
COCHCOMO: An extension of COCOMO II for Estimating Effort for

Requirement Changes during Software Development Phase

SUFYAN BASRI, NAZRI KAMA, ROSLINA IBRAHIM

Advanced Informatics School

Universiti Teknologi Malaysia

Kuala Lumpur

MALAYSIA

msufyan4@live.utm.my, {mdnazri, iroslina.kl}@utm.my http://www.ais.utm.my

Abstract: - Software undergoes changes at all stages of the software development process. Accepting too many

changes will cause expense and delay and rejecting the changes may cause customer dissatisfaction. One of the

inputs that help the software project management to decide whether to accept or reject the changes is by having

a reliable estimation of the change effort. From a software development perspective, the estimation has to take

into account the inconsistent states of software artifacts across project lifecycle i.e., fully developed or partially

developed. This inconsistent state requires different ways of estimation such as the fully developed artifacts

may have different calculation compared to the partially developed artifacts. Many change effort estimation

models have been developed and one of them is using impact analysis. One main challenge of this technique

from software development perspective is that this technique is specifically used for software maintenance

phase in which all software artifacts have been completely developed. This research introduces a new change

effort estimation model that is able to use different estimation techniques for different states of software

artifacts. The outcome of this research is a new change effort estimation model for software development phase

using the extended version of the static and dynamic analysis techniques from our previous works. The

significant achievements of the approach are demonstrated through an extensive experimental validation using

several case scenarios.

Key-Words: - Software development, change impact analysis, change effort estimation, impact analysis, effort

estimation

1 Introduction
It is important to manage the changes in the

software to meet the evolving needs of the customer

and hence, satisfy them [1-3]. Accepting too many

changes causes delay in the completion and it incurs

additional cost. Rejecting the changes may cause

dissatisfaction to the customers. Thus, it is

important for the software project manager to make

effective decisions when managing the changes

during software development. One type of

information that helps to make the decision is the

estimation of the change effort produced by the

changes. This prediction can be done by combining

two most related concepts which are impact analysis

and effort estimation.

On one hand, impact analysis is a process of

identifying potential consequences of change, or

estimating what needs to be modified to accomplish

a change [4-5]. The motivation behind the impact

analysis activity is to identify software artifacts (i.e.,

requirement, design, class and test artifacts) that are

potentially to be affected by a change. On the other

hand, change effort estimation is the process of

predicting how much work and how many hours of

work are needed for a particular change request. In

recent project management processes, the effort in-

vested in a project has become one of the most

significant and most studied subjects.

Challenge with the current change effort

estimation approaches [6-10] that uses impact

analysis technique as the source of input is that there

is no consideration of the inconsistency states of

software artifacts across the project. This

consideration is crucial since in the software

development phase: (1) some artifacts are partially

developed and; (2) some of them have been

developed conceptually but not technically (or have

yet been implemented). The failure of this

consideration will lead to inaccuracy of estimation

that eventually contributes to project delay or

customer dissatisfaction.

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 152 Volume 14, 2015

This paper extends our previous works on

change impact analysis approach [11-13] to support

change effort estimation during software

development phase. In brief, the previous approach

integrates between the static analysis and dynamic

analysis techniques to perform change impact

analysis during the software development phase. In

this paper, we extend the current approach’s

capability to support change effort estimation by

introducing a new change effort estimation process.

Due to space limitation, this paper will give more

explanation on the new change effort estimation

process rather than the previously developed change

impact analysis approach. However, detail

information on the change impact analysis approach

can be referred to [11-13].

This paper is laid out as follow. Section 2

presents related work, whereas Section 3 introduces

a new approach for change effort estimation.

Section 4 explains our evaluation procedure and its

results. Finally, Section 5 describes conclusion and

future works.

2 Related Work
This section presents two most related keywords

with our research which are impact analysis and

effort estimation.

2.1 Impact Analysis
There are two categories of impact analysis

techniques [12, 13] which are the static analysis

technique and the dynamic analysis technique. The

static analysis technique develops a set of potential

impacted classes by analyzing program static

information that is generated from software artifacts

(i.e., requirement, design, class and test artifacts).

Conversely, for the dynamic analysis technique, this

technique develops a set of potential impacted

classes by analyzing program dynamic information

or executing code.

Static Analysis: There are two most related

current static analysis techniques to the new

proposed approach which are the Use Case Maps

(UCM) technique [14] and the class interactions

prediction with impact prediction filters (CIP-IPF)

technique [15, 16]. The UCM technique [14]

performs impact analysis on the functional

requirements and the high level design model. This

technique assumes that all the functional

requirements and the high level design model are

completely developed. This technique has two

limitations which are: (1) there being no traceability

technique used from the functional requirements and

the high level design artifacts to the actual source

code. This technique only makes an assumption that

the content of these two artifacts that is represented

using the UCM model are reflected to the class

artifacts. Any affected elements in the UCM model

are indirectly reflected to the affected class artifacts;

and (2) there is no dynamic analysis or source code

analysis involved in this technique. Based on the

precept that some of the effect of a change from a

class to other class(es) may only be visible through

dynamic or behavior analysis of the changed class

[17, 18], results from this technique tend to miss

some actual impacted classes.

Next, the CIP-IPF technique [15, 16] uses a class

interactions prediction as a model for detecting

impacted classes. This technique has its strength

compared to the UCM technique. Comparing to the

UCM technique, this technique has traceability link

detection between the requirements artifacts and the

class artifacts feature. This feature is used to

navigate impact of changes at the requirement level

to the class artifacts.

Dynamic Analysis: For the dynamic analysis

techniques, we have selected two most related

works to our research which are the Influence

Mechanism technique [17] and the Path Impact

technique [18]. Essentially, these techniques predict

the impact set (classes or methods) based on method

level analysis.

The Influence Mechanism technique [17]

introduces the Influence Graph (IG) as a model to

identify impacted classes. This technique uses the

class artifacts as a source of analysis and assumes

that the class artifacts are completely developed.

There is a limitation of this technique which is there

is no formal mapping or traceability process from

requirements artifacts or design artifacts to class

artifacts. This process is important in the impact

analysis process as changes not only come from

class artifacts, but it also comes from design and/or

requirements artifacts. Since the design and

requirements artifacts do interact among them

vertically (between two different artifacts of a same

type) and horizontally (between requirement and

design artifacts), changes that happen to them could

contribute to different affected class artifacts. In

some circumstances, focusing on the source code

analysis may not able to detect those affected

classes.

The Path Impact technique [18] uses the Whole

Path DAG (Directed Acyclic Graph) model as a

model to identify impacted classes. The concept of

implementation of this technique is almost similar to

the Influence Mechanism technique as this

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 153 Volume 14, 2015

technique uses the class artifacts as a source of

analysis and assumes that the class artifacts are

completely developed. Also, this technique

performs a preliminary analysis prior to performing

a detailed analysis. There are two limitations of this

technique. First, the implementation is time

consuming as the technique opens a huge number of

data when the analysis goes to a large application.

Next, there is no formal mapping process from

requirements artifacts or design artifacts to class

artifacts. As described earlier, this process is

important in the impact analysis process as changes

doesn't only come from class artifacts, but also from

design and/or requirements artifacts.

2.2 Effort Estimation
There are several categories of effort estimation

which are: (1) Expert Judgment [6]; (2) Estimation

by Analogy [7]; (3) Function Point Analysis [8]; (4)

Regression Analysis [9]; and (5) Model Based [10].

A study by Jorgensen [6] shows that, expert

judgment in effort estimation is one of the most

common approaches today. Now more project

managers prefer to use this method instead of formal

estimation models, while the other techniques are

simply more complex and less flexible than expert

judgment methods. There is currently no method in

effort estimation, which can prove its result to be

hundred percent accurate. So, project managers just

prefer to accept the risks of estimation and perform

the expert judgment method for their effort

estimation.

Effort estimation by analogy uses information

from the similar projects which has been developed

formerly, to estimate the effort needed for the new

project. The idea of analogy-based estimation is to

estimate the effort of a specific project as a function

of the known efforts from historical data on similar

projects. This technique could be combined with

machine learning approaches to automate and to

become more effective [7].

Traditionally, software size and effort measured

using LOC (Lines of Code) measure. However,

earlier studies [8] show that when the scale of the

development grows, estimating using LOC fails to

achieve accurate software effort estimation. Also,

using different languages could be a problem;

different languages could create different values of

LOC. The addressed problems could be solved by

using Function Point in software measurement and

estimation. Function Point Analysis uses Function

Point (FP) as its measure; therefore, it is suggested

for improving the software measurement and

estimation methods.

Another way to estimate software development

effort is to use regression analysis; also known as

algorithmic estimation. It uses variables for software

size such as LOC and FP as independent variables

for regression-based estimation and mathematical

methods for effort estimation [19, 20]. Some

multiple regression models also use other

parameters such as development programming

language or operating system as extra independent

variables. The advantage of regression models is

their mathematical basis as well as accuracy

measurements.

3 A New Change Effort Estimation

Approach
As described earlier, the new change effort

estimation is an extension of our previous work on

change impact analysis for the software

development phase. The new approach basically

introduces a new effort estimation model that

modifies the current COCOMO II technique [21].

Fig. 1 Overall change effort estimation approach

1) Develop Class Interaction Prediction (CIP)

Start

Develop CIP

Model

Software

Artifacts

Data

2) Acquire Change Request Attributes

Extract Change Request

Attributes

Change Request

Information

3) Perform Static Change Impact Analysis

Static Impact Analysis

Process
Estimate Impact Size

Initial Size

Impacted Classes

Class Dependency

Filtration (CDF)

CDF Filtered

Impacted

Classes

4) Perform Dynamic Change Impact Analysis

Create Actual Method

Execution Path
Source Code Code Status Detection

Improve CIP using

Method Dependency

Filtration (MDF) &

Addition (MDA)

Improve CIP

model

Dynamic Impact

Analysis Process

Update Impact Size
Improve Set of Size

Impacted Classes

5) Estimate Required Change Efort
Estimate Impact of

Development Status

Factor

Estimate Software

Size after Change

Calculate Updated

Effort Estimation

Change Effort

Calculation

Initial Change Effort

Estimation

Prepare the Results

End

The Prioritized Set

of Impacted Class

Estimation of Total

Change Effort

Input

Input

Output

Output

Input

Output
Input

Output

Input

OutputOutput

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 154 Volume 14, 2015

The modified version which we called

Constructive Change Cost Model (COCHCOMO)

technique will use our previously developed change

impact analysis approach.

Fig. 1 shows the overall change effort estimation

process. Basically there are five steps which will be

discussed in following sections of this document:

(1) Developing class interactions prediction (CIP)

model; (2) Acquiring change request attributes; (3)

Performing static impact analysis; (4) Performing

dynamic impact analysis; (5) Estimating required

change effort.

3.1 Step 1: Developing Class Interactions

Prediction Model
This step develops the Class Interaction Prediction

(CIP) model based on inference of requirements

interactions. The CIP model basically is a

traceability model that shows the interactions

between all the software artifacts including

requirements, designs and classes. It will be used

later to perform static change impact analysis and

find the impacts of the change. Detail of the

development of CIP model can be referred to [12,

13].

3.2 Step 2: Acquiring Change Request

Attributes
The second step of COCHCOMO model is to

acquire the change request attributes. This step

intends to identify any relevant attributes of the

change request which has direct impact on the effort

estimation results. According to one of the previous

works [22], among the relevant attribute is type of

change.

3.3 Step 3: Performing Static Impact

Analysis
This step performs static impact analysis on the

developed CIP model to find the direct and indirect

affected classes. The static impact analysis will find

any direct impacted classes, which are the first layer

of classes affected by a particular changed

requirement without vertical traceability relations

consideration. Then indirect impacted classes

(second or next level of impacted classes) will be

identified by completing traceability search through

the CIP model.

This step uses a Breadth-first search (BFS)

algorithm [23] to perform static impact analysis to

search for the impacted classes in the CIP model.

The algorithm states that software artifacts in CIP

model are the nodes of the search graph and the

impacted classes are the goals of search.

The process continues by performing a static

filtration on the results, to remove some of falsely

predicted results by over estimation. The method we

use for static filtration is class dependency filtration

(CDF). The CDF process finds the potential but

falsely identified impacted classes by tracing the

flow of interactions between the classes. If any

indirect impact class could not be traced back to any

of the direct impacted classes; that class is

considered as falsely predicted impact class and it is

filtered from the impact analysis results. It uses a

cut-set from CIP model which contains the vertical

relations between the classes to perform a backward

tracing search from indirectly impacted classes to

the directly impacted classes. The CDF filtering

produces the final static impact analysis results that

will be used by the dynamic impact analysis step.

Detailed explanation of this step can be referred to

[24].

This step also calculates an estimation of the

potential impact size of each impacted class based

on the CDF results. Potential impact size is number

in percentage that will be used to predict the size of

code after implementing the change. The Impact

Size Factor (ISF) is calculated using the following

equation [25]:

𝐼𝑆𝐹𝐼𝐶 = 100 × ∑ 𝑃𝑉𝐴𝑇
𝐶𝑇𝐹𝑟

𝑁𝑅

𝑛

𝑟=0
 (1)

where ISFIC is impact size factor for impacted class

(IC), r is relation from requirement to the impacted

class based on the developed CIP model in step 1

due to the change. The relation refers to the

interactions that exists derived from the traceability

model among the software artifacts including

requirements, designs and classes. When a change

occurred and affected certain requirement(s),

relationship from the affected requirement to the

impacted class is established. NR is number of

requirement artifacts that have relation to the

impacted class, PVAT is a constant value for

probability of change for affect type (AT) – where

AT could be direct or indirect affection type and

value for PVAT < 1. Direct or indirect affection type

refers to the type of relationship that exists from the

affected requirement to the impacted class. In our

experiment, we have defined value 0.9 for direct

and 0.7 for indirect affect type. CTFr is change type

factor based on the affected requirement change

type which lead to the relation r (see Table 1).

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 155 Volume 14, 2015

ISF is the sum of probable occurrence of change

in each identified impacted class according to the

change type factor for that change request. Using

eqs (1) we are able to have a prediction of ISF for

each identified impacted class. Although, this value

is just a rough estimation, and it is not very accurate,

this equation can produce an overall good prediction

of the future class size expansion after the change

with calibrated variables.

CTF value is a coefficient of correlation value

between -1 and 1. It is used to predict the effect of

the change type on the impact size. The proposed

change types and its value can be referred to Table 1

[25].

Change Type Value Effect

Addition

1.00 All of the code with estimated size
will be added to the original code.

Modification-

Major Grow 0.75 Three quarter of the estimated impact

code will be added to the original

code.

Modification-

Grow 0.50 Only half of the estimated impact

code will be added to the original

code.

Modification-

Minor Grow 0.25 One quarter of the estimated impact

code will be added to the original

code.

Modification-
Negligible 0.10 The change is so insignificant that

code size will not be changed much.

Modification-

Minor Shrink -0.25 One quarter of the estimated impact

code will be removed from the
original code.

Modification-

Shrink -0.50 Only half of the estimated impact

code will be removed from the

original code.

Modification-

Major Shrink -0.75 Three quarter of the estimated impact

code will be removed from the

original code.

Deletion

-1.00 All of the estimated impact code will
be removed from the original code.

Table 1 Change Type Factor Values

3.4 Step 4: Performing Dynamic Impact

Analysis
This step aims to find the actual interactions among

classes by performing Method Dependency

Filtration (MDF) analysis. Overestimated static

impact analysis results that come from CDF

Filtration are expected to be removed by MDF

filtration.

The main challenge in this step is to detect fully

developed classes. We propose a new mechanism to

identify status of the code i.e., (1) code status could

be not developed; (2) partly developed or; (3) fully

developed. The first step is to detect the classes

which are not developed. The classes without

declaring in the code files are considered as not

developed classes. But still if the class declaration is

available in the code, a concrete method is needed to

distinguish the fully developed from the partly

developed classes. For distinguishing them, a

special tag for classes and methods is recommended

to be developed to keep its code status.

The structure of the special tag for the code

status tag should be as follow: [Special comments

mark + “<status>” + Code Status + “</status>”],

where special comments mark in Visual C++ is

three slashes “///”, and Code Status could be

different according the programming methodology.

Some of the possible code statuses are “Not

Developed”, “Stubbed”, “Faked”, “Mocked”,

“Partly Developed”, or “Fully Developed”. The

methods with any code status but “Fully

Developed” are considered as partly developed

methods. Additionally, the classes with any code

status but “Fully Developed” or having a partly

developed method are considered as partly

developed classes. In case that code status tags were

not available for the methods and development

status of the class could not be determined by the

code status tag, an additional procedure to detect

partly developed classes is used. This additional

procedure detects stubs, fake methods, and

incomplete methods.

Stubbed Method: A stubbed method is a dummy

procedure used for linking a program with a partly

developed library. The purpose of stubbed methods

is to prevent “undefined label” errors at link time

when the actual code is not developed. Normally, a

stubbed method throws a not implemented

exception in its first line, to prevent raising errors by

the compiler. Therefore, any methods which throw

an exception in their first line are considered as

stubs.

Faked Method: A faked method is a method,

which appears to be a functional method without

any errors, but in fact it only returns a single

constant value without performing any procedure. If

a method returns a single constant value in its first

line, it is considered as a faked method.

Incomplete Method: If a method is not stub or

fake, and still, it does not perform its functionality

fully, it is considered as incomplete. The methods

hierarchies from the designs are compared with their

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 156 Volume 14, 2015

actual call hierarchy in code. If they are not the

same, this method is not completely developed yet.

After detecting the partly and fully developed

classes, the method execution paths are created from

fully developed classes. The actual interaction

between the classes can be determined from the

created method executions paths. Afterwards, the

CIP model is updated with the actual class

interactions. Finally, the method dependency

filtration (MDF) process is performed similar to

CDF process on the impacted classes to filter the

overestimated impact analysis results.

The improved filtered set of impacted classes by

this process is the final impact analysis result in

method. This method implies that by having fully

developed classes we can perform accurate impact

analysis, even with inaccurate CIP model from the

beginning.

3.5 Step 5: Estimating Required Change

Effort
The last and most important step is to estimate the

required change effort based on the initial effort

estimation and change impact analysis results. To

estimate the change effort based on COCOMO II

effort estimation [26], we propose a mathematical

equation to calculate change effort (CPM) according

to the original estimated effort (PM) and updated

effort estimation (PM′). CPM is the total effort need

to implement the change; it is equal to priority

multiplier multiplied by the deviation of estimated

effort with new software size (PM′) and original

estimated effort (PM) plus the extra effort needed to

change the developed code as follows:

    ' 'CPM PM PM abs PM PM DSF PR       
 (2)

where DSF is the development status factor based

on eqs (8), PM is the original estimated effort using

COCOMO II in man per month, PM′ is the updated

estimated effort after change using new software

size in man per month and it is calculated using eqs

(3) and PR is the priority multiplier which is

determined by the effect of the change request

priority and how much it will affect the change

effort; this value should be selected according to the

development methodology of the development

group.

Eqs (3)-(5) below show how PM′ is calculated.

This equation will be justified with the assumption

that the cost factors [22] and the scale factors [22]

will not change with the change request.

Accordingly, the mathematical justification for

producing this equation is as follows:

'

'
PM

PM PM
PM

  (3)

 𝑃𝑀′ =
𝐴 × 𝐶𝑆𝑖𝑧𝑒𝐵 × (∏ 𝐸𝑀𝑖

𝑛
𝑖=1)

𝐴 × 𝑆𝑖𝑧𝑒𝐵 × (∏ 𝐸𝑀𝑖
𝑛
𝑖=1)

× 𝑃𝑀 (4)

 '

B
CSize

PM PM
Size

 
  
 

 (5)

where PM is the original estimated effort using

COCOMO II in man per month, PM′ is the updated

estimated effort with new software size in man per

month, B is one of the exponent in COCOMO II

derived from the COCOMO II’s five Scale Drivers

as shown in eqs (6), Size is the original estimation

of code size, CSize is the estimated code size after

implementing the change.

5

0 1

1

i

i

B B B SF


   (6)

where B0 and B1 are COCOMO II’s constant

variables, SF stands for scale factor, which will be

derived from the COCOMO II’s five scale factors.

Assuming that the initial effort estimation was

done before the change request, the only unknown

variable in eqs (7) is CSize. Exponent B, PM, and

Size are the known variables which can be easily

obtained from the initial effort estimation. CSize is

equal to the original estimated size plus additional

size from impacted classes. The size of fully

developed impacted classes can be calculated in

dynamic change impact analysis process, but the

size of other impacted classes should be provided

according to the initial effort estimation. CSize is

calculated by the following equation:

  IC ICIC
CSize Size Size ISF   (7)

where Size is equal to initial estimation of software

size, IC stands for impacted class, SizeIC is the size

of the impacted class IC, ISFIC is the impact size

factor for the impacted class IC which is calculated

using eqs (1) in impact analysis steps.

DSF in eqs (2) is the development status factor.

This value indicates how much extra effort is

needed to change the impacted developed classes.

This value will specify that, if the impacted class is

a fully developed class, it will need more effort to

change it than a partly developed class, and

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 157 Volume 14, 2015

moreover changing a partly developed class needs

more effort than a not developed class. By using

DSF in our calculation we are generalizing the fact

that the change effort will intensively increase as

more classes are being fully developed, and

implement changes in early stages of development

is less costly [26]. DSF will be calculated using the

following equation:

𝐷𝑆𝐹 =
(𝑁𝐷 ×𝑁𝑁𝐷)+(𝑃𝐷 ×𝑁𝑃𝐷)+(𝐹𝐷 ×𝑁𝐹𝐷)−𝑁𝐼𝐶

𝑁𝐼𝐶
 (8)

where DSF stands for development status factor

(DSF ≥ 0), ND is equal to affect multiplier for not

developed classes (see Table 3), NND is the number

of not developed impacted classes, PD is equal to

affect multiplier for partly developed classes (see

Table 3), NPD is the number of partly developed

impacted classes, FD is equal to affect multiplier for

fully developed classes (see Table 3), NFD is the

number of fully developed impacted classes, NIC is

the total number of impacted classes.

The multipliers ND, PD and FD multipliers

should be selected according to the phase

distribution of the software development

methodology used for the project. They can have

different values for each project or development

team. Moreover, there has been a research on the

phase distribution of the development effort [21]

which could be used to estimate multiplier values.

Table 2 shows how much effort is needed in each

phase of the project in our experiment which is

using RUP methodology. Accordingly, a sample of

ND, PD and FD multiplier values are created in

Table 3.

Phase Schedule Effort

Inception 10% 5%

Elaboration 30% 20%

Construction 50% 65%

Transition 10% 10%

Table 2 Phase Distribution Weight in RUP [27]

Multipliers Related Phases Value

ND Inception, Elaboration 0.25

PD Inception, Elaboration and a quarter
of Construction

0.4125

FD Inception, Elaboration and

Construction

0.9

Table 3 Estimated Values for the Multipliers

In this research, COCHCOMO is developed for

Early Design sub-model of COCOMO II [21] which

uses SLOC as the software size metric. Therefore,

we use logical SLOC as the code size; however, this

model can easily be adapted for other COCOMO II

sub-models [21] and also use of Function Points as

software size metric.

4 Evaluation
This section describes the process of evaluating

our new approach. Firstly, the case scenario and the

controlled experiments used for its evaluation are

defined and described. Then, a set of evaluation

metrics is used to compare the actual results and

experiment results. Later, procedure of evaluating

this approach against similar approaches is

described. Finally, evaluation results are then

demonstrated and discussed.

4.1 Case Scenario
To measure the accuracy of the approach, we have

implemented the approach in a small project which

implements an On Board Automobile. The project

consists of 1365 SLOC. Four case scenarios (see

Table 4) are constructed to create different

development progress states. Each case scenario

was created to represent different types of

development progress states in the selected project.

Case scenario Progress States description

CS1 Analysis Software design is finished,

but none of the classes are
developed yet

CS2 Coding Software design is finished,

and some partly developed
classes exist

CS3 Testing All the classes are developed,

and some of them are fully

developed

CS4 Deployment All the classes are fully

developed, and the

development phase is
finished.

Table 4 Case Scenarios

4.2 Change Request
Considering four case scenarios (CS) with different

development progress statuses and the change types,

twenty change requests have been selected, and the

distribution of selected change requests is presented

in Table 5.

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 158 Volume 14, 2015

Change Type (CT) CS1 CS2 CS3 CS4

CT1- Addition CR1 CR6 CR11 CR16

CT2- Modification-Grow CR2 CR7 CR12 CR17

CT3- Modification-Negligible CR3 CR8 CR13 CR18

CT4- Modification-Shrink CR4 CR9 CR14 CR19

CT5- Deletion CR5 CR10 CR15 CR20

Table 5 Change Request Distribution

4.3 Evaluation Metrics
For evaluating the accuracy of the approach, three

effort estimation metrics have been used which are

Magnitude of Relative Error (MRE) [28], Mean

Magnitude of Relative Error (MMRE) [29], and

Percentage of Prediction, PRED (.25) [30].

MRE: The MRE is a metric for the absolute

estimation accuracy only [28]. It calculates the rate

of the relative errors in both cases of over-

estimation or under-estimation as shown in eqs (9).

Re Re

Re

Actual sults Estimated sults
MRE abs

Actual sults

 
  

 
 (9)

MMRE: The MMRE or the Mean Magnitude of

Relative Error is the percentage of average of the

MREs over an entire data set [29]. It is used for

calculating the accuracy of an estimation technique

using T number of tests as it is shown in eqs (10).

100 t

ii
MMRE MRE

t
  (10)

The MRE metric will be calculated for each

predicted impacted class from the change request

experience to measure the accuracy of the change

effort estimation in COCHCOMO approach. But the

MMRE will be calculated for the whole case

scenario, which contains twenty change requests

and several impacted classes. The results of our

approach are more accurate when the MMRE values

are smaller.

Percentage of prediction, PRED (.25) is

percentage of estimates that fall within 25 percent of

the actual value [30]. Percentage of prediction

definition is shown in eqs (11), where K is the

number of estimations where MRE value is less or

equal to x and n is the total number of estimations.

𝑃𝑅𝐸𝐷(𝑥) =
K

n
 (11)

4.4 Evaluation Procedure
There are three main steps in the evaluation which

are:

- Estimating change effort results using the

new approach;

- Implementing actual changes to get actual

change effort;

- Measuring the accuracy of the results.

The actual change effort is determined by

measuring the time that has been taken to implement

the change. The recorded time in eqs (12) below is

used.
1

100

SE

CTDEV TDEV
APM PM

SCED
C

 
 

  
 
 

 (12)

where APM is actual change effort; PM is initial

effort estimation value; TDEV is the initial

calculated time deviation; SCED, C, and SE values

are same as initial effort estimation values; CTDEV

is change time deviation in months.

To calculate the CTDEV, we assume that the

months are 30 days and the project will be working

on 8 hours per day. Hence, the time deviation is

equal to the actual taken time per hours for change

multiplied by 30 × 8.

4.5 Threats to Validity
We have considered three threats of external

validity to the evaluation results, which are:

(1) Project based on RUP methodology: The

results of the experiment may constraint to projects

which based on RUP. More extensive experiments

need to be conducted if a project is using different

types of development methodology (i.e. waterfall,

agile, etc).

(2) Sample change request size: There are only

twenty change requests data available for the

experiment. This sample size may not strongly

strengthen the experiment results. However, we

believe that these results may have significant basis

to conduct for further works in this research

(3) The use of student’s project as the

experiment’s subject: The experiment data was

based on project data which conducted by a

group of post-graduate students in Advanced

Informatics School, Universiti Teknologi

Malaysia. Although it is not a real data from the

software industry, the considerations are made

based on the accessibility and the completeness

of the data. Firstly, the post-graduate students

are Master level student, who some of them has

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 159 Volume 14, 2015

experience in the software industry prior to

joining the Master programme. Secondly, the

post-graduate students are required to follow

thorough software development process similar

to software industry in which requirement

gathering process, change request and

management, complete documentation process

and software development and testing activities

are occurred. Thirdly, the activities conducted

within a controlled environment which emulate

the real software development activities only,

without other confounding factors such as

politics, business constraints and other external

factor which always occurred in real software

projects but might not relevant to the

experiment and objectives of this research. Due

to these considerations, we strongly believe that

the results obtained are sufficient as a basis to

conduct further works in the real software

industry afterwards.

5 Result and Discussion
To recap, the evaluation will be focusing on

comparing results between the estimated change

effort with the actual change effort. We have used

the MMRE and Percentage of Prediction, PRED

(.25) as the comparison metric.

According to [31] most effort estimation

techniques having difficulty to produce accurate

effort estimation results as they produced more than

30% MMRE value compared to the actual results. In

other study [30], proposed an acceptable MMRE

value (or error rate) for software effort estimation is

25%. This value shows that on average, the

accuracy of the estimation is more than 75%. For

our evaluation, we have used this guideline to assess

the accuracy of our proposed approach by targeting

the MMRE value (or acceptable error rate) should

be less than 25%. We also have used PRED (.25) as

the second evaluation metric to support the result

produced by MMRE.

Since our proposed model is a change effort

estimation model and not general effort estimation

model, we assume that the change effort is slightly

smaller than the overall effort needed for developing

a software package. Therefore, a small

miscalculation or an error will cause a large relative

error in the estimations, so it has been expected to

have moderate accuracy in the proposed change

effort estimation model. Table 6 shows the MRE,

MMRE and PRED (.25) of change requests in each

case scenario.

CT CS1 CS2 CS3 CS4 Average

CT1 0.18327 0.01625 0.02714 0.13138 0.089508

CT2 0.11850 0.16912 0.03794 0.20112 0.131670

CT3 0.29487 0.56085 0.56917 0.32800 0.438222

CT4 0.16109 0.20672 0.21317 0.01538 0.149091

CT5 0.00812 0.00518 0.01000 0.08656 0.027467

MMRE 15.32% 19.16% 17.15% 15.25% 16.72%

PRED(.25) 80% 80% 80% 80% 80%

Table 6 MRE, MMRE and PRED(.25) based on

Change Types (CT) across Case Scenario (CS)

Due to space limitation, a quick look on the

average MMRE value revealed that: (1) our

proposed model has 16.72% relative error on

average which is better than our expectation; (2) all

MMRE values for the case scenarios is less than

20%; (3) In term of percentage of prediction, PRED

(.25) revealed that COCHCOMO accuracy is 80%

for all case scenarios; and (4) On average, change

type 3 (CT3) which require very small impact

contributes to overall COCHCOMO’s inaccuracies.

This preliminary analysis indicated that the

proposed COCHCOMO change effort estimation

model is acceptably accurate. However, the

accuracy results need to be further investigated and

analyzed.

6 Conclusion
An effective change acceptance decision is one of

the crucial factors to a success of failure of a

software project. A software project manager needs

to have a justified decision whenever a software

change is introduced. Extending change effort

estimation to the change impact analysis process

able to provide significant justification for the

change acceptance decision made.

In this paper, we have developed a constructive

change cost model (COCHCOMO) which calculates

the change effort estimation required to implement

the change. The approach has extended the change

impact analysis framework for software

development phase to estimate change effort. This

novel approach has taken into account the

inconsistent states of software artifacts in its

estimation process, i.e. partially developed or not

developed class(es).

The results of this paper are part of an ongoing

research to overcome the challenges of change

acceptance decisions for the requested changes in

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 160 Volume 14, 2015

the software development phase. For future works,

we aim to conduct an intensive test to this approach

by considering more change requests from different

software projects with specific characteristics, i.e.

type, size, complexity, etc. Also, we will extend this

approach for estimating change cost based on the

approach results.

Acknowledgements:

The authors would like to thank to Ministry of

Education Malaysia (MoE) and Universiti

Teknologi Malaysia (UTM) for their financial

support under Vote No: 4L067.

References:

[1] S. L. Pfleeger and S. A. Bohner, A framework

for Software Maintenance Metrics,

Proceedings of the International Conference on

Software Maintenance, 1990, pp. 320-327.

[2] K. H. Bennet and V.T. Rajlich, Software

Maintenance and Evolution: A Roadmap,

Proceedings of the International Conference on

the Future of Sofware Engineering, 2000, pp.

75-87.

[3] G. Kotonya and I. Somerville, Requirements

Engineering: Processes and Techniques, John

Wiley & Sons Ltd, 1998.

[4] R. S. Arnold, S.A. Bohner, Impact analysis-

Towards a framework for comparison,

Software Maintenance, 1993, CSM-93,

Proceedings., Conference on. 27-30 Sep 1993,

pp. 292-301.

[5] G. Antoniol, G. Canfora, and G. Casazza,

Information Retrieval Models for Recovering

Traceability Links between Source Code and

Documentation, Proceedings of the

International Conference on Software

Maintenance, 2000, pp. 40-44.

[6] M. Jørgensen, Practical guidelines for expert-

judgment-based software effort estimation,

Software, IEEE. 22(3), 2005, pp. 57-63.

[7] J. Li, G. Ruhe, A. Al-Emran and M. M.

Richter, A flexible method for software effort

estimation by analogy, Empirical Softw. Engg.

12(1), 2007, pp. 65-106.

[8] Z. Yinhuan, W. Beizhan, Z. Yilong and S.

Liang, Estimation of software projects effort

based on function point, Computer Science &

Education, 2009. ICCSE '09, 4th International

Conference on 25-28 July 2009, 2009, pp. 941-

943.

[9] C. A. L. Garcia and C. M. Hirata, Integrating

functional metrics, COCOMO II and earned

value analysis for software projects using

PMBoK, Proceedings of the 2008 ACM

symposium on Applied computing, Fortaleza,

Ceara, Brazil, 2008, pp. 820-825.

[10] I. Attarzadeh, A. Mehranzadeh and A. Barati,

Proposing an Enhanced Artificial Neural

Network Prediction Model to Improve the

Accuracy in Software Effort Estimation,

Computational Intelligence, Communication

Systems and Networks (CICSyN), 2012 Fourth

International Conference on. 24-26 July 2012,

pp. 167-172.

[11] N. Kama and F. Azli, A Change Impact

Analysis Approach for the Software

Development, Proceedings of Asia-Pacific

Software Engineering Conference, APSEC.,

vol. 1, 2012, pp. 583-592.

[12] N. Kama, Integrated change impact analysis

approach for the software development phase,

International Journal of Software Engineering

and its Applications., vol. 7, no. 2, Mar 2013,

pp. 293-304.

[13] N. Kama, Change impact analysis for the

software development phase: State-of-the-art,

International Journal of Software Engineering

and its Applications., vol. 7, no. 2, Mar 2013,

pp. 235-244.

[14] J. Hassine, J. Rilling, J. Hewitt and R. Dssouli,

Change Impact Analysis for Requirement

Evolution using Use Case Maps, Proceedings

of the 8th International Workshop on

Principles of Software Evolution, 2005, pp. 81–

90.

[15] N. Kama and F. Azli, Requirement Level

Impact Analysis with Impact Prediction Filter,

Proceeding of the 2012 International

Conference on Software Technology and

Engineering (ICSTE 2012), Phuket Thailand,

1-2, September 2012, ASME, 2012, pp. 459-

464.

[16] N. Kama, T. French and M. Reynolds,

Predicting Class Interactions from Requirement

Interactions: Evaluating a New Filtration

Approach, Proceedings of the IASTED

International Conference on Software

Engineering, 2010, pp. 109-116.

[17] B. Breech, M. Tegtmeyer and L. Pollock,

Integrating Influence Mechanisms into Impact

Analysis for Increased Precision, Proceedings

of the 22nd International Conference on

Software Maintenance, 2006, pp. 55-65.

[18] J. Law and G. Rothermal, Whole Program

Path-Based Dynamic Impact Analysis,

Proceedings of the 25th International

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 161 Volume 14, 2015

http://scival-expert.utm.my/pubDetail.asp?t=pm&id=84879449034&n=Mohd+Nazri+Kama&u_id=817&oe_id=1&o_id=9
http://scival-expert.utm.my/pubDetail.asp?t=pm&id=84879449034&n=Mohd+Nazri+Kama&u_id=817&oe_id=1&o_id=9
http://scival-expert.utm.my/pubDetail.asp?t=pm&id=84879434177&n=Mohd+Nazri+Kama&u_id=817&oe_id=1&o_id=9
http://scival-expert.utm.my/pubDetail.asp?t=pm&id=84879434177&n=Mohd+Nazri+Kama&u_id=817&oe_id=1&o_id=9

Conference on Software Engineering (ICSE

2003), 2003, pp. 308-318.

[19] G. R. Finnie, G. E. Wittig and J. M.

Desharnais, A comparison of software effort

estimation techniques: Using function points

with neural networks, case-based reasoning and

regression models, Journal of Systems and

Software, vol. 39, no. 3, 1997, pp. 281-289.

[20] S. Grimstad and M. Jørgensen, A framework

for the analysis of software cost estimation

accuracy, Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software

engineering, Rio de Janeiro, Brazil, 2006, pp.

58-65.

[21] D. Yang, Y. Wan, Z. Tang, S. Wu, M. He and

M. Li, COCOMO-U: An Extension of

COCOMO II for Cost Estimation with

Uncertainty, Q. Wang, D. Pfahl, D. Raffo & P.

Wernick (Eds.), Software Process Change,

Springer Berlin Heidelberg, 2006, Vol. 3966,

pp. 132-141.

[22] N. Nurmuliani, D. Zowghi and S. P. Williams,

Requirements Volatility and Its Impact on

Change Effort: Evidence-based Research in

Software Development Projects, 11th

Australian Workshop on Requirements

Engineering, University of Adelaide SA, 2006.

[23] R. Zhou and E. A. Hansen, Breadth-first

heuristic search, Artificial Intelligence, vol.

170, no. 45, 2006, pp. 385–408.

[24] N. Kama, T. French and M. Reynolds, Impact

Analysis using Class Interaction Prediction

Approach, Proceedings of the 2010 conference

on New Trends in Software Methodologies,

Tools and Techniques: Proceedings of the 9th

SoMeT_10, Hamido Fujita (Ed.). IOS Press,

Amsterdam, The Netherlands, The Netherlands,

2010, pp. 96-111.

[25] M. H. Asl and N. Kama, A Change Impact Size

Estimation Approach during the Software

Development, Software Engineering

Conference (ASWEC), 2013 22
nd

 Australian, 4-

7 June 2013, pp. 68-77.

[26] B. Sharif, S. A. Khan and M. W. Bhatti,

Measuring the Impact of Changing

Requirements on Software Project Cost: An

Empirical Investigation, IJCSI International

Journal of Computer Science Issues. Vol. 9, no.

3, 2012, pp. 170-174.

[27] P. Kruchten, The Rational Unified Process: An

Introduction, Addison-Wesley, 2004.

[28] M. Jøgensen and K. Molokken-Ostvold,

Reasons for software effort estimation error:

impact of respondent role, information

collection approach, and data analysis method,

IEEE Transactions on Software Engineering,

vol. 30, no. 12, 2004, pp. 993–1007.

[29] V. Nguyen, B. Steece and B. Boehm, A

constrained regression technique for cocomo

calibration, Proceedings of the Second ACM-

IEEE international symposium on Empirical

software engineering and measurement (ESEM

'08). ACM, New York, NY, USA, 2008, pp.

213-222.

[30] S.-J. Huang, N.-H. Chiu and L.-W. Chen,

Integration of the grey relational analysis with

genetic algorithm for software effort

estimation, European Journal of Operational

Research. 188(3), 2008, pp. 898-909.

[31] S. Basha and D. Ponnurangam, Analysis of

Empirical Software Effort Estimation Models,

International Journal of Computer Science and

Information Security (IJCSIS), Vol. 7, No. 3,

2010.

WSEAS TRANSACTIONS on COMPUTERS Sufyan Basri, Nazri Kama, Roslina Ibrahim

E-ISSN: 2224-2872 162 Volume 14, 2015

