
Multi-integer Somewhat Homomorphic Encryption Scheme with China
Remainder Theorem

CHAO FENG1,2,*, YANG XIN2, YIXIAN YANG2, HONGLIANG ZHU2

1School of Information Science and Engineering
Shandong University

Shanda South Road 27, Jinan, Shandong
CHINA

*chaojuan99@hotmail.com
2National Engineering Laboratory for Disaster Backup and Recovery

Beijing University of Posts and Telecommunications
Xitucheng Road 10, Beijing

CHINA

Abstract: - As an effective solution to protect the privacy of the data, homomorphic encryption has become a
hot research topic. Existing homomorphic schemes are not truly practical due to their high computational
complexity and huge key size. In 2013, Coron et al. proposed a batch homomorphic encryption scheme, i.e. a
scheme that supports encrypting and homomorphically evaluating several plaintext bits as a single ciphertext.
Based on china remainder theorem, we propose a multi-integer somewhat homomorphic encryption scheme. It
can be regarded as a generalization of Coron’s scheme with larger message space. Furthermore, we put forward
a new hardness problem, which is called the random approximation greatest common divisor (RAGCD). We
prove that RAGCD problem is a stronger version of approximation greatest common divisor (AGCD) problem.
Our variant remains semantically secure under RAGCD problem. As a consequence, we obtain a shorter public
key without sacrificing the security of the scheme. The estimates are backed up with experiment data. It is
expected that, the proposed scheme makes the encrypted data processing practical for suitable applications.

Key-Words: - Information Security, Cryptography, Somewhat Homomorphic Encryption, Multi-Integer, China
Remainder Theorem, Random Approximation Greatest Common Divisor (RAGCD)

1 Introduction
In 1978, Rivest et al. introduced the basic concept of
homomorphic encryption that allowed computation on
ciphertexts without decryption [1]. Shortly after its
publication, major security problems were found in
the original scheme. In the past thirty years, many
additively or multiplicatively homomorphic
encryption schemes were proposed by the
researchers, unfortunately, none of them could
supports both addition and multiplication on
ciphertexts simultaneously. During this period, the
best result was the Boneh–Goh–Nissim
cryptosystem, which supports evaluation of an
unlimited number of addition operations but at most
one multiplication [2]. In 2009, Gentry came up
with the first fully homomorphic encryption scheme,
i.e. a scheme that supports both addition and
multiplication on ciphertexts simultaneously [3, 4].
First, Gentry constructed a somewhat homomorphic
scheme, which only supports a limited number of
multiplications. The second step of Gentry’s
framework consisted in squashing the decryption

procedure so that it could be expressed as a low
degree polynomial in the bits of the ciphertext and
the secret key. Then, a key idea, called
“bootstrapping”, was to evaluate this decryption
polynomial homomorphically on the encryption of
the ciphertext bits and the secret-key, which given
another ciphertext of the same plaintext. If the
degree of the decryption polynomial was small
enough, the noise in the new ciphertext was smaller
than that in the original ciphertext. So this new
ciphertext could be used again in a subsequent
homomorphic operation (either addition or
multiplication). Using this “ciphertext refresh”
procedure the number of permissible homomorphic
operations became unlimited and a fully
homomorphic encryption scheme can be obtained.
However, Gentry’s scheme involved a relatively
untested hardness assumption, e.g., the hardness of
problems on ideal lattices. Soon after Gentry’s
original paper appeared, Smart and Vercauteren
presented a refinement of Gentry’s scheme giving
shorter public key size and ciphertext size, but

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 186 Volume 14, 2015

which was still not practical [5]. One obstacle in
Smart’s scheme was the complexity of key
generation of the somewhat homomorphic scheme.
Gentry and Halevi presented an optimized version
[6]. In particular, the optimized version had an
efficient key generation procedure and a simpler
decryption circuit. Stehle also proposed an
improved scheme of Gentry’s scheme, which
introduced decryption errors to reduce computation
cost [7]. Meanwhile, Ogura proposed a somewhat
homomorphic encryption with short public key size
[8]. Based on multilinear mapping, Garg proposed a
homomorphic encryption that was based on ideal
lattice [9].

Different from Gentry’s “blueprint”, a
homomorphic encryption scheme based on learning
with error (LWE) assumption was proposed by
Brakerski and Vaikuntanathan, which does not
contain complex operations on ideals lattice [10].
The security of Brakerski’s scheme was reduced to
the worst-case hardness of “short vector problems”
on arbitrary lattices (rather than ideal lattice). Soon
afterwards, Brakerski proposed a radically new
approach to fully homomorphic encryption that
dramatically improves performance and bases
security on weaker assumptions [11]. A central
conceptual contribution in this work was a new way
of constructing leveled fully homomorphic
encryption schemes (capable of evaluating arbitrary
polynomial-size circuits), without Gentry’s
bootstrapping procedure. Meanwhile, Gentry
proposed some efficient homomorphic schemes
based on LWE [12-15]. Lopez proposed a multi-key
homomorphic filtering scheme, which was useful
for multi-party computation [16].

In 2010, Dijk proposed a somewhat
homomorphic encryption scheme (DGHV scheme),
which was a variant of Gentry’s scheme and relied
purely on the arithmetic of the integers [17]. The
main appeal of the scheme (compared to the original
Gentry’s scheme) was its conceptual simplicity;
namely all operations were done over the integers
instead of ideal lattices. Coron presented an
optimized version of the DGHV scheme [18]. The
public key size of the scheme was reduced to 7()O λ .
Based on china remainder theorem, Kim et al.
proposed a homomorphic encryption with message
space

2λ
Z instead of 2Z , and the public key size

was 10()O λ [19]. In 2013, Coron et al. proposed a
batch homomorphic encryption scheme that
supports encrypting and homomorphically
processing a vector of bits as a single ciphertext
[20]. Recently, Coron et al. proposed a variant of
the DGHV scheme with the same scale-invariant

property [21]. In [21], Coron et al. proved the
equivalence between the (error-free) decisional
AGCD problem and the classical computational
AGCD problem. This equivalence allowed to get rid
of the additional noise in all the integer-based fully
homomorphic encryption schemes.

Although any computation can be expressed as a
Boolean circuit, we need to design an efficient
homomorphic encryption scheme with larger
message space. In this paper, we propose a multi-
integer somewhat homomorphic encryption scheme
with shorter key size. Besides, the message space is

min()inZ instead of 2Z .

1.1 Comparisons with related works
In this section, we compare our scheme with some
related works. Dijk et al. proposed a homomorphic
encryption scheme [17]. The scheme was
conceptually simpler than Gentry’s scheme, because
it operated on integers instead of ideal lattices. The
size of public key was 10()O λ which was too large
for any practical application. It was shown in [18]
how to reduce the public key size by storing only a
small subset of the original public key and
generating the full public key on the fly by
combining the elements in the small subset
multiplicatively. The public key size was reduced to

7()O λ . However, the improvement came at the
expense of the overall complexity. Based on china
remainder theorem, Kim et al. described a multi-bit
homomorphic scheme [19]. The ciphertext
expansion rate and the overall complexity were
improved. Unfortunately, the public key was

10()O λ . Coron et al. extended the fully
homomorphic encryption scheme to batch fully
homomorphic encryption, i.e., a scheme that
supports encrypting and homomorphically
processing a vector of plaintext bits as a single
ciphertext [20]. The public key size was reduced to

7()O λ . Coron et al. described a variant of DGHV
scheme with the same scale-invariant property [21].
It had a single secret modulus whose size was linear
in the multiplicative depth of the circuit to be
homomorphically evaluated, instead of exponential.
A main problem with the version of DGHV scheme
was that the ciphertext expansion rate was bigger
than before [19, 20].

In this paper, we propose a variant of DGHV
scheme with the batch property, which can be
regarded as an extension of Coron’s scheme [20].
The message space is min()inZ instead of 2Z . We put
forward a new hardness problem, which is called the

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 187 Volume 14, 2015

random approximation greatest common divisor
(RAGCD) problem. Theorem 4 shows that RAGCD
problem is a stronger version of approximation
greatest common divisor (AGCD) problem. As a
consequence, we obtain a shorter public key without
sacrificing the security of the scheme. The public
key size is reduced to 4()O λ which is suitable for
practical application. Meanwhile, the ciphertext
expansion rate is reduced to 3()O λ , and the overall

complexity is reduced to 8()O λ . Table 1 shows a
comparison of our scheme with related works. We
provide in Table 3 timings for our batch DGHV
scheme, and provide in Table 4 concrete key sizes
for our batch DGHV scheme. Our estimates are
backed up with experimental data. It is worth noting
that we concentrates on the somewhat homomorphic
encryption scheme, which is more applicable than
fully homomorphic encryption scheme.

Table 1. Comparisons of Our Scheme with Related Works

 [17] [18] [19] [20] [21] Our scheme

Parallel
computing

NO NO YES YES YES YES

Size of pk 10()O λ 7()O λ 10()O λ 7()O λ 4()O λ
4()O λ

ciphertext
expansion rate

5()O λ 5()O λ 2()O λ 3()O λ 4()O λ
3()O λ

Overall
complexity

12()O λ 15()O λ 10()O λ 8()O λ 8()O λ
8()O λ

Hardness problem AGCD AGCD AGCD AGCD AGCD RAGCD

1.2 Organization
The remainder of the paper is organized as follows.
In section 2, we briefly recall the notations and
definitions. In section 3, we formally describe the
main technical of this work. In section 4, we discuss
the performance and security issues. Section 5
describes two known attacks for the AGCD
problem. Section 6 reports the main results of our
experiments. Finally, section 7 concludes the paper
and presents the open problem.

2 Preliminary

2.1 Notations
Throughout this paper we use λ to indicate the
security parameter. Real numbers and integers are
denoted by lowercase letters, vectors are denoted by
lowercase bold letters, and sets are denoted by
capital bold letters. Particularly, we denote the
integer set by Z , and denote the module- N integer

residue class by NZ . For a set A ,
R

a←A denotes
that a is sampled uniformly from A . For a real

number x , we denote by ⌊ x ⌋, ⌈ x ⌉, ⌈ x ⌋ the
rounding of a down, up, or to the nearest integer.
Namely, these are the unique integers in the half
open intervals (1,]x x− , [, 1)x x + and
(0.5, 0.5]x x− + , respectively. For two integers z
and p , we denote the quotient and remainder of z
with respect to p by ()pq z and ()pr z . Meanwhile,
for two integers z and p , we denote the reduction
of z modulo p by (mod)z p or []pz with

/ 2 [] / 2pp z p− < ≤ .
According to DGHV scheme, we denote the

evaluated polynomial on ciphertexts by function f
corresponding to the evaluated circuit C . For
example, the arithmetic circuit of

2 2(,)f x y x xy y= + + is described in Fig. 1.

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 188 Volume 14, 2015

Fig. 1. the arithmetic circuit of
2 2(,)f x y x xy y= + +

2.2 Homomorphic encryption
A homomorphic encryption scheme consists of four
algorithms: the key generation algorithm KeyGen ,
the encryption algorithm Enc , the decryption
algorithm Dec , and an additional algorithm Eval .
Compared with the usual private/public key
encryption, homomorphic encryption can supports
arbitrary operation on the ciphertexts without
decryption. Roughly speaking , KeyGen takes the
security parameter λ as input, and outputs the
secret key sk and the public key pk ; Enc takes the
public key pk and the message m as input, and
outputs the corresponding ciphertext c ; Dec takes
the secret key sk and the ciphertext c as input, and
outputs the corresponding message m′ ; Eval takes
the public key pk , a τ -variable function f , and a
τ -tuple ciphertext 1 2(, ,...,)c c cτ=c , where

Enc(,)i ic sk m= as input, and outputs an evaluated
ciphertext Eval(, ,)c pk f= c .

Definition 1 (Correctness). A homomorphic
encryption is correct for a given τ -variable function
f if, for any key-pair (,)pk sk generated by
KeyGen , and any ciphertexts 1 2(, ,...,)c c cτ=c with

Enc(,)i ic sk m= , it is the case that:

1 2 1 2Dec(,Eval(, ,(, ,...,))) (, ,...,)sk pk f c c c f m m mτ τ=
(1)

Definition 2 (Somewhat Homomorphic
Encryption). Let deg()d f= , and Decf be the
decryption function. The scheme is correct for f .
The scheme is a somewhat homomorphic
encryption, it is the case that: Dec2deg()d f≤ .

Definition 3 (Fully Homomorphic Encryption).
Let deg()d f= , and the scheme be correct for f .
The scheme is a fully homomorphic encryption, it is
the case that: Dec(2deg(),)d f∈ +∞ .

2.3 China Remainder Theorem
The China Remainder Theorem is a result of
congruence in number theory [22]. It has a great
many applications in cryptology．
 Theorem 1 (China Remainder Theorem).
Suppose 1 2, ,..., kn n n are positive integers that are

pair-wise coprime. For any given sequence of
integers 1 2, ,..., kπ π π , there exists an integer m
solving the following system of simultaneous
congruence:

1 1

2 2

(mod)
(mod)
...
(mod)k k

m n
m n

m n

π
π

π

=
=

=

(2)

Proposition 1. For a mapping:
1 2: (, ,...,)kmσ π π π↔ , and

ii nπ ∈Z , nm∈Z . σ is
bijective , and

1 2
:

kn n n nσ ↔ × ×⋅⋅ ⋅×Z Z Z Z is a
homomorphic mapping, if it is the case that: for

1,2,...,i k= , modi im nπ= .

Proof: As modi im nπ= , we compute
/i i im m n nπ = −   , and outputs a sequence of

integers 1 2, ,..., kπ π π . Similarly, for 1,2,...,i k= , let
/i i j

j i

l n n n
≠

= =∏ , and compute 1(mod)i i i iv l l n−= .

It is worth mentioning that, for gcd(,) 1i il n = , it is
reasonable to compute iv . Then compute

1
(mod)

k

i i
i

m v nπ
=

= ⋅∑ . According to the basic

number theory, it can be conclude that σ is
bijective. Assume that n∈Z , in ∈Z , and |in n , we
can conclude that σ is homomorphic. □

Proposition 2 (An Instance of σ). For
modi im nπ= , 1,2,...,i k= , we can compute

/i i im m n nπ = −   (3)

, and produce a sequence of integers 1 2, ,..., kπ π π .
Similarly, we assume that /i il n n= ,

1(mod)i i i iv l l n−= , then compute

1
(mod)

k

i i
i

m v nπ
=

= ⋅∑

(4)

Proof: For modi im nπ= , we can compute
/i i im m n nπ = −   , and produce a sequence of

integers 1 2, ,..., kπ π π . Assume that /i il n n= , for
j i≠ , then we can conclude that 0(mod)j il n= .

After that, assume that 1(mod)i i i iv l l n−= , then we
can conclude that 1(mod)i iv n= ,

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 189 Volume 14, 2015

0(mod)j j iv l n= = . As a result, a mapping
(0,0,...,1,...0)iv ↔ from 1(mod)i iv n=

and 0(mod)j j iv l n= = is obtained. For i , /i il n n= ,
1(mod)i i i iv l l n−= , (mod)i i im v nπ= ⋅ , it is easy to

verify that modi im nπ= . Hence, we can conclude
that Eq.(3) and Eq.(4) are correct.
□

2.4 DGHV scheme
We informally review the DGHV Somewhat
Homomorphic Encryption [17]. The construction
consists of four algorithms:

KeyGen(1)λ . Choose a random e -bit odd integer
from the right open interval 1[2 ,2)e e− as the secret
key p . For 0,1,...,i τ= , choose a random integer iq
from the interval [0,2 /)g p , choose another integer

ir from the open interval (2 ,2)r r− , and compute

i i ix pq r= + . Relabel so that 0x is the largest.
Restart unless 0x is odd and 0(mod)mod 2 0x p = .
Generate the public key 0 1(, ,...,)pk x x xτ= and the
secret key sk p= .

Enc(, {0,1})pk m∈ . Choose a random subset
{1,2,..., }S τ⊆ , a random integer r in ' '(2 ,2)ρ ρ− ,

and compute 0[2 2]modii S
c m r x x

∈
= + + ∑ .

1 2Eval(, , , ,...,)pk C c c cτ . Given the (binary) circuit
C with τ inputs, and τ ciphertexts ic , apply the
(integer) addition and multiplication gates of C to
the ciphertexts, and generate the evaluated
ciphertexts.

Dec(,)sk c . Output (mod)mod 2m c p= .
This completes the description of the scheme. It is
noted that the scheme described above is a
somewhat homomorphic scheme. The security is
reduced to the AGCD assumption.

3 Our construction
In this section, we propose a somewhat
homomorphic encryption that supports integer
arithmetic instead of bit-operation. The message
space is min()inZ .

3.1 Parameters
In addition to the various parameters used in the
DGHV scheme, some more parameters are used in
our construction. It is worth noting that the bit
lengths of various parameters used in the scheme are
designated by some parameters, which are
polynomial in the security parameter λ . The values
for these parameters are described as follows:

λ : security parameter; the same as Gentry
suggested [6], 80λ = ;

e : the bit length of secret key p ; 3()e O λ= ,
in order to resist brute force attack;

e′ : the bit length of second secret key u ;
2()e O λ′ = , to support sufficiently

homomorphic evaluation on the intermediate
message;

k : the number of message space ， for
()2On β= ， () 1(0,2)Ok λ −∈ ;

β : the bit length of intermediate
message; ()Oβ λ= , to support sufficiently
homomorphic evaluation;

g : the bit length of public key 0x and 1x ;
4()g O λ= , to be secure against DGHV’s

lattice attack [17];

θ : the bit length of public key in , ()Oθ λ= ;

s : the bit length of random number r , which
is used in the encryption procedure to enhance
the security of the scheme; ()s O λ= , to
support sufficiently homomorphic evaluation
on the initial message;

t : the bit length of random number h ,
()t O λ= , to support sufficiently

homomorphic evaluation on the intermediate
message.

3.2 The construction
Idea. There are k initial messages 1 2, ,..., kπ π π ,

ii nπ ∈Z , for {1,2,..., }i k∈ . According to

1 2: (, ,...,)kmσ π π π↔ , we compute an intermediate
message nm∈Z . Proposition 1 shows that each

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 190 Volume 14, 2015

operation on intermediate message m is equivalent
to the operation on k initial messages 1 2, ,..., kπ π π .
It means that we can encrypt the intermediate
message m instead of k initial messages

1 2, ,..., kπ π π .

KeyGen(1)λ . Choose two random odd integers
p of size e and u of size e′ , the secret key is

(,)sk p u= . Choose two random integers 0q and 1q
from the interval)0,2 /g p , and choose a random

integer h of size t . Compute 0 0x pq= and

1 1x pq uh= + . Restart unless 0x and 1x are co-
prime, 0x is larger than 1x . Select k primes in as a
portion of public key, all of which are pair-wise co-

prime. And then compute
1

k

i
i

n n
=

=∏ . The public key

is 0 1 1 2(, , , (, ,...,))kpk x x n n n n= .

1 2Enc(,(, ,...,))kpk π π π . The encryption
algorithm consists of two steps.

Step1: According to China Remainder Theorem,
compute an intermediate message nm∈Z from k
initial messages 1 2, ,..., kπ π π . Assume that

/i il n n= , 1(mod)i i i iv l l n−= , then compute

1
(mod)

k

i i
i

m v nπ
=

= ⋅∑ .

Step2: Given nm∈Z , choose a s -bit
random integers r , compute the ciphertext

1 0()modc m rx x= + .

Dec(,)sk c . The decryption algorithm consists of
two steps.

Step1: Given a ciphertext c , and the secret key
(,)sk p u= , compute the intermediate message
(mod)modm c p u= ;

Step2: For modi im nπ= , the output is
/i i im m n nπ = −   .

1Eval(,(,...,))f c cτ . Given a τ -variable function
f , and a τ -tuple ciphertext 1 2(, ,...,)c c cτ=c , where

Enc(,)i ic sk m= , performs homomorphic operations
over ic , and outputs the evaluated ciphertext c .

For two ciphertexts 1c and 2c , additive and
multiplicative homomorphic operations are as
follows: Additive homomorphic:

add 1 2 0()modc c c x= + , multiplicative
homomorphic: mult 1 2 0()modc c c x= ⋅ . The
resulting ciphertext after homomorphic
evaluation is decrypted by the decryption
algorithm Dec .

4 Analyses

4.1 Correctness
The proof of correctness is consists of two parts: the
correctness of the decryption algorithm Dec , and
the correctness of the evaluation algorithm Eval .

Theorem 2. For an initial ciphertext c ,and k
initial messages 1 2, ,..., kπ π π , the decryption
algorithm is correct.

Proof: For k initial messages 1 2, ,..., kπ π π , we
assume that /i il n n= , 1(mod)i i i iv l l n−= , and

compute
1

(mod)
k

i i
i

m v nπ
=

= ⋅∑ , where nm∈Z . As

1 0()modc m rx x= + , we have 1 1 0()c m rx a x= + − ⋅
for an integer 1a . Furthermore, 0 0x pq= ,

1 1x pq uh= + , we have

1 1 0 1 1 0() ()c m rpq ruh a pq p rq a q urh m= + + − = − + +
 (5)

From the parameter setting, urh m p+ << and
m u<< . Compute (mod)modm c p u= ,

/i i im m n nπ = −   , generate the k initial messages

1 2, ,..., kπ π π . □

The notion of permitted circuit [17], which is
defined as follows, is helpful to prove the
correctness and homomorphism.

Definition 4 (Permitted Circuit). For a
homomorphic encryption scheme, and a real number
α . Similar to the DGHV scheme, we define a
permitted circuit as one where for any 1α ≥ and for
any set of integer inputs each ()2 sβ α+≤ in absolute
value, it holds that the circuit’s output has absolute

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 191 Volume 14, 2015

value at most 22e− . Let per-cC denote the set of
permitted circuits.

Theorem 3. For a permitted circuit C which
takes 2k initial messages

1 1 11 2, ,..., kπ π π and

2 2 21 2, ,..., kπ π π as input, the decryption algorithm is
correct.

Proof: for 2k initial messages
1 1 11 2, ,..., kπ π π and

2 2 21 2, ,..., kπ π π , assume that /i il n n= ,
1(mod)i i i iv l l n−= , compute two intermediate

messages
11

1
(mod)

k

i i
i

m v nπ
=

= ⋅∑ and

22
1

(mod)
k

i i
i

m v nπ
=

= ⋅∑ . For two ciphertexts

1 1Enc(,)c pk m= and 2 2Enc(,)c pk m= , the addition
of two ciphertexts is add 1 2 0()modc c c x= + .
According to the permitted circuit, we have

add 1 2 2 3()c m m a u a p= + + ⋅ + ⋅ for two random
integers 2a and 3a , where 1

2 [2 ,2)s sa α α−∈ . Then, we
can conclude that 1 2 add() mod modm m c p u+ = .
Similarly, the multiplication of two ciphertexts is

mult 1 2 0()modc c c x= ⋅ . According to the permitted
circuit, we have mult 1 2 4 5()c m m a u a p= ⋅ + ⋅ + ⋅ for
two random integers 4a and 5a , where

' 1 '
4 [2 ,2)e s e sa α α+ − +∈ . We can conclude that

1 2 mult() mod modm m c p u⋅ = . As we know, an
arithmetic circuit consists of addition and
multiplication modulo- 0x gates. Combine the
permitted circuit with the homomorphic mapping

1 2
:

kn n n nσ ↔ × ×⋅⋅ ⋅×Z Z Z Z , the evaluated
ciphertext can be decrypted correctly. □

4.2 Homomorphic
Additively Homomorphic. According to triangle
inequality, each noise of 1 2c c+ is increased at most
1-bit. As described in section 3.1, the bit length of
the second secret key u is 2()O λ , and the bit
length of the random number r is ()s O λ= .
Clearly, the proposed scheme can supports
approximately 2()O λ additions on ciphertexts.

Multiplicatively homomorphic. One multiplicative
operation on ciphertexts may square the noise - i.e.,

double their bit-lengths. That’s to say, the noise
expansion through multiplication is more significant
than addition. The homomorphic evaluation
capacity of our scheme is mainly influenced by the
number of multiplications, which is defined as the
degree of the evaluated polynomial.

Lemma 1 (DGHV, lemma 3.5). Let C be an
arithmetic circuit and f be the multivariate
polynomial computed by C . It is easy to give a
sufficient condition on a multivariate polynomial f
for the associated arithmetic circuit C to be
permitted. If 2

1
(2) 2s d ef β α+ −⋅ ≤ , then per-cC C∈ ,

where
1

f is the 1- norm of the coefficient vector
of f and deg()d f= .

From the above conditions and parameters, we

have 2 1
2 log ()e f

d
sβ α

− −
≤

+
 , which is similar to the

DGHV scheme. Clearly, the proposed scheme can
support approximately 2()O λ multiplications on
ciphertexts. In this work, we can assume 2 1

log ()f
is relatively small to e and β .

4.3 Security
Informally speaking, we consider a game with a
solver Ψ and an attacker atk . The game can be
described as follows: initially, atk receives the
public key. And then, atk sends two different
messages to the Ψ , who chooses one to encrypt.
After receiving the ciphertext, atk guesses which
message generates the ciphertext and wins the game
if he gets it right. The scheme is secure if the
probability of attacker wins the game is at most
1 / 2 ε+ , where ε is a negligible value. In this
work, we propose a new hardness problem, which is
called the RAGCD problem. Note that, RAGCD
problem is a stronger version of AGCD problem
[23]. Crucially, the security of the scheme can be
reduced to the RAGCD problem.

Definition 5 (RAGCD). The RAGCD problem is:

given two integers 0x and 1x , for
R

h←H，
R

iq ←Q ,
0,1i = , 0 0x q p= and 1 1x q p uh= + , output p and

u .

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 192 Volume 14, 2015

Definition 6 (AGCD). The AGCD problem is:

given two integers 0x and 1x , for
R

h←H，
R

iq ←Q ,
0,1i = , 0 0x q p= and 1 1x q p h= + , output p .

Theorem 4. If there is a solver Ψ that solves the
AGCD problem with advantage ς , then the solver
Ψ can solve the RAGCD problem with advantage
2 λ ς− .

Proof: given two integers 0x and 1x , a sovler Ψ
that solves the AGCD problem with advantage ς ,
output p . For p , we can compute 1 moduh x p= .
In the worst case, the sovler Ψ must try each
element h in the set H of size 2 λ . As a result, we
can conclude that the sovler Ψ can solve the
RAGCD problem with advantage 2 λ ς− . □

In this work, the secret key is (,)sk p u= , and the
public key is 0 1 1 2(, , , (, ,...,))kpk x x n n n n= . For the
k primes 1 2(, ,...,)kn n n , atk can break the security
of the scheme without accessing them. The public
key is an instance of RAGCD problem, especially;

0x is an exact multiply of p , 1x is an
approximately multiply of p . Theorem 5 shows that
the security of the scheme can be reduced to
RAGCD problem. The proof of Theorem 5 is

similar to the proof of theorem 4.2 in DGHV
scheme. Without loss of validity, we directly
reference a subroutine Binary-GCD in DGHV
scheme.

Theorem 5. Let atk be an attacker with
advantage ε against our encryption scheme with
parameters (e , e′ , g , t) polynomial in the security
parameter λ . There exists a solver Ψ for solving
the RAGCD problem that succeeds with at least a
probability of / 2ε .
Proof: Let atk be an attacker against the scheme.
Namely, atk takes a public key and a ciphertext (as
produced by our scheme) as input, and outputs the
correct plaintext with probability 1 / 2 ε+ for some
noticeable ε . After that, atk is used to construct a
solver Ψ for RAGCD problem. For two randomly
chosen odd integers p of size e and u of size e′ ,
the solver Ψ can access to a portion of the public
key 0 0x q p= and 1 1x q p uh= + , and the goal is to
find p and u . Next, Ψ produces a sequence of
integers, and attempts to recover p by utilizing atk
to learn the least significant bit (LSB) of the
quotients of these integers with respect to p . The
subroutine Learn-LSB is as follows.

Table 2. Learn-LSB Algorithm
Learn-LSB Algorithm Learn the LSB of the quotients of these integers with respect to p

Input: [0,2)gz∈ with 2| () | 2e
pr z ′−< , 0 1 1 2(, , , (, ,...,))kpk x x n n n n=

Output: The LSB of ()pq z

Method:
1. For 1j = to poly() /λ ω do:

2. Choose noise (2 ,2)
R

s s
jr ← − , a set of random integer

j ii nπ ∈Z , 1,2,...,i k= ;

3. Compute j nm ∈Z ,
1

(mod)
j

k

j i i
i

m v nπ
=

= ⋅∑ , /i il n n= , 1(mod)i i i iv l l n−= ;

4. Compute 1 0()modj j jc z m r x x= + + ;
5. Call atk to get a prediction atk(,)j ja pk c= ;
6. Compute 2 2 2[] [] []j j jb a z m= ⊕ ⊕ ;
7. Output the majority vote among the jb ’s

According to lemma 2, we show that for all but a
negligible fraction of the public keys generated by

the scheme, the “ciphertext” jc in step 4 of the
Subroutine is distributed almost identically to a
valid encryption of the ()p jr z m+ . Note also that

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 193 Volume 14, 2015

since p is odd, we always have

2 2 2[()] [()] []p pq z r z z= ⊕ , and jb should be the
parity bit of the ()pq z . We can conclude that if atk
has a noticeable advantage in guessing the
encrypted bit under 0 1 1 2(, , , (, ,...,))kpk x x n n n n= ,
then Learn-LSB(z , pk) will return 2[()]j pb q z=
with overwhelming probability. Once we turned
atk into an oracle for the LSB of ()pq z , recovering
p is rather straightforward. The simplest way of

doing it is using the Binary-GCD algorithm [17]: to
recover p , the solver Ψ draws two integers 1z , 2z
with 2| () | 2e

p ir z ′−< , 0,1i = , and applies the
Binary-GCD algorithm to them. With a probability
of at least 0.6 [17], the odd part of

1 2GCD((), ())p pq z q z is one. As a result, the
algorithm should generate an element 1z p uh= ⋅ +
with 2| () | 2e

pr z ′−< . Thus, we should choose the
appropriate integer to ensure that 1()pq z is one.

Lastly, Ψ repeats the Binary-GCD algorithm
from above using 1z and 2z z=  , and the sequence
of parity bits of the 1()pq z s in all the iterations spell
out the binary representation of 1()pq z . Now Ψ

can recover 1 1pp z q z=  / () and 2 2() /pq z z p=   .

Next, Ψ computes *
1 1 1 1(())pz z q z p uh= − ⋅ = and

*
2 2 2 2(())pz z q z p uh= − ⋅ = . In the end, Ψ can easily

computes the general common divisor of the *
1z and

*
2z , and recovers u . We conclude that a polynomial

time solver Ψ can solves the RAGCD problem with
an advantage of at least / 2ε . □

Lemma 2. Fix the parameters (e , e′ , g , t), fix
any (,)sk p u= , and let 0 1 1 2(, , , (, ,...,))kpk x x n n n n=
be chosen as in the KeyGen of our scheme. For
every integer [0,2)gz∈ which is at most ' 22e − away
from a multiple of p , and a random integer

(2 ,2)
R

s s
jr ← − , an intermediate message j nm ∈Z ,

consider the following distribution
1 0()modj jc z m r x x= + + , every distribution c is

statistically close to the distribution
Enc(,(()))p jpk r z m+ .

Proof. According to encryption algorithm,
()j p jc q p r uh r z m′= + + + . Regarding q′ , we claim

that in the scheme the value ()pq c of a ciphertext is
uniform in 0 0(/ 2, / 2)q q− . According to the
parameter setting, it implies that

() (())modp j j p jr z m r uh r z m u+ = + + . As a result,
c is distributed almost identically to a valid
encryption of ()p jr z m+ . □

4.4 Complexity Analysis
The advantage of our scheme lies in a short key size
and low computation complexity, and we give a
detailed analysis below. Compared with the
previous schemes, which involve generating a big
public key that consists of a large set of 5()O λ
integers [17] or 2()O λ integers [18] each having a
size of 5()O λ , the public key of the proposed
scheme consists of two integers of size 4()O λ and
k small primes of size ()O λ . The size of the public
key is 4()O λ . The encryption algorithm Enc
consists of two steps: the computation cost of
intermediate message is ()O λ ; Enc involves a
multiplication of complexity 5()O λ resulting in an
ciphertext of size 4()O λ . The modular reduction of
this ciphertext with 4()O λ bit 0x takes 8()O λ
computations. In the decryption algorithm Dec , the
modular reduction of the 4()O λ bit ciphertext with
the 3()O λ bit secret integer p takes 8()O λ
computations, resulting in an integer of size 3()O λ .
The modular reduction of this 3()O λ bit integer
with 2()O λ bit secret integer u takes 6()O λ
computations, and results in an intermediate
message of size less than or equal to 2()O λ . The
computation cost of the initial message 1 2, ,..., kπ π π
is ()O λ . The total computation cost of decryption
algorithm is 8()O λ .

Homomorphic addition: The addition of two
ciphertexts is simply integer addition, and the
computation cost is 4()O λ . After an addition, the
length of ciphertext is not increased, and
accordingly the computation cost of decryption
remains the same. Homomorphic multiplication:
When multiply two ciphertexts, it needs to compute
integer multiplication, the computing cost is 8()O λ .

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 194 Volume 14, 2015

It can be conclude that the overall computation cost
of the scheme is 8()O λ .

5 Two Known Attacks for the AGCD

Problem
In this section, we informally review two known
attacks on the AGCD problem, including brute-
forcing the remainders, and the GCD Attack [24].

5.1 Brute-Force Attack
The easiest attack is the brute force attack on the
noise in the public key. Given the public key
(0x , 1x), the brute-force attack can be described as
follows: choosing two random integers u and h
from the interval 1[2 ,2)e e′ ′− and 1[2 ,2)t t−
respectively, subtracting uh from 1x , and
computing 0 1GCD(,)x x uh− . In a worst case, this
process may need to be repeated for all the product
of the integers u and h . As h is chosen uniformly
from the set H of size 2 λ , and u is chosen
uniformly from the set U of size

2

2λ , and the state
of the art algorithm for computing GCD problem is
the Stehle-Zimmermann algorithm [25] with time
complexity ()O g for integers of g bits. As a result,

the complexity of this attack is
4 2

2λ λ λ+ + .
 For the chosen parameter values, the size of 0x is
big enough so that, even the best known integer
factoring algorithms such as the General Number
Field Sieve [26] will not be able to factor 0x in a
reasonable time. Meanwhile, the algorithms such as
Lenstra’s elliptic curve factoring [27] generates p

with time complexity
3

2λ . Furthermore, the secret

key p will not be recovered directly as it is not
prime.

5.2 The GCD Attack
In [27], the author declared that the GCD of the
public key (0x , 1x) is the smallest positive element
in the set 0 1{ : , }ax bx a b+ ∈Z . As a result, the
common divisor of the public key (0x , 1x) will
divide all the possible linear combinations of
(0x , 1x). Modular reduction of a ciphertext with such
common divisor results in the plaintext, because a
ciphertext contains a linear combination of (0x , 1x).
As a result, taking the pair of integers (0x , 1x) as co-
prime can defends this attack.

6 Experimental
Our experiment is conducted in a laptop computer
(Intel Core i3 at 2.53 GHz, 2GB RAM). NTL-5.2.2
is used as the C++ library for writing the program.
Note that we select the average run-time, and the
number of iterations is 20. We take the average
values except the maximum and minimum for each
item. We use five security levels inspired by the
levels from [6]: “toy”, “small”, “medium” and
“large”, corresponding to 42, 52, 62 and 72 bits of
security respectively. Moreover, we use one
additional security level to improve our scheme,
corresponding to 80 bits of security. Note that, our
“suggested” level of security can improve the
security without sacrificing the performance. To
obtain more accurate results, we compare the
methods under the same experimental environments.
We provide in Table 3 timings for our batch DGHV
scheme, and provide in Table 4 concrete key sizes
for our batch DGHV scheme.

Table 3. The timings of our scheme

 λ KeyGen Enc Dec Additively
Homomorphic

Multiplicatively
homomorphic

Toy 42 2.15s 0s 0s 0s 0.8s

Small 52 43.3s 0.03s 0s 0s 0.8s

Medium 62 758s 0.08s 0.04s 0s 21.4s

Large 72 10742s 6.86s 0.15s 0.03s 141s

Suggested 80 69451s 192.5s 45.6s 0.41s 1793s

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 195 Volume 14, 2015

javascript:void(0);

Fig.2: The comparison of timing of key generation

Timings. In order to generate the public key,
primality testing algorithms is needed. Figure 2
shows that the timing of key generation is increased
than before. However, the timings of encryption
procedure and decryption procedure are equal to

previous work [20]. In the following work, how to
improve the efficiency of key generation is an
interesting problem.

Table 4. The concrete key sizes of our scheme

 λ k e 'e β θ s t

Toy 42 27 1.3 ⋅ 104 1.5 ⋅ 103 51 22 16 29

Small 52 30 1.4 ⋅ 105 2.8 ⋅ 103 77 19 8 21

Medium 62 29 3.6 ⋅ 105 7.1 ⋅ 103 103 7 13 12

Large 72 55 1.7 ⋅ 106 3.9 ⋅ 104 158 11 30 31

Suggested 80 106 8.7 ⋅ 106 2.1 ⋅ 105 261 23 46 73

Table 5. The comparison of public key size

 λ Pk size of our
scheme(MB)

Pk size of Coron’s
scheme[20](MB)

Toy 42 0.04 0.63

Small 52 0.95 13.3

Medium 62 51 304

Large 72 467 5734

Suggested 80 2889 49533

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 196 Volume 14, 2015

Key sizes. As described in Table 5, the public key
size is shorter than previous scheme [20]. Moreover,
we can encrypt integers (for suggested level) instead
of a single bit. Our estimates are backed up with
experimental data.
 Comparing the experimental results with
previous work [20], we note that the proposed
algorithm is more efficient, especially; the public
key size is improved. Our estimates are backed up
with experimental data.

7 Conclusions
In this work, an efficient, parallel multi-integer
homomorphic encryption scheme over the integers
is proposed. It can be regarded as an extension of
Coron’s scheme [20] with larger message space.
The ciphertext expansion rate is smaller than
previous works. We put forward a new hardness
problem, called the RAGCD problem. Theorem 4
shows that RAGCD problem is a stronger version of
AGCD problem. More importantly, the security of
this scheme can be reduced to RAGCD problem. As
a consequence, we obtain a shorter public key
without sacrificing the security of the scheme. It is
expected that, the proposed scheme makes the
encrypted data processing practical for suitable
applications. However, the proposed scheme is a
potential somewhat homomorphic encryption
scheme. It is an open problem to construct a fully
homomorphic encryption scheme, while preserving
the hardness of the RAGCD assumption. How to
improve the efficiency of the scheme is also an
interesting problem. Moreover, a concrete, not just
asymptotic condition for the parameters of our
scheme is needed.

Acknowledgments
I would like to express my thanks and appreciation
to my Doc advisor Yixian Yang, for his
encouragement and guidance in completing this
work. In particular, I would like to thank Prof.
Shoushan Luo for many helpful guidance and
constructive comments that helped present this work
in a more coherent way. This work is supported by
the National Natural Science Foundation of China
(Grant No. 61121061, 61161140320).

Reference:
[1] R. L. Rivest, L. Adleman, D. L. Michael, On

data banks and privacy homomorphisms, In

Foundations of Secure computation, 1978, pp.
169-180.

[2] D. Boneh, J. Goh, K. Nissim, Evaluating 2-DNF
formulas on ciphertexts, Proceedings of the
second Theory of Cryptography Conference,
Cambridge, MA, USA, February, 2005, pp. 325-
341.

[3] C. Gentry, Fully homomorphic encryption using
ideal lattices, Proceedings of the 41st annual
ACM symposium on Theory of computing,
Bethesda, MD, USA, May 31-June 02, 2009, pp.
168-179.

[4] C. Gentry. A fully homomorphic encryption
scheme, Stanford: Stanford University, 2009.

[5] N. P. Smart, F. Vercauteren, Fully homomorphic
encryption with relatively small key and
ciphertext sizes, Proceedings of the 13th
International Conference on Practice and
Theory in Public Key Cryptography, Paris,
France, May, 2010, pp. 420-443.

[6] C. Gentry, S. Halevi, Implementing Gentry’s
Fully-Homomorphic Encryption Scheme,
Proceedings of the 30th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia,
May, 2011, pp. 129-148.

[7] D. Stehlé D, R. Steinfeld, Faster fully
homomorphic encryption, Proceedings of the
16th International Conference on the Theory
and Application of Cryptology and Information
Security, Singapore, December, 2010, pp. 377-
394.

[8] N. Ogura, G. Yamamoto, T. Kobayashi, et al,
An improvement of key generation algorithm for
Gentry’s homomorphic encryption scheme,
Proceedings of the 5th International Workshop
on Security, Kobe, Japan, November, 2010, pp.
70-83.

[9] S. Garg, C. Gentry, S. Halevi, Candidate
multilinear maps from ideal lattices,
Proceedings of the 32nd Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece,
May, 2013, pp. 1-17.

[10] Z. Brakerski, V. Vaikuntanathan, Efficient fully
homomorphic encryption from (standard) LWE,
Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer
Science, Palm Springs, CA, USA, October,
2011, pp. 97-106.

[11] Z. Brakerski, C. Gentry, V. Vaikuntanathan,
(Leveled) Fully homomorphic encryption
without bootstrapping, Proceedings of the 3rd
Innovations in Theoretical Computer Science

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 197 Volume 14, 2015

Conference, Cambridge, Massachusetts. New
York, USA, Jan, 2012, pp. 309-325.

[12] C. Gentry, S. Halevi, N. P. Smart, Fully
homomorphic encryption with polylog
overhead, Proceedings of the 31st Annual
International Conference on the Theory and
Applications of Cryptographic Techniques,
Cambridge, UK , April, 2012, pp. 465-482.

[13] C. Gentry, S. Halevi, N. P. Smart,
Homomorphic evaluation of the AES circuit,
Proceedings of the 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August,
2012, pp. 850-867.

[14] C. Gentry, A. Sahai, B. Watersz, Homomorphic
Encryption from Learning with
Errors:Conceptually-Simpler,Asymptotically-
Faster, Attribute-Base, Proceedings of the 33rd
Annual Cryptology Conference, Santa Barbara,
CA, USA, August, 2013, pp. 75-92.

[15] Z. Brakerski, C. Gentry, S. Halevi, Packed
Ciphertexts in LWE-Based Homomorphic
Encryption, Proceedings of the 16th
International Conference on Practice and
Theory in Public-Key Cryptography, Nara,
Japan, February 26 - March 1, 2013, pp. 1-13.

[16] A. Lopez-Alt, E. Tromer, V. Vaikuntanathan,
On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption,
Proceedings of the 44th symposium on Theory of
Computing, New York, USA, May, 2012, pp.
1219-1234.

[17] M. V. Dijk, C. Gentry, S. Halevi, et al, Fully
homomorphic encryption over the integers,
Proceedings of the 29th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May
30 – June 3, 2010, pp. 24-43.

[18] J. S. Coron, A. Mandal, D. Naccache, et al, Fully
homomorphic encryption over the integers with

shorter public keys, Proceedings of the 31st
Annual Cryptology Conference, Santa Barbara,
CA, USA, August, 2011, pp. 487-504.

[19] J. Kim J, M. S. Lee, A. Yun, et al, CRT-based
Fully Homomorphic Encryption over the
Integers, IACR Cryptology ePrint Archive,
2013:057.

[20] J. S. Coron, T. Lepoint, M. Tibouchi, Batch
Fully Homomorphic Encryption over the
Integers, Proceedings of the 32nd Annual
International Conference on the Theory and
Applications of Cryptographic Techniques,
Athens, Greece, May 2013, pp. 315-335.

[21] J. S. Coron, T. Lepoint, M. Tibouchi, Scale-
Invariant Fully Homomorphic Encryption over
the Integers, Proceedings of the 17th
International Conference on Practice and
Theory in Public-Key Cryptography, Buenos
Aires, Argentina, March, 2014, pp. 311-328.

[22] C. S. Ding, D. Y. Pei, A. Salomaa, Chinese
Remainder Theorem: Applications in
Computing, Coding, Cryptography, World
Scientific Publishing, 1996.

[23] N. Howgrave-Graham, Approximate integer
common divisors, Proceedings of the
international Conference, Providence, RI, USA,
March, 2001, pp. 51-66.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.
Stein, Introduction to Algorithms, 2nd edn. MIT
Press, 2002.

[25] D. Stehle, P. Zimmermann, A binary recursive
GCD algorithm, Proceedings of the 6th
International Symposium, Burlington, VT, USA,
June, 2004, pp. 411-425.

[26] M. Briggs, An Introduction to the General
Number Field Sieve. Virginia Tech, 1998.

[27] H. Lenstra, Factoring Integers with Elliptic
Curves, Annals of Mathematics, Vol.126, No.3,
1987, pp. 649–673.

WSEAS TRANSACTIONS on COMPUTERS Chao Feng, Yang Xin, Yixian Yang, Hongliang Zhu

E-ISSN: 2224-2872 198 Volume 14, 2015

