
Multi-integer Somewhat Homomorphic Encryption Scheme with China 
Remainder Theorem 

 
CHAO FENG1,2,*, YANG XIN2, YIXIAN YANG2, HONGLIANG ZHU2 

1School of Information Science and Engineering 
Shandong University 

Shanda South Road 27, Jinan, Shandong 
CHINA 

*chaojuan99@hotmail.com 
2National Engineering Laboratory for Disaster Backup and Recovery  

Beijing University of Posts and Telecommunications 
Xitucheng Road 10, Beijing  

CHINA 
 
 

Abstract: - As an effective solution to protect the privacy of the data, homomorphic encryption has become a 
hot research topic. Existing homomorphic schemes are not truly practical due to their high computational 
complexity and huge key size. In 2013, Coron et al. proposed a batch homomorphic encryption scheme, i.e. a 
scheme that supports encrypting and homomorphically evaluating several plaintext bits as a single ciphertext. 
Based on china remainder theorem, we propose a multi-integer somewhat homomorphic encryption scheme. It 
can be regarded as a generalization of Coron’s scheme with larger message space. Furthermore, we put forward 
a new hardness problem, which is called the random approximation greatest common divisor (RAGCD). We 
prove that RAGCD problem is a stronger version of approximation greatest common divisor (AGCD) problem. 
Our variant remains semantically secure under RAGCD problem. As a consequence, we obtain a shorter public 
key without sacrificing the security of the scheme. The estimates are backed up with experiment data. It is 
expected that, the proposed scheme makes the encrypted data processing practical for suitable applications. 
 
Key-Words: - Information Security, Cryptography, Somewhat Homomorphic Encryption, Multi-Integer, China 
Remainder Theorem, Random Approximation Greatest Common Divisor (RAGCD) 
 
1 Introduction 
In 1978, Rivest et al. introduced the basic concept of 
homomorphic encryption that allowed computation on 
ciphertexts without decryption [1]. Shortly after its 
publication, major security problems were found in 
the original scheme. In the past thirty years, many 
additively or multiplicatively homomorphic 
encryption schemes were proposed by the 
researchers, unfortunately, none of them could 
supports both addition and multiplication on 
ciphertexts simultaneously. During this period, the 
best result was the Boneh–Goh–Nissim 
cryptosystem, which supports evaluation of an 
unlimited number of addition operations but at most 
one multiplication [2]. In 2009, Gentry came up 
with the first fully homomorphic encryption scheme, 
i.e. a scheme that supports both addition and 
multiplication on ciphertexts simultaneously [3, 4]. 
First, Gentry constructed a somewhat homomorphic 
scheme, which only supports a limited number of 
multiplications. The second step of Gentry’s 
framework consisted in squashing the decryption 

procedure so that it could be expressed as a low 
degree polynomial in the bits of the ciphertext and 
the secret key. Then, a key idea, called 
“bootstrapping”, was to evaluate this decryption 
polynomial homomorphically on the encryption of 
the ciphertext bits and the secret-key, which given 
another ciphertext of the same plaintext. If the 
degree of the decryption polynomial was small 
enough, the noise in the new ciphertext was smaller 
than that in the original ciphertext. So this new 
ciphertext could be used again in a subsequent 
homomorphic operation (either addition or 
multiplication). Using this “ciphertext refresh” 
procedure the number of permissible homomorphic 
operations became unlimited and a fully 
homomorphic encryption scheme can be obtained. 
However, Gentry’s scheme involved a relatively 
untested hardness assumption, e.g., the hardness of 
problems on ideal lattices. Soon after Gentry’s 
original paper appeared, Smart and Vercauteren  
presented a refinement of Gentry’s scheme giving 
shorter public key size and ciphertext size, but 
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which was still not practical [5]. One obstacle in 
Smart’s scheme was the complexity of key 
generation of the somewhat homomorphic scheme. 
Gentry and Halevi presented an optimized version 
[6]. In particular, the optimized version had an 
efficient key generation procedure and a simpler 
decryption circuit. Stehle also proposed an 
improved scheme of Gentry’s scheme, which 
introduced decryption errors to reduce computation 
cost [7]. Meanwhile, Ogura proposed a somewhat 
homomorphic encryption with short public key size 
[8]. Based on multilinear mapping, Garg proposed a 
homomorphic encryption that was based on ideal 
lattice [9]. 

Different from Gentry’s “blueprint”, a 
homomorphic encryption scheme based on learning 
with error (LWE) assumption was proposed by 
Brakerski and Vaikuntanathan, which does not 
contain complex operations on ideals lattice [10]. 
The security of Brakerski’s scheme was reduced to 
the worst-case hardness of “short vector problems” 
on arbitrary lattices (rather than ideal lattice). Soon 
afterwards, Brakerski proposed a radically new 
approach to fully homomorphic encryption that 
dramatically improves performance and bases 
security on weaker assumptions [11]. A central 
conceptual contribution in this work was a new way 
of constructing leveled fully homomorphic 
encryption schemes (capable of evaluating arbitrary 
polynomial-size circuits), without Gentry’s 
bootstrapping procedure. Meanwhile, Gentry 
proposed some efficient homomorphic schemes 
based on LWE [12-15]. Lopez proposed a multi-key 
homomorphic filtering scheme, which was useful 
for multi-party computation [16]. 

In 2010, Dijk proposed a somewhat 
homomorphic encryption scheme (DGHV scheme), 
which was a variant of Gentry’s scheme and relied 
purely on the arithmetic of the integers [17]. The 
main appeal of the scheme (compared to the original 
Gentry’s scheme) was its conceptual simplicity; 
namely all operations were done over the integers 
instead of ideal lattices. Coron presented an 
optimized version of the DGHV scheme [18]. The 
public key size of the scheme was reduced to 7( )O λ . 
Based on china remainder theorem, Kim et al. 
proposed a homomorphic encryption with message 
space 

2λ
Z  instead of 2Z , and the public key size 

was 10( )O λ  [19]. In 2013, Coron et al. proposed a 
batch homomorphic encryption scheme that 
supports encrypting and homomorphically 
processing a vector of bits as a single ciphertext  
[20]. Recently, Coron et al. proposed a variant of 
the DGHV scheme with the same scale-invariant 

property [21]. In [21], Coron et al. proved the 
equivalence between the (error-free) decisional 
AGCD problem and the classical computational 
AGCD problem. This equivalence allowed to get rid 
of the additional noise in all the integer-based fully 
homomorphic encryption schemes. 

Although any computation can be expressed as a 
Boolean circuit, we need to design an efficient 
homomorphic encryption scheme with larger 
message space. In this paper, we propose a multi-
integer somewhat homomorphic encryption scheme 
with shorter key size. Besides, the message space is 

min( )inZ  instead of 2Z .  
 
 

1.1 Comparisons with related works 
In this section, we compare our scheme with some 
related works. Dijk et al. proposed a homomorphic 
encryption scheme [17]. The scheme was 
conceptually simpler than Gentry’s scheme, because 
it operated on integers instead of ideal lattices. The 
size of public key was 10( )O λ  which was too large 
for any practical application. It was shown in [18] 
how to reduce the public key size by storing only a 
small subset of the original public key and 
generating the full public key on the fly by 
combining the elements in the small subset 
multiplicatively. The public key size was reduced to 

7( )O λ . However, the improvement came at the 
expense of the overall complexity. Based on china 
remainder theorem, Kim et al. described a multi-bit 
homomorphic scheme [19]. The ciphertext 
expansion rate and the overall complexity were 
improved. Unfortunately, the public key was 

10( )O λ . Coron et al. extended the fully 
homomorphic encryption scheme to batch fully 
homomorphic encryption, i.e., a scheme that 
supports encrypting and homomorphically 
processing a vector of plaintext bits as a single 
ciphertext [20]. The public key size was reduced to 

7( )O λ . Coron et al. described a variant of DGHV 
scheme with the same scale-invariant property [21]. 
It had a single secret modulus whose size was linear 
in the multiplicative depth of the circuit to be 
homomorphically evaluated, instead of exponential. 
A main problem with the version of DGHV scheme 
was that the ciphertext expansion rate was bigger 
than before [19, 20]. 

In this paper, we propose a variant of DGHV 
scheme with the batch property, which can be 
regarded as an extension of Coron’s scheme [20]. 
The message space is min( )inZ  instead of 2Z . We put 
forward a new hardness problem, which is called the 
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random approximation greatest common divisor 
(RAGCD) problem. Theorem 4 shows that RAGCD 
problem is a stronger version of approximation 
greatest common divisor (AGCD) problem. As a 
consequence, we obtain a shorter public key without 
sacrificing the security of the scheme. The public 
key size is reduced to 4( )O λ  which is suitable for 
practical application. Meanwhile, the ciphertext 
expansion rate is reduced to 3( )O λ , and the overall 

complexity is reduced to 8( )O λ . Table 1 shows a 
comparison of our scheme with related works. We 
provide in Table 3 timings for our batch DGHV 
scheme, and provide in Table 4 concrete key sizes 
for our batch DGHV scheme. Our estimates are 
backed up with experimental data. It is worth noting 
that we concentrates on the somewhat homomorphic 
encryption scheme, which is more applicable than 
fully homomorphic encryption scheme. 

Table 1. Comparisons of Our Scheme with Related Works

 [17] [18] [19] [20] [21] Our scheme 

Parallel 
computing 

NO NO YES YES YES YES 

Size of pk  10( )O λ  7( )O λ  10( )O λ  7( )O λ  4( )O λ  
4( )O λ  

ciphertext 
expansion rate 

5( )O λ  5( )O λ  2( )O λ  3( )O λ  4( )O λ  
3( )O λ  

Overall 
complexity 

12( )O λ  15( )O λ  10( )O λ  8( )O λ  8( )O λ  
8( )O λ  

Hardness problem AGCD AGCD AGCD AGCD AGCD RAGCD 
 
 
1.2 Organization 
The remainder of the paper is organized as follows. 
In section 2, we briefly recall the notations and 
definitions. In section 3, we formally describe the 
main technical of this work. In section 4, we discuss 
the performance and security issues. Section 5 
describes two known attacks for the AGCD 
problem. Section 6 reports the main results of our 
experiments. Finally, section 7 concludes the paper 
and presents the open problem. 
 
 
2 Preliminary 
 
 
2.1 Notations 
Throughout this paper we use λ  to indicate the 
security parameter. Real numbers and integers are 
denoted by lowercase letters, vectors are denoted by 
lowercase bold letters, and sets are denoted by 
capital bold letters. Particularly, we denote the 
integer set by Z , and denote the module- N  integer 

residue class by NZ . For a set A ,
R

a←A  denotes 
that a  is sampled uniformly from A . For a real 

number x , we denote by ⌊ x ⌋, ⌈ x ⌉, ⌈ x ⌋ the 
rounding of a down, up, or to the nearest integer. 
Namely, these are the unique integers in the half 
open intervals ( 1, ]x x− , [ , 1)x x +  and 
( 0.5, 0.5]x x− + , respectively. For two integers z  
and p , we denote the quotient and remainder of z  
with respect to p  by ( )pq z  and ( )pr z . Meanwhile, 
for two integers z  and p , we denote the reduction 
of z  modulo p  by ( mod )z p  or [ ]pz  with 

/ 2 [ ] / 2pp z p− < ≤ . 
According to DGHV scheme, we denote the 

evaluated polynomial on ciphertexts by function f  
corresponding to the evaluated circuit C . For 
example, the arithmetic circuit of 

2 2( , )f x y x xy y= + +  is described in Fig. 1. 
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Fig. 1. the arithmetic circuit of 
2 2( , )f x y x xy y= + +  

 
 
2.2 Homomorphic encryption 
A homomorphic encryption scheme consists of four 
algorithms: the key generation algorithm KeyGen , 
the encryption algorithm Enc , the decryption 
algorithm Dec , and an additional algorithm Eval . 
Compared with the usual private/public key 
encryption, homomorphic encryption can supports 
arbitrary operation on the ciphertexts without 
decryption. Roughly speaking , KeyGen takes the 
security parameter λ  as input, and outputs the 
secret key sk  and the public key pk ; Enc  takes the 
public key pk  and the message m  as input, and 
outputs the corresponding ciphertext c ; Dec  takes 
the secret key sk  and the ciphertext c  as input, and 
outputs the corresponding message m′ ; Eval  takes 
the public key pk , a τ -variable function f , and a 
τ -tuple ciphertext 1 2( , ,..., )c c cτ=c , where 

Enc( , )i ic sk m=  as input, and outputs an evaluated 
ciphertext Eval( , , )c pk f= c . 

Definition 1 (Correctness). A homomorphic 
encryption is correct for a given τ -variable function 
f  if, for any key-pair ( , )pk sk  generated by 
KeyGen  , and any ciphertexts 1 2( , ,..., )c c cτ=c  with 

Enc( , )i ic sk m= , it is the case that: 

1 2 1 2Dec( ,Eval( , ,( , ,..., ))) ( , ,..., )sk pk f c c c f m m mτ τ=    
(1) 

Definition 2 (Somewhat Homomorphic 
Encryption). Let deg( )d f= , and Decf  be the 
decryption function. The scheme is correct for f . 
The scheme is a somewhat homomorphic 
encryption, it is the case that: Dec2deg( )d f≤ . 

Definition 3 (Fully Homomorphic Encryption). 
Let deg( )d f= , and the scheme be correct for f .  
The scheme is a fully homomorphic encryption, it is 
the case that: Dec(2deg( ), )d f∈ +∞ . 
 
 
2.3 China Remainder Theorem 
The China Remainder Theorem is a result of 
congruence in number theory [22]. It has a great 
many applications in cryptology． 
 Theorem 1 (China Remainder Theorem). 
Suppose 1 2, ,..., kn n n  are positive integers that are 

pair-wise coprime. For any given sequence of 
integers 1 2, ,..., kπ π π , there exists an integer m  
solving the following system of simultaneous 
congruence: 

1 1

2 2

(mod )
(mod )
...
(mod )k k

m n
m n

m n

π
π

π

=
=

=                           

(2) 

Proposition 1. For a mapping: 
1 2: ( , ,..., )kmσ π π π↔ , and 

ii nπ ∈Z , nm∈Z . σ  is 
bijective , and 

1 2
:

kn n n nσ ↔ × ×⋅⋅ ⋅×Z Z Z Z  is a 
homomorphic mapping, if it is the case that: for 

1,2,...,i k= , modi im nπ= .  

Proof: As modi im nπ= , we compute 
/i i im m n nπ = −   , and outputs a sequence of 

integers 1 2, ,..., kπ π π . Similarly,  for 1,2,...,i k= , let 
/i i j

j i

l n n n
≠

= =∏ , and compute 1( mod )i i i iv l l n−= . 

It is worth mentioning that, for gcd( , ) 1i il n = , it is 
reasonable to compute iv . Then compute 

1
(mod )

k

i i
i

m v nπ
=

= ⋅∑ . According to the basic 

number theory, it can be conclude that σ  is 
bijective. Assume that n∈Z , in ∈Z , and |in n , we 
can conclude that σ  is homomorphic.                   □ 

Proposition 2 (An Instance of σ ). For 
modi im nπ= , 1,2,...,i k= , we can compute  

/i i im m n nπ = −                           (3) 

, and produce a sequence of integers 1 2, ,..., kπ π π . 
Similarly, we assume that /i il n n= , 

1( mod )i i i iv l l n−= , then compute 

1
(mod )

k

i i
i

m v nπ
=

= ⋅∑
                       

(4) 

Proof: For modi im nπ= , we can compute 
/i i im m n nπ = −   , and produce a sequence of 

integers 1 2, ,..., kπ π π . Assume that /i il n n= , for 
j i≠ , then we can conclude that 0(mod )j il n= . 

After that, assume that 1( mod )i i i iv l l n−= , then we 
can conclude that 1(mod )i iv n= , 
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0(mod )j j iv l n= = . As a result, a mapping 
(0,0,...,1,...0)iv ↔  from 1(mod )i iv n=  

and 0(mod )j j iv l n= = is obtained. For i , /i il n n= , 
1( mod )i i i iv l l n−= , (mod )i i im v nπ= ⋅ , it is easy to 

verify that modi im nπ= . Hence, we can conclude 
that Eq.(3) and Eq.(4) are correct.                                            
□ 
 
 
2.4 DGHV scheme 
We informally review the DGHV Somewhat 
Homomorphic Encryption [17]. The construction 
consists of four algorithms: 

KeyGen(1 )λ . Choose a random e -bit odd integer 
from the right open interval 1[2 ,2 )e e−  as the secret 
key p . For 0,1,...,i τ= , choose a random integer iq  
from the interval [0,2 / )g p , choose another integer 

ir  from the open interval ( 2 ,2 )r r− , and compute 

i i ix pq r= +  . Relabel so that 0x  is the largest. 
Restart unless 0x  is odd and 0( mod )mod 2 0x p = . 
Generate the public key 0 1( , ,..., )pk x x xτ=  and the 
secret key sk p= . 

Enc( , {0,1})pk m∈ . Choose a random subset 
{1,2,..., }S τ⊆ , a random integer r  in ' '( 2 ,2 )ρ ρ− , 

and compute 0[ 2 2 ]modii S
c m r x x

∈
= + + ∑ . 

1 2Eval( , , , ,..., )pk C c c cτ . Given the (binary) circuit 
C  with τ  inputs, and τ  ciphertexts ic , apply the 
(integer) addition and multiplication gates of C  to 
the ciphertexts, and generate the evaluated 
ciphertexts. 

Dec( , )sk c . Output ( mod )mod 2m c p= . 
This completes the description of the scheme. It is 
noted that the scheme described above is a 
somewhat homomorphic scheme. The security is 
reduced to the AGCD assumption.  
 
 
3 Our construction 
In this section, we propose a somewhat 
homomorphic encryption that supports integer 
arithmetic instead of bit-operation. The message 
space is min( )inZ . 
 
 

3.1 Parameters 
In addition to the various parameters used in the 
DGHV scheme, some more parameters are used in 
our construction. It is worth noting that the bit 
lengths of various parameters used in the scheme are 
designated by some parameters, which are 
polynomial in the security parameter λ . The values 
for these parameters are described as follows: 

λ : security parameter; the same as Gentry 
suggested [6], 80λ = ;  

e : the bit length of secret key p ; 3( )e O λ= , 
in order to resist brute force attack; 

e′ : the bit length of second secret key u ; 
2( )e O λ′ = , to support sufficiently 

homomorphic evaluation on the intermediate 
message; 

k : the number of message space ， for 
( )2On β= ， ( ) 1(0,2 )Ok λ −∈ ; 

β : the bit length of intermediate 
message; ( )Oβ λ= , to support sufficiently 
homomorphic evaluation; 

g : the bit length of public key 0x and 1x ; 
4( )g O λ= , to be secure against DGHV’s 

lattice attack [17]; 

θ : the bit length of public key in , ( )Oθ λ= ; 

s : the bit length of random number r , which 
is used in the encryption procedure to enhance 
the security of the scheme; ( )s O λ= , to 
support sufficiently homomorphic evaluation 
on the initial message; 

t : the bit length of random number h , 
( )t O λ= , to support sufficiently 

homomorphic evaluation on the intermediate 
message. 

 
 
3.2 The construction 
Idea. There are k  initial messages 1 2, ,..., kπ π π , 

ii nπ ∈Z , for {1,2,..., }i k∈ . According to 

1 2: ( , ,..., )kmσ π π π↔ , we compute an intermediate 
message nm∈Z . Proposition 1 shows that each 
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operation on intermediate message m  is equivalent 
to the operation on k  initial messages 1 2, ,..., kπ π π . 
It means that we can encrypt the intermediate 
message m  instead of k  initial messages 

1 2, ,..., kπ π π .  

KeyGen(1 )λ . Choose two random odd integers 
p  of size e  and u  of size e′ , the secret key is 

( , )sk p u= . Choose two random integers 0q  and 1q  
from the interval )0,2 /g p , and choose a random 

integer h  of size t . Compute 0 0x pq=  and 

1 1x pq uh= + . Restart unless 0x  and 1x  are co-
prime, 0x  is larger than 1x . Select k  primes in  as a 
portion of public key, all of which are pair-wise co-

prime. And then compute 
1

k

i
i

n n
=

=∏ . The public key 

is 0 1 1 2( , , , ( , ,..., ))kpk x x n n n n= . 

1 2Enc( ,( , ,..., ))kpk π π π . The encryption 
algorithm consists of two steps.  

Step1: According to China Remainder Theorem, 
compute an intermediate message nm∈Z  from k  
initial messages 1 2, ,..., kπ π π .  Assume that 

/i il n n= , 1( mod )i i i iv l l n−= , then compute 

1
(mod )

k

i i
i

m v nπ
=

= ⋅∑ .  

Step2: Given nm∈Z , choose a s -bit 
random integers r , compute the ciphertext 

1 0( )modc m rx x= + . 

Dec( , )sk c . The decryption algorithm consists of 
two steps. 

Step1: Given a ciphertext c , and the secret key 
( , )sk p u= , compute the intermediate message 
( mod )modm c p u= ; 

Step2:  For modi im nπ= , the output is 
/i i im m n nπ = −   . 

1Eval( ,( ,..., ))f c cτ . Given a τ -variable function 
f , and a τ -tuple ciphertext 1 2( , ,..., )c c cτ=c , where 

Enc( , )i ic sk m= , performs homomorphic operations 
over ic , and outputs the evaluated ciphertext c .  

For two ciphertexts 1c  and 2c , additive and 
multiplicative homomorphic operations are as 
follows: Additive homomorphic: 

add 1 2 0( )modc c c x= + , multiplicative 
homomorphic: mult 1 2 0( )modc c c x= ⋅ . The 
resulting ciphertext after homomorphic 
evaluation is decrypted by the decryption 
algorithm Dec .  
 
 
4 Analyses 
 
 
4.1 Correctness 
The proof of correctness is consists of two parts: the 
correctness of the decryption algorithm Dec , and 
the correctness of the evaluation algorithm Eval . 

Theorem 2. For an initial ciphertext c ,and k  
initial messages 1 2, ,..., kπ π π , the decryption 
algorithm is correct. 

Proof:  For k  initial messages 1 2, ,..., kπ π π , we 
assume that /i il n n= , 1( mod )i i i iv l l n−= , and 

compute 
1

(mod )
k

i i
i

m v nπ
=

= ⋅∑ , where nm∈Z . As 

1 0( )modc m rx x= + , we have 1 1 0( )c m rx a x= + − ⋅  
for an integer 1a . Furthermore, 0 0x pq= , 

1 1x pq uh= + , we have  

1 1 0 1 1 0( ) ( )c m rpq ruh a pq p rq a q urh m= + + − = − + +
  (5) 

From the parameter setting, urh m p+ <<  and 
m u<< . Compute ( mod )modm c p u= , 

/i i im m n nπ = −   ,  generate the k  initial messages 

1 2, ,..., kπ π π .                                                           □ 

The notion of permitted circuit [17], which is 
defined as follows, is helpful to prove the 
correctness and homomorphism. 

Definition 4 (Permitted Circuit). For a 
homomorphic encryption scheme, and a real number 
α . Similar to the DGHV scheme, we define a 
permitted circuit as one where for any 1α ≥  and for 
any set of integer inputs each ( )2 sβ α+≤  in absolute 
value, it holds that the circuit’s output has absolute 
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value at most 22e− . Let per-cC  denote the set of 
permitted circuits. 

Theorem 3. For a permitted circuit C which 
takes 2k  initial messages 

1 1 11 2, ,..., kπ π π  and 

2 2 21 2, ,..., kπ π π  as input, the decryption algorithm is 
correct. 

Proof: for 2k  initial messages 
1 1 11 2, ,..., kπ π π  and 

2 2 21 2, ,..., kπ π π , assume that /i il n n= , 
1( mod )i i i iv l l n−= , compute two intermediate 

messages 
11

1
(mod )

k

i i
i

m v nπ
=

= ⋅∑ and 

22
1

(mod )
k

i i
i

m v nπ
=

= ⋅∑ . For two ciphertexts 

1 1Enc( , )c pk m=  and 2 2Enc( , )c pk m= , the addition 
of two ciphertexts is add 1 2 0( )modc c c x= + . 
According to the permitted circuit, we have 

add 1 2 2 3( )c m m a u a p= + + ⋅ + ⋅  for two random 
integers 2a and 3a , where 1

2 [2 ,2 )s sa α α−∈ . Then, we 
can conclude that 1 2 add( ) mod modm m c p u+ = . 
Similarly, the multiplication of two ciphertexts is 

mult 1 2 0( )modc c c x= ⋅ . According to the permitted 
circuit, we have mult 1 2 4 5( )c m m a u a p= ⋅ + ⋅ + ⋅  for 
two random integers 4a  and 5a , where 

' 1 '
4 [2 ,2 )e s e sa α α+ − +∈ . We can conclude that 

1 2 mult( ) mod modm m c p u⋅ = . As we know, an 
arithmetic circuit consists of addition and 
multiplication modulo- 0x  gates. Combine the 
permitted circuit with the homomorphic mapping 

1 2
:

kn n n nσ ↔ × ×⋅⋅ ⋅×Z Z Z Z , the evaluated 
ciphertext can be decrypted correctly.                    □ 
 
 
4.2 Homomorphic  
Additively Homomorphic. According to triangle 
inequality, each noise of 1 2c c+  is increased at most 
1-bit. As described in section 3.1, the bit length of 
the second secret key u  is  2( )O λ , and the bit 
length of the random number r  is ( )s O λ= .   
Clearly, the proposed scheme can supports 
approximately 2( )O λ  additions on ciphertexts.    

Multiplicatively homomorphic. One multiplicative 
operation on ciphertexts may square the noise - i.e., 

double their bit-lengths. That’s to say, the noise 
expansion through multiplication is more significant 
than addition. The homomorphic evaluation 
capacity of our scheme is mainly influenced by the 
number of multiplications, which is defined as the 
degree of the evaluated polynomial.  

 

Lemma 1 (DGHV, lemma 3.5). Let C  be an 
arithmetic circuit and f  be the multivariate 
polynomial computed by C . It is easy to give a 
sufficient condition on a multivariate polynomial f  
for the associated arithmetic circuit C  to be 
permitted. If 2

1
(2 ) 2s d ef β α+ −⋅ ≤ , then per-cC C∈ , 

where 
1

f  is the 1- norm of the coefficient vector 
of f  and deg( )d f= . 

From the above conditions and parameters, we 

have 2 1
2 log ( )e f

d
sβ α

− −
≤

+
 , which is similar to the 

DGHV scheme. Clearly, the proposed scheme can 
support approximately 2( )O λ  multiplications on 
ciphertexts. In this work, we can assume 2 1

log ( )f  
is relatively small to e  and β . 
 
 
4.3 Security 
Informally speaking, we consider a game with a 
solver Ψ and an attacker atk . The game can be 
described as follows: initially, atk  receives the 
public key. And then, atk  sends two different 
messages to the Ψ , who chooses one to encrypt. 
After receiving the ciphertext, atk  guesses which 
message generates the ciphertext and wins the game 
if he gets it right. The scheme is secure if the 
probability of attacker wins the game is at most 
1 / 2 ε+ , where ε  is a negligible value. In this 
work, we propose a new hardness problem, which is 
called the RAGCD problem. Note that, RAGCD 
problem is a stronger version of AGCD problem 
[23]. Crucially, the security of the scheme can be 
reduced to the RAGCD problem. 

Definition 5 (RAGCD). The RAGCD problem is: 

given two integers 0x  and 1x , for 
R

h←H，
R

iq ←Q , 
0,1i = , 0 0x q p=  and 1 1x q p uh= + , output p  and 

u . 
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Definition 6 (AGCD). The AGCD problem is: 

given two integers 0x  and 1x , for 
R

h←H，
R

iq ←Q ,  
0,1i = , 0 0x q p=  and 1 1x q p h= + , output p . 

Theorem 4. If there is a solver Ψ  that solves the 
AGCD problem with advantage ς , then the solver 
Ψ  can solve the RAGCD problem with advantage 
2 λ ς− . 

Proof: given two integers 0x  and 1x , a sovler Ψ  
that solves the AGCD problem with advantage ς , 
output p . For p , we can compute 1 moduh x p= . 
In the worst case, the sovler Ψ  must try each 
element h  in the set H  of size 2 λ . As a result, we 
can conclude that the sovler Ψ  can solve the 
RAGCD problem with advantage 2 λ ς− .             □ 

In this work, the secret key is ( , )sk p u= , and the 
public key is 0 1 1 2( , , , ( , ,..., ))kpk x x n n n n= . For the 
k  primes 1 2( , ,..., )kn n n , atk  can break the security 
of the scheme without accessing them. The public 
key is an instance of RAGCD problem, especially; 

0x  is an exact multiply of p , 1x  is an 
approximately multiply of p . Theorem 5 shows that 
the security of the scheme can be reduced to 
RAGCD problem. The proof of Theorem 5 is 

similar to the proof of theorem 4.2 in DGHV 
scheme. Without loss of validity, we directly 
reference a subroutine Binary-GCD  in DGHV 
scheme. 

Theorem 5. Let atk  be an attacker with 
advantage ε  against our encryption scheme with 
parameters ( e , e′ , g , t ) polynomial in the security 
parameter λ . There exists a solver Ψ for solving 
the RAGCD problem that succeeds with at least a 
probability of / 2ε . 
Proof: Let atk  be an attacker against the scheme. 
Namely, atk  takes a public key and a ciphertext (as 
produced by our scheme) as input, and outputs the 
correct plaintext with probability 1 / 2 ε+  for some 
noticeable ε . After that, atk  is used to construct a 
solver Ψ  for RAGCD problem. For two randomly 
chosen odd integers p  of size e  and u  of size e′ , 
the solver Ψ  can access to a portion of the public 
key 0 0x q p=  and 1 1x q p uh= + , and the goal is to 
find p  and u . Next, Ψ  produces a sequence of 
integers, and attempts to recover p  by utilizing atk  
to learn the least significant bit (LSB) of the 
quotients of these integers with respect to p . The 
subroutine Learn-LSB is as follows. 

Table 2. Learn-LSB Algorithm 
Learn-LSB Algorithm  Learn the LSB of the quotients of these integers with respect to p  

Input: [0,2 )gz∈  with 2| ( ) | 2e
pr z ′−< , 0 1 1 2( , , , ( , ,..., ))kpk x x n n n n=  

Output:  The LSB of ( )pq z  

Method: 
1. For 1j =  to poly( ) /λ ω  do: 

2.     Choose noise ( 2 ,2 )
R

s s
jr ← − , a set of random integer 

j ii nπ ∈Z , 1,2,...,i k= ; 

3.     Compute j nm ∈Z , 
1

(mod )
j

k

j i i
i

m v nπ
=

= ⋅∑ , /i il n n= , 1( mod )i i i iv l l n−= ; 

4.     Compute 1 0( )modj j jc z m r x x= + + ; 
5.     Call atk  to get a prediction atk( , )j ja pk c= ; 
6.     Compute 2 2 2[ ] [ ] [ ]j j jb a z m= ⊕ ⊕ ;     
7. Output the majority vote among the jb ’s 

According to lemma 2, we show that for all but a 
negligible fraction of the public keys generated by 

the scheme, the “ciphertext” jc  in step 4 of the 
Subroutine is distributed almost identically to a 
valid encryption of the ( )p jr z m+ . Note also that 
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since p  is odd, we always have 

2 2 2[ ( )] [ ( )] [ ]p pq z r z z= ⊕ , and jb  should be the 
parity bit of the ( )pq z . We can conclude that if atk  
has a noticeable advantage in guessing the 
encrypted bit under 0 1 1 2( , , , ( , ,..., ))kpk x x n n n n= , 
then Learn-LSB( z , pk ) will return 2[ ( )]j pb q z=  
with overwhelming probability. Once we turned 
atk  into an oracle for the LSB of ( )pq z , recovering 
p  is rather straightforward. The simplest way of 

doing it is using the Binary-GCD  algorithm [17]: to 
recover p , the solver Ψ  draws two integers 1z , 2z  
with 2| ( ) | 2e

p ir z ′−< , 0,1i = , and applies the 
Binary-GCD  algorithm to them. With a probability 
of at least 0.6 [17], the odd part of 

1 2GCD( ( ), ( ))p pq z q z  is one. As a result, the 
algorithm should generate an element 1z p uh= ⋅ +  
with 2| ( ) | 2e

pr z ′−< . Thus, we should choose the 
appropriate integer to ensure that 1( )pq z  is one.                  

Lastly, Ψ  repeats the Binary-GCD  algorithm 
from above using 1z  and 2z z=  , and the sequence 
of parity bits of the 1( )pq z s in all the iterations spell 
out the binary representation of 1( )pq z . Now Ψ  

can recover 1 1pp z q z=  / ( )  and 2 2( ) /pq z z p=   . 

Next, Ψ computes *
1 1 1 1( ( ) )pz z q z p uh= − ⋅ =  and 

*
2 2 2 2( ( ) )pz z q z p uh= − ⋅ = . In the end, Ψ  can easily 

computes the general common divisor of the *
1z  and 

*
2z  , and recovers u . We conclude that a polynomial 

time solver Ψ  can solves the RAGCD problem with 
an advantage of at least / 2ε .                                □ 

Lemma 2. Fix the parameters ( e , e′ , g , t ), fix 
any ( , )sk p u= , and let 0 1 1 2( , , , ( , ,..., ))kpk x x n n n n=  
be chosen as in the KeyGen of our scheme. For 
every integer [0,2 )gz∈  which is at most ' 22e −  away 
from a multiple of p , and a random integer 

( 2 ,2 )
R

s s
jr ← − , an intermediate message j nm ∈Z , 

consider the following distribution 
1 0( )modj jc z m r x x= + + , every distribution c  is 

statistically close to the distribution 
Enc( ,( ( ) ))p jpk r z m+ .  

Proof. According to encryption algorithm, 
( )j p jc q p r uh r z m′= + + + . Regarding q′ , we claim 

that in the scheme the value ( )pq c  of a ciphertext is 
uniform in 0 0( / 2, / 2)q q− . According to the 
parameter setting, it implies that 

( ) ( ( ) )modp j j p jr z m r uh r z m u+ = + + . As a result, 
c  is distributed almost identically to a valid 
encryption of  ( )p jr z m+ .                                      □ 
 
 
4.4 Complexity Analysis 
The advantage of our scheme lies in a short key size 
and low computation complexity, and we give a 
detailed analysis below. Compared with the 
previous schemes, which involve generating a big 
public key that consists of a large set of 5( )O λ  
integers [17] or 2( )O λ  integers [18] each having a 
size of 5( )O λ , the public key of the proposed 
scheme consists of two integers of size 4( )O λ  and 
k  small primes of size ( )O λ . The size of the public 
key is 4( )O λ . The encryption algorithm Enc  
consists of two steps: the computation cost of 
intermediate message is ( )O λ ; Enc  involves a 
multiplication of complexity 5( )O λ  resulting in an 
ciphertext of size 4( )O λ . The modular reduction of 
this ciphertext with 4( )O λ  bit 0x  takes 8( )O λ  
computations. In the decryption algorithm Dec , the 
modular reduction of the 4( )O λ  bit ciphertext with 
the 3( )O λ  bit secret integer p  takes 8( )O λ  
computations, resulting in an integer of size 3( )O λ . 
The modular reduction of this 3( )O λ  bit integer 
with 2( )O λ  bit secret integer u  takes 6( )O λ  
computations, and results in an intermediate 
message of size less than or equal to 2( )O λ . The 
computation cost of the initial message 1 2, ,..., kπ π π  
is ( )O λ . The total computation cost of decryption 
algorithm is 8( )O λ .  

Homomorphic addition: The addition of two 
ciphertexts is simply integer addition, and the 
computation cost is 4( )O λ .  After an addition, the 
length of ciphertext is not increased, and 
accordingly the computation cost of decryption 
remains the same. Homomorphic multiplication: 
When multiply two ciphertexts, it needs to compute 
integer multiplication, the computing cost is 8( )O λ . 
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It can be conclude that the overall computation cost 
of the scheme is 8( )O λ . 
 
 
5 Two Known Attacks for the AGCD 

Problem 
In this section, we informally review two known 
attacks on the AGCD problem, including brute-
forcing the remainders, and the GCD Attack [24]. 
 
 
5.1 Brute-Force Attack 
The easiest attack is the brute force attack on the 
noise in the public key. Given the public key 
( 0x , 1x ), the brute-force attack can be described as 
follows: choosing two random integers u and h  
from the interval 1[2 ,2 )e e′ ′−  and 1[2 ,2 )t t−  
respectively, subtracting uh  from 1x , and 
computing 0 1GCD( , )x x uh− . In a worst case, this 
process may need to be repeated for all the product 
of the integers u  and h . As h  is chosen uniformly 
from the set H  of size 2 λ , and u  is chosen 
uniformly from the set U of size 

2

2λ , and the state 
of the art algorithm for computing GCD problem is 
the Stehle-Zimmermann algorithm [25] with time 
complexity ( )O g  for integers of g  bits. As a result, 

the complexity of this attack is 
4 2

2λ λ λ+ + . 
 For the chosen parameter values, the size of 0x  is 
big enough so that, even the best known integer 
factoring algorithms such as the General Number 
Field Sieve [26] will not be able to factor 0x  in a 
reasonable time. Meanwhile, the algorithms such as 
Lenstra’s elliptic curve factoring [27] generates p  

with time complexity 
3

2λ . Furthermore, the secret 

key p  will not be recovered directly as it is not 
prime.  
 
 
5.2 The GCD Attack 
In [27], the author declared that the GCD of the 
public key ( 0x , 1x ) is the smallest positive element 
in the set 0 1{ : , }ax bx a b+ ∈Z . As a result, the 
common divisor of the public key ( 0x , 1x ) will 
divide all the possible linear combinations of 
( 0x , 1x ). Modular reduction of a ciphertext with such 
common divisor results in the plaintext, because a 
ciphertext contains a linear combination of ( 0x , 1x ). 
As a result, taking the pair of integers ( 0x , 1x ) as co-
prime can defends this attack. 
 
 
6 Experimental  
Our experiment is conducted in a laptop computer 
(Intel Core i3 at 2.53 GHz, 2GB RAM). NTL-5.2.2 
is used as the C++ library for writing the program. 
Note that we select the average run-time, and the 
number of iterations is 20. We take the average 
values except the maximum and minimum for each 
item. We use five security levels inspired by the 
levels from [6]: “toy”, “small”, “medium” and 
“large”, corresponding to 42, 52, 62 and 72 bits of 
security respectively. Moreover, we use one 
additional security level to improve our scheme, 
corresponding to 80 bits of security. Note that, our 
“suggested” level of security can improve the 
security without sacrificing the performance. To 
obtain more accurate results, we compare the 
methods under the same experimental environments. 
We provide in Table 3 timings for our batch DGHV 
scheme, and provide in Table 4 concrete key sizes 
for our batch DGHV scheme.  

Table 3. The timings of our scheme 

 λ  KeyGen Enc Dec Additively 
Homomorphic 

Multiplicatively 
homomorphic 

Toy 42 2.15s 0s 0s 0s 0.8s 

Small 52 43.3s 0.03s 0s 0s 0.8s 

Medium 62 758s 0.08s 0.04s 0s 21.4s 

Large 72 10742s 6.86s 0.15s 0.03s 141s 

Suggested 80 69451s 192.5s 45.6s 0.41s 1793s 
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Fig.2: The comparison of timing of key generation

Timings. In order to generate the public key, 
primality testing algorithms is needed. Figure 2 
shows that the timing of key generation is increased 
than before. However, the timings of encryption 
procedure and decryption procedure are equal to 

previous work [20]. In the following work, how to 
improve the efficiency of key generation is an 
interesting problem.  

 

Table 4. The concrete key sizes of our scheme 

 λ  k  e  'e  β  θ  s  t  

Toy 42 27 1.3 ⋅ 104 1.5 ⋅ 103 51 22 16 29 

Small 52 30 1.4 ⋅ 105 2.8 ⋅ 103 77 19 8 21 

Medium 62 29 3.6 ⋅ 105 7.1 ⋅ 103 103 7 13 12 

Large 72 55 1.7 ⋅ 106 3.9 ⋅ 104 158 11 30 31 

Suggested 80 106 8.7 ⋅ 106 2.1 ⋅ 105 261 23 46 73 
 

Table 5. The comparison of public key size 

 λ  Pk size of our 
scheme(MB) 

Pk size of Coron’s 
scheme[20](MB) 

Toy 42 0.04 0.63 

Small 52 0.95 13.3 

Medium 62 51 304 

Large 72 467 5734 

Suggested 80 2889 49533 
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Key sizes. As described in Table 5, the public key 
size is shorter than previous scheme [20]. Moreover, 
we can encrypt integers (for suggested level) instead 
of a single bit. Our estimates are backed up with 
experimental data. 
 Comparing the experimental results with 
previous work [20], we note that the proposed 
algorithm is more efficient, especially; the public 
key size is improved. Our estimates are backed up 
with experimental data. 
 
 
7 Conclusions 
In this work, an efficient, parallel multi-integer 
homomorphic encryption scheme over the integers 
is proposed. It can be regarded as an extension of 
Coron’s scheme [20] with larger message space. 
The ciphertext expansion rate is smaller than 
previous works. We put forward a new hardness 
problem, called the RAGCD problem. Theorem 4 
shows that RAGCD problem is a stronger version of 
AGCD problem. More importantly, the security of 
this scheme can be reduced to RAGCD problem. As 
a consequence, we obtain a shorter public key 
without sacrificing the security of the scheme. It is 
expected that, the proposed scheme makes the 
encrypted data processing practical for suitable 
applications. However, the proposed scheme is a 
potential somewhat homomorphic encryption 
scheme. It is an open problem to construct a fully 
homomorphic encryption scheme, while preserving 
the hardness of the RAGCD assumption. How to 
improve the efficiency of the scheme is also an 
interesting problem. Moreover, a concrete, not just 
asymptotic condition for the parameters of our 
scheme is needed. 
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