. Determine local coordinate system of another 

vertex kv on edge je  
4. Iterate step (2) and (3) until local coordinate 

system which has been spread to all vertices 
of the model 

 
The Algorithm of Spreading local Coordinate 

System (ASCS) is crucial to edge classification. 
definition and proposition are given to help describe 
and discuss ASCS in details. 
Let , ,l m ne e e denote for edges adjacent to vertex iv . 
The unit tangent vector of , ,l m ne e e at iv are 

represented by , ,l m nn n n
  

. , ,i i iX Y Z
  

represent for axis 
unit vectors of Local coordinate system 

iS corresponding to iv . , ,i i iX Y Z
  

correspond to 
, ,I J K direction in the computational domain 

respectively. 
 

DEFINITION 1 If ( )max ,l i l i l in X n Y n Z⋅ ≥ ⋅ ⋅
  

  

,then 

l Ie E∈ . One can also define l Je E∈ or 
l Ke E∈ similarly. The principle used to determine 

edge direction is called Maximum Inner Product 
Principles. 

Given local coordinate system iS , all three edges 
adjacent to vertex iv can be classified based on 
Maximum Inner Product Principles. 

DEFINITION 2 For { }, ,l m ne e e e∀ ∈ , 
{ }, ,I J KE E E E∀ ∈ , if { } { }( ), , \l m ne e e e E = Φ

  when 
e E∈ , then local coordinate system iS can be 
compatible with vertex iv , denoted by ( )i iS C v∈ , 
where ( )iC v represents for the set consisting of all 
the local coordinate systems compatible with iv . 
 

 
Fig.2  Spread of local coordinate system. 1 2 3, ,I J Ke E e E e E∈ ∈ ∈  
represents three edges adjacent to vertex 1v , the unit tangent 
vectors at 2v  are donated by 1 2 3, ,n n n   . Vectors , ,X Y Z

  

 represent 
the axes of local coordinate system corresponding to 2v . , ,X Y Z

  

 
can be calculated according to the local coordinate system of 1v . 

 
The unit axis vectors of local coordinate system 

2S are calculated as follows: 
 

1

2 1

2 1

X n
n nZ
n n

Y X Z

 =


× = ×
 = ×





 



 

  

                              （2） 

 
PROPOSITION 1 Any iS calculated by ASCS is 
compatible with its corresponding vertex iv if  for 

iv V∀ ∈ , ( )1 2 1 2 2 1 3max 2 / 2, 2n n n n n n n× ≥ × ⋅
      

. 
PROOF: As shown in figure 2, vectors 1 2,n n  share 
the same plane with ,X Y

 

, thus sine value of angle 
between 1 2,n n  should be larger than sin 45 , which 
can  be  simplified into 1 2 1 22 / 2n n n n× ≥

   

. In order to 
distinguish 3n from 1 2,n n  , cosine value of the angle 
between 3n and Z

 should be smaller than cos 45 , 
which can be simplified into 1 2 2 1 32n n n n n× ≥ × ⋅

     .   
There may be more than one connected graph in 

initial directed graph 0G . Given proper initial local 
coordinate system, ASCS can finish the spread of 
local coordinate system for any connected graph in 

0G . Although ASCS has some requirement to the 
model, ASCS relieves model from the traditional 
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limit that angles between edges should be an integer 
multiple of / 2π , and submapping method’s scope 
of application is significantly broadened. 
 
 
2.2 Interval assignment initialization 
The recognized model in the computational domain 
must be polycube to guarantee mean value 
interpolation process, thus it is inevitable to use 
linear programming method to accomplish interval 
assignment which is to designate initial element 
number on edges. 

Given vertex set { }iV v= and edge set { }iE e= of 
model M , any given edge direction, initial directed 
graph 0G can be constructed. The method E. Ruiz-
Gironés proposed in Ref.[12] is employed to 
construct linear programming as shown in Equation 
1, by solving which initial element number iN of any 
edge ie can be got. Initial recognized model can be 
easily constructed using edge classification results 
and initial element numbers. 
 
 
2.3 Location of inner loop vertices using 
mean value coordinates 
For the purpose of locating inner loop vertex with 
outer loop vertex on the same surface, associated 
point pairs are created. Let { }C c

iF f= represents for 

set of all surfaces containing inner loop, ( )c
iV f and 

( )c
iE f represents for sets of all vertices and edges of 

c
if respectively, inV and inE represents for set of all 

inner loop vertices and edges in model M 
respectively. 
DEFINITION 3 Define iv 、 kv  as an associated 
point pair, marked as { , }ik i ka v v= , if 

i inv V∀ ∈ , ( ) \c
k j inv V f V∃ ∈ , . .s t  

( ) ( ) ( ) ( )i k i lp v p v p v p v− ≤ − where l k∀ ≠ , 
( ) \c

l j inv V f V∈ ,  ( )ip v  represents for parameter 
coordinates of iv on c

jf .  
Let { }ikA a= be a representative of set of all 

associated point pairs.  
Given { , }ik i ka v v= , then c C

jf F∃ ∈ , 
. .s t ( ), c

i k jv v V f∈ . Through edge classification and 
the initialization of  element number on edges, for 

( ) \c
i j inv V f V∀ ∈ , its coordinates ( ), ,i i iI J K in the 

computational domain can be got. By means of 
mean value coordinates, computational domain 
coordinates of all vetices in ( )c

j inV f V


can be 

calculated. Moreover, coordinate difference 
ika∆ corresponding to ika can also be calculated, 

which helps to realize the locating of inner loop 
vertices with respect to outer loop vertices. 

By fixing the attribute value of the outer loop 
vertices of region Ω , the problem of interpolating 
attribute values of inner vertices can be considered 
as the problem of finding barycentric coordinate of 
inner vertices with respect to outer loop vertices. 

If ∂Ω is piecewise linear shape, then any of 
wachspress coordinate [14], discrete harmonic 
coordinate, harmonic coordinate [15] and mean 
value coordinate [16][17] can be chosen to build 
barycentric coordinate of inner vertices. However, 
mean value coordinate has advantages. It can be 
easily computed and still works well even if Ω is 
concave [18], which make it more suitable for our 
interpolation requirements. Considering complex 
curves may be included within ∂Ω , the integral 
form of mean value interpolation proposed by C. 
Dyken [19] is employed: 

 

( ) ( ) ( )( )
( ) ( )( )1 12 2, ,

1 10 0

1 1
, ,

j jn x n x

j
j j

g x f p x d d
π πθ θ

θ θ θ
ρ ρ

− −

= =

− −
= Φ =Φ∑ ∑∫ ∫   

(3) 
 
where ( ),θn x is the number of intersection points 

( ),jp x θ at which ∂Ω intersects the radial with 
starting point x and starting angleθ . jp is arranged 
according to its distance away from x so that 

1 2 np x p x p x− ≤ − ≤ ⋅⋅ ⋅ ≤ − . 
Suppose surface c

jf  in the computational domain 
is corresponding to c

jf perpendicular to K axis, then 
for ( )c

i jv V f∀ ∈ , iK const= , which means only 
coordinate value of ,I J need to be interpolated. 
Take interpolating coordinate value of I for 
example, we describe the locating method using 
mean value coordinates. 

 

 
Fig.3  Radials of mean value interpolation. ( ),j ip x kθ  represents 
the j-th intersection point between outer edge loops and the 
radial which starts at vertex x  and has an angle ikθ  with the U-
axis of the parametric domain. ρ  represents the distance 
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between x  and ( ),j ip x kθ . In practice, the radials starting at x  
should averagely split the parametric domain. In order to be 
laconic, only a few radials are drawn in this figure. 

As shown in figure 3, the mean value 
interpolation process is carried out on the parametric 
plane corresponding to c

jf . An iteration process is 
adopted to calculate the approximation of the 
integrals in Equation 3 as follows: 

1. Given iterative precision 0ε > , constant 
m N∈ . 

2. When doing the i-th iteration, radials are 
created to intersect with all curves 
corresponding to outer loop edges of c

jf in the 
parametric domain. All radials start at x and 
averagely split the whole parametric domain 
with /i imθ π= as interval angel. 

3. Calculate the approximation of integrals in 
Equation 3 in the i-th iteration: 
 

( ) ( )
( ) ( )( )1 1, ,2 2

1 1 1 1

1 1
,

j jn x n xim im

i j i i
k j k j

g f p
θ θ

θ θ
ρ ρ

− −

= = = =

   − −
= Φ =   Φ   

   
∑ ∑ ∑ ∑   (4) 

 
where ( )jf p represents for I coordinate value 
of ( ),j ip x kθ in the computational domain. 

4. Calculate convergence precision 
11 /i ig gδ += − . Iterate step (2) and (3) until 

δ ε< , then 1ig + will be the output 
approximation of ( )g x in Equation 3. 

 
Convergence of the iteration process is 

guaranteed by Cauchy’s Convergence Test. As far 
as concerned, no valid solution has been found to 
averagely split three-dimensional domain using 
radials, which is referred to as the “Thomson 
Problem” in the community, therefore how to 
generalize the aforementioned inner loop locating 
method in three-dimensional domain to eliminate 
free state of vertices of void structure remains an 
open problem. 
 
 
2.4 Virtual directed graph construction 
 
2.4.1 Virtual edges creation 
DEFINITION 4 Edges added into initial directed 
graph for connecting associated data pairs are called 
virtual edges. Virtual edges do not exist in the three-
dimensional model, and parallel to one axis of 
computational domain. 

The computational domain coordinate 
differences of points in ika are denoted by 

( )= , ,ik ik ik ika I J K∆ ∆ ∆ ∆ , where =ik i kI I I∆ − and 

iI represents for I coordinate value of iv in the 
computational domain. 

Using the location relationship calculated in 
Section 2.3, ika∆ of ika A∈ is determined. 

PROPOSITION 2 For ika∀ , =0ik ik ikI J K∆ ×∆ ×∆ . 
PROOF:Given { , }ik i ka v v= , c C

jf F∃ ∈ ,
( ). . , c

i k js t v v V f∈ . Because of the existence of 
polycube in the computational domain which has 
exactly the same topology structure with model M , 
surface c

jf  in the computational domain 
corresponding to c

jf must be perpendicular to some 
axis. 

If c
jf is perpendicular to I axis, then for 

( )c
ik ja V f∀ ∈ , =0ikI∆ . Similarly we get =0ikJ∆ ，

=0ikK∆ 。Therefore, for ika∀ , =0ik ik ikI J K∆ ×∆ ×∆ .  
 

 
Fig.4  Creation of virtual edges. ,i jv v′ ′  respectively represent for 
the corresponding point of ,i jv v  in the computational domain. 

1
îke , 2

îke  are virtual edges newly-created. Edge 1
îke starts at iv and 

ends at îkv . Edge 2
îke starts at îkv and ends at kv . ( ), ,i k iI J K  

represents the coordinate of vertex îkv  in the computational 
domain. ,ik ikJ K∆ ∆  respectively represent the corresponding 
length of edge 1

îke  and 2
îke  in the computational domain.  

 
For every ika A∈ , virtual edges are created 

according to coordinate differences 
( )= , ,ik ik ik ika I J K∆ ∆ ∆ ∆ . Supposing =0ikI∆ , then two 

virtual edges 1
îke , 2

îke  can be created in the physical 
domain as shown in Figure 4.  

The vertices shared by different virtual edges are 
called virtual vertices. Vertex îkv is shared by 1

îke , 2
îke  

which makes it a virtual vertex. Virtual vertices do 
not exist in the physical domain; however they have 
coordinate values in the computational domain, take 
( ), ,i k iI J K for îkv as an example. Virtual edges can be 
created similarly when =0ikJ∆ or =0ikK∆ . 

For ika A∀ ∈ , the maximum number of virtual 
edges created according to ika∆ is two. If the number 
of ika is m , then the maximum number of virtual 
edges need to be added to the initial directed graph 
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0G is 2m . After added by virtual edges, Initial 
directed graph becomes virtual directed graph. 
 
2.4.2 Virtual edge length assignment 
Length assignment of all the virtual edges is an 
inevitable precondition for virtual directed graph to 
be used to mesh generation. 
 

 
Fig.5  An example of face scaling. 1 2ˆ ,̂e e  respectively represent 
the corresponding edges of 1 2,e e  in the computational domain. 
 

Compared to faces of the original model, the 
faces in the initial recognized model are compressed 
or tensed in axis directions of the computational 
domain. Fig.5 demonstrates an example of face 
scaling effect between original (left) and recognized 
model (right). Through linear programming, edge 

1e is tensed and edge 2e is compressed in the 
computational domain. 

The computational domain coordinate 
differences ika∆ are calculated according to initial 
element numbers, thus the lengths of virtual edges 
in the computational and physical domain have the 
similar scaling relationship with the faces they 
belong to. Take the case shown in figure 4 for 
example, the method for assigning virtual edge 
lengths is proposed as follows. 
 

In order to reflect the shape scaling of faces 
along axis direction between computational and 
physical domains, let 

 

 ( )1= j
J

j sj ej

l e
S

n J J−∑                                 （5） 

 
represents for the scaling factor in J-axis direction of 
the computational domain, where 

( ) \c
j i J ine E f E E∈  , let ( )jl e represents for the 

length of je , sjJ and ejJ represents the J-axis 
coordinate value of start and end vertices of edge 

je respectively, n  represents total element number in 

the set where je belongs to. JS is a reflect of average 
scaling states of all edges in set ( ) \c

i J inE f E E . 
Virtual edges 1

îke and 2
îke have the same scaling 

factor as faces where they belong to, thus the length 
of 1

îke and 2
îke in the physical domain can be calculated 

as: ( )1ˆ =ik ik Jl e J S∆ ⋅ , ( )2ˆ =ik ik Kl e K S∆ ⋅ . 
 
 

2.5 Mesh Generation 
After adding virtual edges corresponding to all 

ika A∈ to the initial directed graph 0G , final directed 
graph G without inner loop vertices can be got. 
Using the same method as employed in Section 2.2 
with G as an input, final element number in on any 
edge ie can be obtained and used to generate 
structured mesh through well-known method. 

Laplacian-Isoparametric method [20] is 
employed to fulfill the mesh generation process. 
Firstly, quadrilateral meshes of all surfaces of the 
model are generated according to final element 
number of edges. Secondly, structured hexahedral 
mesh is generated through the use of surface 
meshes. 

Laplacian-Isoparametric method always leads to 
problem of solving large-scale linear equations, 
which is a specialized research field. In this paper, 
Matlab software is integrated to the HMV system to 
help solving large-scale linear equations. 
 
 
3 Meshing experiments 
Two different parts are tested to verify the 
feasibility of HMV method. Both parts have inner 
loop vertices. Model 1 is a simple mechanical part, 
while model 2 is the leading edge structure of some 
turbine blade. 
 

 
Fig.6  Results of edge classification. a. local coordinate axes of 
Model 1; b. edge classification result, dotted lines represent 
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edges belong to JE , solid lines for edges belong to KE ; c. edge 
classification result, edges belong to IE ; d. local coordinate 
axes of Model 2; e. edges belong to IE ;  f. edges belong to JE ; 
g. edges belong to KE . 

 
The results of spread of local coordinate system 

and edge classification are shown in figure 6. In 
order to show the spread results clearly, only two 
axes of the local coordinate system are displayed: 
short edge for I axis and long edge for J axis in 
model 1; short edge for I axis and long edge for K 
axis in model 2. 

The results shown in figure 6 demonstrate the 
effect of edge classification method ASCS. ASCS 
can spread local coordinate system and classify 
edges effectively. 

 
Fig.7  Virtual edges and meshing results. a. recognized model of 
Model 1; b. virtual edges generated for Model 1; c. mesh result 
of Model 1; d. recognized model of Model 2; e. virtual edges 
generated for Model 2; f. mesh result of Model 2. 
 

Recognized models with virtual edges in the 
computational domain and the final meshes using 
HMV method are shown in figure 7. It can be 
clearly identified from 7.a and 7.d that virtual edges 
connect all inner loop vertices with the main 
structure and no vertex is at free state. Meshes 
generated are totally structured hexahedral meshes. 

Table 1 gives out the iteration result of mean 
value inter-polation as 0.01ε = ， 2m = . The results 
show that the locating method using mean value 
coordinates can give out result quickly even under 
high iterative precision. 

Admittedly, many commercial meshing software, 
such as HyperMesh and ICEM, include modules 
corresponding to sub-mapping. These modules can 
assist mesh generation but restricted to simple 
quasi-polycube entity. Only after being artificially 
decomposed into simple sub-entities, complex 
quasi-polycube entities can be meshed by 
aforementioned software. Because of complex 
structures, original topology of mechanical models 

can easily be destroyed while decom-position. Thus, 
the meshing process usually takes several hours 
with the help of experts. Using method proposed in 
this paper, automation of hex-mesh generation is 
realized which guarantees high mesh quality and 
shortens the meshing period into several seconds. 

With a similar element size 2 mm, other meshing 
methods are also used to mesh Model 1 shown in 
Fig.7 to compare their meshing performance with 
method proposed. Table 2 shows qualities of the 
mesh revealed in Fig.8. Meshing result of HMV has 
the maximum numbers of Max. Asp. Ratio as well 
as Min. Jac., which indicates the good quality of the 
mesh generated. It is obvious that HMV can 
generate all-structured hexahedral meshes with 
better qualities. 
 

 

Fig.8  Meshing results of different methods. a. meshing result of 
method proposed in Ref.[13] by Ruiz-Gironés E; b. meshing 
result of method proposed in Ref.[11] by Y. Su; c. meshing 
result by HMV. 
 

Table 1  Iteration results of locating inner loop vertices 
Model Max. Iteration time Min. Interval angel (deg) Max. Duration(s) 

Model1 3 30 0.085 
Model2 6 15 0.173 
Model inner loop point num Total Duration(s) Max. δ  

Model1 8 0.617 0.004043 
Model2 80 9.244 0.00788 

 
Table 2  Mesh qualities in Fig.8 

Model Max. Asp. Ratio Min. Jac. 
Fig.8.a 1.82 0.89 
Fig.8.b 1.61 0.7 
Fig.8.c 2.24 0.94 

 
4 Conclusion 
Based on the traditional linear programming method, 
a hexahedral mesh generation method using mean 
value coordinates for models containing inner loop 
vertices is elaborated with case studies. A new edge 
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classification method is proposed which broadens 
submapping method’s scope of application. The 
method of creating virtual edges according to mean 
value coordinates is introduced, which releases 
submapping method from volume decomposition 
process. Mesh generation results show the 
efficiency and stability of HMV when generating 
all-structured hexahedral mesh for solid models with 
inner loop vertices. 
However, HMV method has its disadvantages. 
Firstly, there still remain a huge amount of models 
which cannot get their corresponding recognized 
models through the method proposed in this paper. 
In the future work, finding new methods for 
obtaining recognized models will be inevitable. 
Although the authors of this paper have made some 
effort on this issue [21][22], problems still exist. 
Secondly, mean value interpolation method can 
precisely give out the relationship between inner-
loop vertices and the outer loop, but it will become 
time-consuming when dealing with faces which 
have a large number of inner-loop vertices. 
Therefore, fast precise interpolation methods are 
also urgently required. 
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