
A Novel Weight Assignment Approach for Detection of Clones in Simulink
Diagrams

S.MYTHILI

 Research Scholar, Department of Information Technology,
Bharathiar University,

 INDIA.
smythili78@gmail.com

DR.S.SARALA
 Assistant Professor, Department of Information Technology,

Bharathiar University,
INDIA.

sriohmau@yahoo.co.in

Abstract :-Clone detection is a process of detecting duplicate patterns which resembles the original. The process of
clone detection has been carried out for several purposes like code clone identification, clone software
identification, clone image detection, clone object detection and clone language identification. Textual techniques
like dynamic pattern matching, latent semantic indexing, dot plots and, Lexical Techniques like token based , line
based approaches, and Syntactic Techniques like tree based approaches, metric based approaches and Semantic
Techniques like Program Dependency Graph and Hybrid approaches are used for detection of clones . The
proposed method detects clones in Simulink based block diagrams. Still now this process has been carried out with
graph based technique. The proposed model uses a weight assignment method to identify the clones in a faster and
accurate manner. It can identify both exactly matched and similarly matched clones. The proposed method is
evaluated with various experimental setup and the results are compared with the existing tools.

Key-Words :- Clone Detection, Reusability , Model Driven Architecture, Simulink, UML, Software Maintenance

1. Introduction

Model-driven architecture (MDA) is an approach for
designing software and is used for the development
of software systems. It provides a set of guidelines for
the structuring of specifications, which are expressed
as models. Model-driven architecture is a kind
of domain engineering, and supports model-driven
engineering of software systems. In recent years many
organizations have started to focus its attention on
MDA as an approach to application design. This is a
very positive development for several reasons.

MDA encourages well-organized use of system
models in the software development process, and it
reuses these models when creating families of
systems. Matlab-Simulink is a popular MDA tool for
designing software for small scale embedded systems
to large scale flight control systems. An increasing
demand for the embedded system, have created the
need for automated system design. The MDA models
thus created will be finally transformed in to source

code which in turn is transformed in to the executable
files. Since models become the main artifacts it has
become a big concern to maintain the quality of the
models. Duplications in such models have to be
reduced to increase the maintainability and reusability
of the models.

Code cloning is a method of detecting clones in the
code fragment with the help of the some metrics of
similarity. The previous work done concentrated on
detecting simple clones [1] and the higher level clones
[2] in the software. Now the focus of the clone
detection has been directed to MDA. In general, code
clones may be described using the topology [3] [4]
mentioned in Table 1.

Like code cloning the duplication in the models are
used to identify the duplicate parts in the models.
Such duplicate parts when found can be included in
the library and can be reused to reduce model size.
Similarly the model similarity for the MDA can be
categorized in to 4 types as mentioned in Table 2.

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 253 Volume 14, 2015

mailto:smythili78@gmail.com
mailto:sriohmau@yahoo.co.in
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Computer_model
http://en.wikipedia.org/wiki/Domain_engineering
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Model-driven_engineering

Table 1 Code Clone Types

Table 2 Proposed Clone Types for Diagrams

Fig. 1(a), 1(b) Compared Simulink Models for Clone Type MS1

Fig. 2(a), 2(b) Compared Simulink Models for Clone Type MS2

Fig. 3(a), 3(b) Compared Simulink Models for Clone Type MS3

Types Description
 Type 1 Identical code fragments except for variations in whitespace and comments.
 Type 2 Syntactically identical fragments except for variations in identifiers, literals,

 types ,layout and comments.
 Type 3 Copied fragments with further modifications. Statements can be changed, added or

removed in addition to variations in identifiers, literals, types, layout and comments.
Type 4 Two or more code fragments that perform the same computation but implemented

through different syntactic variants.

Types Description
MS1 An exactly same model with same blocks, subsystems, and same naming

sequences
MS2 An exactly same model with same blocks, subsystems but with different

naming sequences
MS3 Isomorphic models
MS4 Different Model architectures with similar subsystems

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 254 Volume 14, 2015

Subsystem

Fig. 4(a), 4(b), 4 (c) , 4(d) Compared Simulink Models for Clone Type MS4

The proposed system is designed to find the clones
in Simulink models and the clone thus found are
categorized into the 4 types as given in Table 2 and
the diagrammatic illustrations are shown in Fig. 1,
Fig. 2, Fig. 3 and Fig. 4.

Simulink is a environment for simulation and
model–based design for creating dynamic and
embedded systems. It is an extension to Matlab that
helps us to build computer models using block
diagram notation rapidly and precisely. Block
diagram notation is a graphical representation of the
dynamic models. A flowchart is also a graphical
representation which describes the sequence of
operations. In a flow chart only one block is active
at a given time. In the case of simulink block
diagrams, all the blocks in the block diagram may
be active at one point of time. So the block diagram
can be represented as a set of simultaneous
equations. Simulink provides an interactive
graphical environment and a customizable set of
block libraries that helps us to design, simulate and
implement a variety of systems. Some of the
systems designed using this are communication
systems, signal processing systems, control , video
processing and Image processing systems.

Simulink models are made up of entities called
blocks. Blocks may be mathematical, boolean or
structural. User–defined blocks may be defined, and

the functionality can be defined by the user. Blocks
can be connected to each other through input and
output ports. The number of ports in a block can be
fixed or variable depending on the function of the
block. Blocks in a simulink models are connected
using signal lines. The Signal lines connect the
block’s output port to one or more input ports.The
signals carry data through the signal lines.One
important feature of simulink is that very complex
models can be created with ease without losing the
overview.

In contrast to the text based programming languages
where a lot of time is spent for developing the code,
simulink is a quick way of developing models. The
process of clone detection in models helps us to
identify the duplicate patterns of models in earlier
stage of program development. By removing
duplicates at this stage will reduce the time and cost
spent for the development and code thus developed
will be free from clones and is easy for
maintenance.

This work is organized as follows. Section 2
describes about the related work, Section 3 explains
about the methodology for the proposed system,
Section 4 describes the experiments and compares
the results with the existing results and Section 5
gives the conclusion and future work.

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 255 Volume 14, 2015

2. Related Work

A model is a collection of logical entities which
describe the system at multiple levels of abstraction.
There is a lot of previous work carried out to detect
clones in the models.

Source Code classification for clone detetction has
been given by Roy and Cordy [5] and classification
for the source code has been well defined but the
author in [6] has given a new classification of
clones in visual dataflow languages. The clones in
dataflow languages are classified into 4 types from
DF0 to DF3.

Clone Detective [7] is a state-of- the-art tools for
detecting clones in models. It covers all the groups
form DF0- DF4 to detect exact clones. The clone
detective tool is open source tool for clone detection
in models. The tool is implemented as ConQAT[8]
and is able to detect exactly matched and
approximate model clones.This tool uses a graph
based approach whereas the proposed work uses the
weight assignment method for detecting the clones.

Model CD is a clone detection framework for
detection of clones in Simulink models proposed
by Pham.et.al [9] in the year 2009. The framework
comprises of two algorithms escan and ascan . The
escan algorithm is designed to find the clones of the
type DF0 to DF2 and the ascan algorithm finds the
clones of DF3.

The work by Liu et al. [10] finds out duplicate
patterns in UML sequence diagrams. With special
preprocessing the 2 dimensional diagram is
converted in to a one dimensional array. A special
algorithm is designed to detect common prefixes of
suffixesThey represent sequence diagram as an
array and then build a suffix tree for it. The
algorithm ensures that every duplication detected
with the suffix tree can be extracted into a separate
reusable sequence diagram.

Ren et al. [11] is used to detect clones in sequence
diagrams and then to refractor them. The detection
process is not fully automated. It extends the
concept of refactoring to scenario based
specifications and are described using a Message
Sequence Chart.

The paper in [12] detects and visualize differences
between different versions of UML documents such
as class and object diagrams. It shows a unified
document which contains the common and specific
parts of both base documents and the specific parts
are highlighted. In this approach the software
documents are stored as syntax trees in XML files
or in a repository system, and the version
management system supports fine-grained data. The
difference computation algorithm detects structural
changes and enables their appropriate visualization.

UMLDiff proposed in [13] is an algorithm for
automatically detecting structural changes between
the designs of subsequent versions of object-
oriented software. It takes as input two class models
of a Java software system. It produces as output a
change tree and reports it in terms of additions,
removals, moves, renaming of packages, classes,
interfaces, fields, methods, changes to their
attributes and changes of the dependencies among
these entities. UMLDiff produces an accurate report
of the design evolution of the software system, and
enables subsequent design-evolution analyses from
multiple perspectives in support of various
evolution activities. It can assist software engineers
in their tasks of understanding the rationale of
design evolution of the software system and
planning future development and maintenance
activities.

Komondoor and Horwitz [14] uses Program
Dependence Graphs to detect clones in models. The
novel aspect of this approach is the use of program
dependence graphs and program slicing to find
isomorphic PDG subgraphs that represent clones. It
also finds non-contiguous clones, clones in which
matching statements have been reordered, and
clones that are intertwined with each other. The
clones that are found are likely to be meaningful
computations, and thus good candidates for
extraction.

Many approaches for code clone detection like
Token-based approaches, Tree-based approaches,
AST–based approaches and PDG based approaches
has been proposed and a survey of all these
approaches can be found in [15].

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 256 Volume 14, 2015

Algorithm for Clone Detection in Diagrams

Step 1: Get theQuery model as input.
Step 2: Identify the real blocks in the query model
Step 3: Check for connections between block in
 Query Models.
Step 4: Separate the subsystems and identify the
 inner blocks.
Step 5: Assign Weights for the Query Model
Step 6: Assign weights for all the models in the
 database .
Step 7: Compare weights of Query model with
 database models.
Step 8: Identify the clone based on compared weights.

E.Arora et al. [16] have conducted a study to all
the models defined in UML including internal and
External Structure of UML They have also
reviewed some of the techniques available for the
Model Clone Prevention and Detection.

Stephan M et al. [17] have presented a state of
model comparison and it applies to Model-Driven
Engineering. They have concentrated specifically at
model matching approaches, the application of
these approaches, and the types of models that these
approaches are intended to work with. It also also
indicates future trends and directions.

 Alalfi M. H et al. [18] describes the plan to adapt
mature code-based clone detection techniques to the
efficient identification of near-miss clones in
models. The goal of their work is to leverage
successful source text-based clone detection
techniques by transforming graph-based models to
normalized text form in order to capture
semantically meaningful near-miss results that can
help in further model analysis tasks. NiCad code
clone detector is used to identify near-miss
Simulink model clones at the “system” granularity
and has been extended to Simulink “model” and
“block” granularities as well.

Al-Batran B et al. [19] have used the concept of
normal forms, to find the clones in models and has
also extended it to cover semantic clones with
identical behavior but different structures. It also
presents a generalized concept of clones for
Simulink models, describes a pattern-based normal-
form approach, and discusses about results and
implementation.

The work in [20] uses Mutation Analysis for
devising and validating new clone detection
techniques and tools. It also implements a
framework for evaluating Simulink model clone
detectors. It includes a taxonomy of Simulink
mutations, Simulink clone report transformations,
and more. It outlines the method for calculating
precision and recall, also discusses areas of future
work, including semantic clone mutations, and
developing framework implementations for other
model types, like UML.

3. Clone Detection for Simulink

3.1 Methodology

The architecture for clone detection is shown in Fig
5. It takes the Query model as the input, identifies
the weight of the query model and the database
model and finally compares it. The algorithm for
the proposed model is shown in Table 3.

Table 3 Algorithm for clone detection

3.2 Various Stages of Clone Detection

3.2.1 Query model

The query model is a Simulink model which is to be
checked for clone with the existing Simulink
models in the database. It is the input for the whole
process of clone detection. The query model can be
one among the database models or a new unknown
model. For the query model which is unknown to
the database, the result will not display any clone. If
the query model is a model in the database with
some changes, the result will display the query
model and the cloned database model. After getting
query model further processing is carried out.

3.2.2 Weight Identification

 This process assigns weights for each block in the
model. It consist of four modules Real block
identification, Connection Checking, Subsystem
checking and Weight assignment.

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 257 Volume 14, 2015

Fig. 5 Architecture for clone detection in Simulink
models

3.2.2.1 Real Blocks Identification

Simulink model is made up of both inbuilt blocks
and subsystems. The inbuilt block is a pre-defined
block present in the Simulink library, and the
subsystem is a group of inbuilt blocks. This module
converts the existing blocks names into real block
names. The process of identifying the blocks and
converting their names into original names as
present in the Simulink library is called as real
block identification. For example if a Simulink
query model consists of three blocks named Input,
Subsystem and Output, each of these blocks is to be
checked for its presence and name in the Simulink
library.

 Fig. 6 Simulink Query Model

Initially in Fig. 6.the first block input is taken, and
compared with all blocks in Simulink library and its
real name is identified as step. Similarly the other
two blocks are identified as subsystem and scope
respectively and is shown in Fig. 7. For each and
every block in the query model the user-defined
names specified and the identified real names are
collected and saved for future use.

Fig. 7 Real Names and Modified Names

3.2.2.2 Connection Checking

After identifying real names, the next step is to
check for connections. The block with the real
names, identified from the previous part are taken
and placed in an empty model and their
corresponding connections are drawn (i.e.) step’s
output terminal is connected to the input terminal of
subsystem block and output terminal of subsystem
is connected to the scope’s input terminal. After
designing this, the block is checked with the query
model for presence of similar connections. For the

Query Model with
Real names

•Input
•Subsystem
•Output

Query Model with
Modified Names

•Step
•Subsystem
•Scope

Database
Models

Real block
Identification

Connection
Checking

Subsystem
Separation

Weight
Assignment

Query
Weight =
Database
Weight

Clone in this
system

No Clone in
this system

Get the Query
Model

Weight
Identification

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 258 Volume 14, 2015

model mentioned in Fig. 6 , based on the
connections the paths are represented as Step\
Subsystem \1\Scope and Step\Substystem \2
\Scope”.

 Fig. 8 Connection Checking

3.2.2.3 Subsystem Separation

The query model given as input may contain real
blocks or both real blocks and subsystems.
Subsystems are group of the inbuilt blocks in the
simulink library grouped for a particular purpose.
Since all the blocks in the query model are re-
named with their real names , further the
subsystems has to be re-named. The sub-systems
are re-named as subsystem1, subsystem2 as in Fig.
8. After the overall naming process is completed,
the subsystems are taken separately to re-name the
inner blocks. The same process used for naming
real blocks in query model is followed for
subsystem re-naming. After subsystem re-naming
paths for the Fig. 9 are mentioned as
“Inport\Gain\Outport1”, “Inport\PID\Transfer
Function\Outport2”.

 Fig. 9 Subsystems inside the main system

3.2.2.4 Weight Assignment

After the completion of assigning real names for the
entire query model, the whole system is to be
assigned with weights in order to compare them
with all database models. From the real names
created and path formed with those real names the
weights are calculated. It is calculated by finding
the sum of the ASCII values of all the characters in
the path.A list of ASCII values are shown in the

Table 4. The path for the main system is identified
as step\subsytem\scope.The ASCII values of the
step is 412 , the ASCII value for subsystem is 943
and the ASCII value for scope is 506. Therefore the
weights for Fig. 6 is shown in Table 5.

Table 4. ASCII Values

 Table 5. Weight assignment for the main system

Block Step Step-
Subsystem

Step-
Subsystem-

Scope
Weight 412 412-943 412-943-506

3.3 Weight Assignment for Subsystem

The above Fig. 6 has two subsystems mentioned in
Fig. 9. The path for the above subsystem is
“subsystem1\input port\gain\output port1”, and
“subsystem2\input port\PID\Transfer Function\
output port2” and their weights are mentioned in
Table 6 and Table 7.

Table 6. Weight assignment for the subsystem 1

Block Inport Inport-
PID

Inport-
PID-

Transfer
Function

Inport –
PID-

Transfer
Function-
Outport

Weight 636 636-

221

636-221-

1084

636-221-

1084-765

ASCII Code Value
45 hyphen(-)
46 .
47 /

48 to 57 0 to 9
58 :
59 ;
60 <
61 (=)
62 >
63 ?
64 @

65 to 90 A to Z
97 to 122 a to z

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 259 Volume 14, 2015

Table 7. Weight assignment for the subsystem 2

Block Inport Inport-
Gain

Inport-Gain-
Outport

Weight 636 636-415 636-415-765

3.4 Weight Identification of Database Model

The query model is now assigned real names, paths
and weights. In order to identify whether the given
query model is a clone or not we need to compare it
with original models. This comparison is carried out
only with the help of weights assigned to query
model. So the original models in the database have
to be assigned weights in the same manner such that
the comparing process becomes easier. Weights
assigned for the database models are collectively
saved as another database with weights and its
corresponding model names.
3.5 Comparison
The final process in the clone detection is the
comparison process. For comparison two
parameters are required, they are the weights
assigned for query model and the weights assigned
for the database models. In the above mentioned
model example the weights assigned finally are
412-943-506. The weight of the main model and
the weight of the subsystems are compared with the
weights in the database. If any database model
matches with the query models main system or
subsystem then they are displayed as clones.If both
the main model and the subsystem matches with the
query model then the whole system is displayed as a
clone.

Fig. 10 Comparing Database Model Weights With
the Query Model Weights

4. Experiments and Results
The Open source Simulink model based systems
Sim_labs and the Seminar Designs taken for our
study are available from Source-Forge and
MATLAB Center . For the two systems considered

number of clones and its clone pairs are extracted
from the ConQat, aScan , eScan, and from the
proposed method. Fig. 11. Shows the results from
the Clone Detective tool for the dataset Sim_Labs.
Fig 12. Shows the results from the proposed model.
Clone Detective identifies 3 clone pairs in 6
seconds for the above dataset. Further for the same
dataset the proposed model identifies 116 clone
pairs in 10 seconds which are listed in Fig. 12.
Similarly the proposed model is compared with the
other exisiting tools eScan and aScan which are
depicted in Table 8.

When comparing with the identification of number
of clone pairs in simulink_labs with the existing
tools, Clone Detective tool identifies 3 clone pairs,
eScan identifies 60 clone pairs, aScan identifies 105
clone pairs and the proposed model identifies 116
Clone Pairs Fig. 13. Shows that the proposed
method identifies maximum number of clones pairs.
Similarly for the dataset Seminar Design Clone
Detective tool identifies 29 clone pairs, eScan
identifies 46 clone pairs, aScan identifies 67 clone
pairs and the proposed model identifies 74 Clone
Pairs.

Fig. 13. Comparision of Clone Pairs

0

20

40

60

80

100

120

140

ConQat e-scan a-scan Proposed

N
o

 o
f

Pa
irs

Methods

Clone Pair

Sim_Lab Clone Pair

Seminar Design Clone Pair

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 260 Volume 14, 2015

Fig. 11 Result of ConQat - CloneDetective for Sim_labs

Fig. 12 Results of Proposed Model for Simulink_labs

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 261 Volume 14, 2015

Table 8. Comparison of the results from tools.

Fig. 14. Comparision of the Simulink models with
Time (Sec)

When comparing the execution time of
simulink_labs to identify the number of clone pairs
with the existing tools, ConQat tool executes in 6
seconds, eScan executes in 120 seconds, aScan
executes in 1.4 seconds and the proposed model
executes in 10 seconds Fig. 14. Shows that the
proposed method takes minimum time to find
maximum number of clones pairs. Similarly for the
dataset seminar_designs the existing tools, ConQat
tool executes in 77 seconds, eScan executes in 300
seconds, aScan executes in 6.8 seconds and the
proposed model executes in 9 seconds.

5. Conclusion

UML diagrams and MDA have become popular in
recent days, so that with the advent of these
diagrams and architectures it becomes necessary to

detect duplications in such formats. In this research
we have analyzed the reasons for duplications in
Simulink diagrams and a new methodology has
been proposed to detect the clones in UML diagram
using the method of weight assignment. Previously
lot of tools of available for the detection of clones in
models, but the proposed method puts forth a new
algorithm which uses the weight factor for
detection. Most of the approaches which have been
previously studied, have also detected the clones in
models but they all use a graph based technique to
detect the clones. While comparing with the other
approaches, this work involves real block
identification, subsystem separation, connection
checking and puts forth a new algorithm which uses
the weight factor for detection. The weight
assignment method performs better when compared
to the other methods which converts the query
model in to a graph for the detection process. It can
find out more clones in very less execution time
when compared with the other tools like ConQat ,
eScan and aScan. Further, this process is likely to
be implemented to check for clones in various
industrial projects for evaluations. Perhaps, it can
also be extended to detect clones in process-
oriented models.

References:

[1] S.Mythili, Dr.S.Sarala, A Language
Independent Approach for Method Level
Clone Detection Using Fingerprinting in
International Journal of Advanced Research in
Computer Science, Volume 3, No. 2, March-
April 2012.

[2] S.Mythili, Dr.S.Sarala, Enhanced Technique to
Identify Higher Level Clones in Software in
the Proceedings of the Second International
Conference on SocProS , December 28-30,
2012 published by Advances in Intelligent

0
50

100
150
200
250
300
350

Se
co

nd
s

Methods

Time Elapsed

Sim_Lab Time (sec)

Seminar Design Time (sec)

System Simulink_labs Seminar_Designs
Methods Time

(sec)
No.of Clones Clone Pair Time (sec) No.of Clones Clone Pair

Clone Detective 6 6 3 77 101 29
eScan 120 183 60 300 180 46
aScan 1.4 272 105 6.8 424 67
Proposed 10 298 116 15 458 74

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 262 Volume 14, 2015

http://www.springer.com/series/11156

Systems and Computing- Springer, Vol. 236 ,
ISBN 978-81-322-1601-8.

[3] Chanchal Kumar Roy, James R. Cordy , and
R.Koschke, Comparison and Evaluation of
Code Clone Detection techniques and tools: A
qualitative approach, Journal Science of
Computer Programming,Vol.74, pp 470-495,
May, 2009.

[4] N Schwarz, M Lungu, R Robbes ,On How
Often Code Is Cloned Across Repositories,
Proceedings of the International Conference
on Software Engineering, pp 1289-1292,
2012.

[5] C. K. Roy and J. R. Cordy, A survey on
software clone detection research, School of
Computing TR 2007-541, Queen's University,
pp. 115, 2007.

[6] N. Gold, J. Krinke, M. Harman, and D.
Binkley, Issues in clone classification for
dataflow languages,Proceedings of the 4th
International Workshop on Software Clones,
IWSC '10, pp. 83-84, 2010.

[7] Technical University Munich. Continuous
Quality Assessment Toolkit Website
http://www.conqat.org

[8] E. Juergens, F. Deissenboeck, and B. Hummel.
Clonedetective - a workbench for clone
detection research,Proceedings of the 31st
International Conference on Software
Engineering, ICSE '09, pp. 603-606, 2009.

[9] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J.
M. Al-Kofahi, and T. N.Nguyen. Complete and
accurate clone detection in graph-based
models,Proceedings of the 31st International
Conference on Software Engineering,ICSE '09,
pp.276-286, 2009.

[10] Liu, Hui, Zhiyi Ma, Lu Zhang, and Weizhong
Shao,Detecting duplications in sequence
diagrams based on suffix trees, 13th Asia
Pacific Software Engineering Conference,
APSEC, pp. 269-276, 2006.

[11] Ren, Shengbing, Kexing Rui, and Greg
Butler,Refactoring the scenario specification:
A message sequence chart approach, Object-

Oriented Information Systems. Springer Berlin
Heidelberg, pp. 294-298, 2003.

[12] Ohst, Dirk, Michael Welle, and Udo Kelter.
Differences between versions of UML
diagrams, ACM SIGSOFT Software
Engineering Notes ,vol. 28,no.5, pp. 227-236,
2003

[13] Xing, Zhenchang, and Eleni Stroulia,UML
Diff: an algorithm for object-oriented design
differencing, Proceedings of the 20th
IEEE/ACM International Conference on
Automated software engineering, ASE’05, pp.
54-65.

[14] Komondoor, Raghavan, and Susan Horwitz,
Using slicing to identify duplication in source
code, Static Analysis, Springer Berlin
Heidelberg, pp. 40-56,2001.

[15] S. Bellon, R. Koschke, G. Antoniol, J. Krinke,
and E. Merlo.Comparison and Evaluation of
Clone Detection Tools, IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577-
591, 2007

[16] E.Arora and Y. Sarita Choudhary, A Review
of Clone Detection Techniques using Model
Semantics,Global Journal of Computer
Science and Technology ,vol 13, no 6, 2013.

[17] Stephan, M, & Cordy, J. R, A Survey of
Model Comparison Approaches and
Applications. In Modelsward,pp. 265-277,
2013.

[18] Alalfi M. H., Cordy, J. R, Dean, T. R,
Stephan, M & Stevenson, A Near-miss model
clone detection for Simulink models. In the 6th
International Workshop on Software Clones
(IWSC), pp 78-79,2012 .

[19] Al-Batran B., Schätz, B., & Hummel,
B,Semantic clone detection for model-based
development of embedded systems, In Model
Driven Engineering Languages and Systems,
pp. 258-272, 2011.

[20] Stephan M., & Cordy, J. R. Model clone
detector evaluation using mutation analysis, In
International Conference on Software
Maintenance and Evolution,pp. 1-6,2014.

WSEAS TRANSACTIONS on COMPUTERS S. Mythili, S. Sarala

E-ISSN: 2224-2872 263 Volume 14, 2015

http://scholar.google.com/citations?user=1ngIDTIAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=7zx6Cg0AAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=OXkWqAoAAAAJ&hl=en&oi=sra
http://dl.acm.org/citation.cfm?id=2337398
http://dl.acm.org/citation.cfm?id=2337398
http://dl.acm.org/citation.cfm?id=2337398
http://www.conqat.org/

