
A Multi-View Approach for Formalizing UML State Machine Diagrams

Using Z Notation

KHADIJA EL MILOUDI, AZIZ ETTOUHAMI

LCS Laboratory, Faculty of Sciences,

University Mohammed V-Agdal

Rabat, MOROCCO

elmiloudi.khadija@gmail.com, ettouhami.aziz@gmail.com

Abstract: - Due to the missing formal foundation of UML, the semantics of a number of UML constructs is not

precisely defined. Based on our previous work on formalizing class and sequence diagrams, a method for

transforming a subset of UML state machine diagram into Z specification is proposed for the purpose of

formally checking consistency in multi view modeling. The consistency of the resulting specification is

guaranteed by providing a set of well-formedness and consistency rules. It is worth noting that our multi view

approach is the first work on state machine diagram formalization based on Z notation. Our approach is

illustrated using an example taken from the literature.

Key-Words: - UML State Machine Diagram, Z, Formal Methods, Consistency Checking, Multi View

Modeling.

1 Introduction
Currently, UML [1, 2] is widely used during

software design phases. However, when using UML

in multi view modeling context, models cannot be

verified and analyzed formally because of the lack

of formal semantics. This requires a semantics

specification which captures, in a precise way, both

the structural and the dynamic features of modeled

system.

 Z [3] is a formal specification language based

upon set theory and mathematical logic which

provides formal foundation to analyze semantics

and verify correctness. This paper presents our

approach of formal modeling and validation for the

UML State machine diagram using Z. The

formalization is based on our previous work on

transforming UML class and sequence diagram into

Z specification in order to guarantee a multi view

consistency [4, 5]. The resulting specification can

then be analyzed by Z tools and hence formally

prove or disprove the system safety.
This paper is organized as follows. Section 2

provides a description of related work along the

lines of our motivation. Section 3 presents our

approach in formalizing UML state machine

diagram using Z notation. Section 4 overviews a set

of well-formedness and consistency rules handled

by the proposed model. Examples are offered to

demonstrate the approach. Finally, Section 5

concludes the paper and outlines some future

directions of our work.

2 Related Work
In fact, several studies have been undertaken to

formalize UML diagrams. Especially, there has been

much interest in formalizing UML state machine

diagram to improve its shortfalls.

Tian and Gu [6] presented an approach of formal

modeling and validation for software process, which

transforms UML models based on Rational Unified

Process (RUP) to Colored Petri Nets (CPN) and

uses CPN tools to investigate the behavior of

modeled system. A new approach for modeling

state-chart Diagrams in B is proposed by Ledang

and Souquières [7]. Only the modeling of UML

concepts in B is considered. The problem of

analyzing the derived B specification is not treated.

Meng et al. [8] provided a formalization for UML

state machine diagrams in the RAISE specification

language RSL. McUmber and Cheng [9] introduced

a general framework for formalizing a subset of

UML diagrams in terms of different formal

languages based on a mapping between metamodels

describing UML and a formal language. UML is

formalized in terms of Promela. Latella et al. [10]

set the basis for the development of a formal

semantics for UML state machine diagrams based

on Kripke structures. A mapping of state machine

diagrams to the intermediate format of extended

hierarchical automata is proposed and then an

operational semantics for these automata is defined.

Our approach does not require an intermediate

format, the diagram is directly translated into Z

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 72 Volume 14, 2015

specification. A formal semantics for a subset of

state machine diagram is proposed by David

 [11]. The subset and semantics are very close to the

one supported by the tool Rhapsody. Mostafa

 [12] presented a formalization of different UML

diagrams using Z notation. Unlike our work, the

consistency between them has not been treated.

work done by [13] presented an approach to

transform up to three different UML behavioral

diagrams (sequence, behavioral state machines, and

activity) into a single Transition System to support

model checking of software based on UML but

inconsistencies between diagrams are not dete

In the paper [14], an automatic translation of UML

behavioral diagrams into formal models is proposed

in order to be verified by a symbolic model checker

Furthermore, the multi view verification has not

been addressed by this work. A study done by

uses labelled transition systems as the semantic

model to provide a formal semantics for UML state

machines features. The paper [16]

verification of UML state machine diagram by

translation to UML-B using the Rodin platform and

its automatic proof tools.

However, most of these works only focus on

formalization of UML state machine diagrams

without checking consistency and correctness in

multi view modeling, and give up the advantage of

unifying different models in one specification. Our

approach is characterized by its clarity and

conciseness. In this paper, we address the problem

of modeling UML state machine diagrams using Z

notation in multi view modeling, which has not

been, so far, completely treated. This work forms a

continuation of the previous work on formalizing

UML class and sequence diagrams in Z [4, 5

3 Z Formalization of UML State

Machine Diagram

3.1 Overview of UML state machine

diagrams
UML state machine diagram is an important

component of UML for specifying the dynamic

behavior of systems. Each state machine diagram

basically consists of the states an object can occupy

and the transitions which make the object change

from one state to another according to a set of well

formedness rules. Each transition is characterized by

an event which is an invocation of an operation in

this object and contains a guard and an optional

action.

A formal semantics for a subset of

state machine diagram is proposed by David et al.

. The subset and semantics are very close to the

one supported by the tool Rhapsody. Mostafa et al.

presented a formalization of different UML

diagrams using Z notation. Unlike our work, the

consistency between them has not been treated. The

an approach to

transform up to three different UML behavioral

diagrams (sequence, behavioral state machines, and

activity) into a single Transition System to support

model checking of software based on UML but

inconsistencies between diagrams are not detected.

, an automatic translation of UML

behavioral diagrams into formal models is proposed

to be verified by a symbolic model checker.

rthermore, the multi view verification has not

A study done by [15]

uses labelled transition systems as the semantic

a formal semantics for UML state

[16] proposes a

verification of UML state machine diagram by

B using the Rodin platform and

However, most of these works only focus on

f UML state machine diagrams

without checking consistency and correctness in

multi view modeling, and give up the advantage of

unifying different models in one specification. Our

approach is characterized by its clarity and

ddress the problem

of modeling UML state machine diagrams using Z

notation in multi view modeling, which has not

This work forms a

continuation of the previous work on formalizing

UML class and sequence diagrams in Z [4, 5].

Z Formalization of UML State

Overview of UML state machine

UML state machine diagram is an important

component of UML for specifying the dynamic

behavior of systems. Each state machine diagram

states an object can occupy

and the transitions which make the object change

from one state to another according to a set of well-

formedness rules. Each transition is characterized by

an event which is an invocation of an operation in

ains a guard and an optional

In this paper, we present a

UML state machine diagrams using Z notation. We

will refer to a subset of UML state machine

diagrams which, nevertheless, includes all the

interesting concepts. Our goal

consistency of views in multi

object-oriented systems based on UML. We focus

on three different views of a system, comprising

class diagram, sequence diagram and state machine

diagram. The semantics of state machine diagram

is analyzed as well as its relevant problems with

class and sequence diagrams that are also

formalized in Z. Full details on modeling class and

sequence diagrams are given respectively in [4, 5].

The video on demand system (VOD), proposed by

Lopez-Herrejon and Egyed

example to illustrate our approach.

Given an UML class diagram of the VOD

as shown in Figure 1. The class diagram presents

three classes Service, Streamer

by associations. Operations are defined for each

class.

Fig. 1: Class diagram of VOD system

A sequence diagram in Figure 2 illustrates a call

of method select in a Service

method stream from Service

Fig. 2: Example of sequence diagram in VOD system

In this paper, we present a formalization of the

UML state machine diagrams using Z notation. We

will refer to a subset of UML state machine

diagrams which, nevertheless, includes all the

interesting concepts. Our goal is to check the

consistency of views in multi-view modeling of

oriented systems based on UML. We focus

on three different views of a system, comprising

class diagram, sequence diagram and state machine

diagram. The semantics of state machine diagrams

is analyzed as well as its relevant problems with

class and sequence diagrams that are also

formalized in Z. Full details on modeling class and

sequence diagrams are given respectively in [4, 5].

The video on demand system (VOD), proposed by

on and Egyed [17] is used as an

example to illustrate our approach.

Given an UML class diagram of the VOD system

as shown in Figure 1. The class diagram presents

Streamer and Program linked

by associations. Operations are defined for each

: Class diagram of VOD system

A sequence diagram in Figure 2 illustrates a call

Service object and a call of

Service to Streamer.

: Example of sequence diagram in VOD system

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 73 Volume 14, 2015

Figure 3 shows an example of an UML state

machine diagram which may be used to specify the

behavior of a Service object. Objects of class

Service have two possible states: Init

The change of the state is triggered by

stop.

Fig. 3: State machine diagram of a Service Object

 In the following, we discuss the

of state machine diagram by transforming it into a Z

specification.

3.2 Translating UML state machine

diagrams into Z specification
A state machine diagram is basically composed by a

set of states and transitions among them according

to a set of well-formedness rules.

We start by representation of the notion of states.

The formal specification of state machine diagram

could include the declaration:

introducing a basic type to represent the set of all

states. Two variables of the type STATE are

introduced by the following declaration to define the

initial and final states of state machine diagram. The

initial state denotes the default starting point for the

state machine. The final state shows that the

execution of the state machine has been terminated.

For every object, the function statesOfObject returns

the set of its states.

Another basic notion is transitions. Transitions are

relationships among states. A transition designates

that an object will change his current state to

another. The first and second states are called source

and target states. A transition can have multipl

sources representing a join from multiple states as

well as multiple targets in case of a fork to multiple

states. A specific action is executed when an event

occurs and therefore the guard is evaluated. If the

guard is true, the transition may be enable

Figure 3 shows an example of an UML state

machine diagram which may be used to specify the

ct. Objects of class

 and Streaming.

The change of the state is triggered by select, go and

: State machine diagram of a Service Object

In the following, we discuss the semantics

of state machine diagram by transforming it into a Z

Translating UML state machine

A state machine diagram is basically composed by a

set of states and transitions among them according

We start by representation of the notion of states.

The formal specification of state machine diagram

a basic type to represent the set of all

states. Two variables of the type STATE are

introduced by the following declaration to define the

initial and final states of state machine diagram. The

initial state denotes the default starting point for the

e machine. The final state shows that the

execution of the state machine has been terminated.

For every object, the function statesOfObject returns

Another basic notion is transitions. Transitions are

relationships among states. A transition designates

that an object will change his current state to

another. The first and second states are called source

and target states. A transition can have multiple

sources representing a join from multiple states as

well as multiple targets in case of a fork to multiple

states. A specific action is executed when an event

occurs and therefore the guard is evaluated. If the

guard is true, the transition may be enabled;

otherwise, it is disabled. Formally, a transition is

specified as follows:

According to the current UML standard [1, 2],

event can be either a call event or a signal event. We

define an event as a free type EVENT in which

every element is either a SignalEvent or the result of

applying the function OperationAsCallEvent to an

element of type OP defined in our previous work on

class diagram [4, 5]. OP

enumerated set representing

The signal event is not detailed in this paper; we

specify it as a constant.

A guard is defined as a

necessity to introduce the free type BOOL.

An effect specifies an optional behavioral,

therefore we formalize it as a free type introducing a

constant named Action and the constant NullEffect

when the transition has no effect.

The function isTargetOf, regarded as a function

from a couple of state and transition to a state, is a

total function: each state is related to exactly one

state using a specific transition. This function will

be used later in the state machine diagr

definition.

Now, the semantics of the state machine diagram

can be fully formalized using the previous

definitions.

A state machine diagram specifies the behavior of a

specific object. In Z, a schema consists of two parts:

otherwise, it is disabled. Formally, a transition is

According to the current UML standard [1, 2], an

event can be either a call event or a signal event. We

define an event as a free type EVENT in which

SignalEvent or the result of

applying the function OperationAsCallEvent to an

element of type OP defined in our previous work on

OP is introduced as an

ing all the class operations.

The signal event is not detailed in this paper; we

A guard is defined as a boolean type, hence the

necessity to introduce the free type BOOL.

An effect specifies an optional behavioral,

therefore we formalize it as a free type introducing a

constant named Action and the constant NullEffect

when the transition has no effect.

The function isTargetOf, regarded as a function

from a couple of state and transition to a state, is a

total function: each state is related to exactly one

state using a specific transition. This function will

be used later in the state machine diagram

Now, the semantics of the state machine diagram

can be fully formalized using the previous

A state machine diagram specifies the behavior of a

specific object. In Z, a schema consists of two parts:

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 74 Volume 14, 2015

a declaration of variables; and

constraining their values [18].

In the declaration part of the schema named

StatechartDiagram, we introduce two variables: a

variable Obj of type OBJECT is the object whose

behavior is specified by the state machine diagram.

The second variable named statechart specifies the

components of the state machine diagram.

A state machine is defined by the set of states and

the set of transitions relating between them;

distinguish between the states sources of transitions

and states targets of transitions.

We introduce the variable statechart as a set of

cartesian product consisting of all tuples of th

(STATE × TRANSITION × STATE

respectively corresponds to the source state of

transition, the transition and the target state.

The predicate part states that source and target of

transitions must belong to the set of states of the

object whose behavior is described by the state

machine diagram. This predicate also denotes that

an initial state can never be a target of a transition.

Similarly, a final state cannot be a source of

transition.

es; and predicates

In the declaration part of the schema named

, we introduce two variables: a

variable Obj of type OBJECT is the object whose

behavior is specified by the state machine diagram.

The second variable named statechart specifies the

components of the state machine diagram.

A state machine is defined by the set of states and

nsitions relating between them; we

distinguish between the states sources of transitions

We introduce the variable statechart as a set of

consisting of all tuples of the form

STATE) which

respectively corresponds to the source state of

transition, the transition and the target state.

The predicate part states that source and target of

of states of the

object whose behavior is described by the state

machine diagram. This predicate also denotes that

an initial state can never be a target of a transition.

Similarly, a final state cannot be a source of

Applying this formalization to the example of VOD

system in Figure 3, the state machine diagram

Service object will be described

set:

Statechart={(INITIALSTATE

 (Init , go , Streaming),

 (Streaming , stop

Therefore, the predicate stating

never a final state and the

state is verified.

An initialization schema is provided to define the

initial value of the state machine diagram. A

statechart is initially an empty set.

To check that the components of the state

machine diagram are consistent, it is enough to

establish that an initial state ma

hence also that at least one state machine exists

fulfilling the requirements defined in the predicate

part of the schema statechartDiagram.

In Z, if a component represents an input, then its

name should end with a query (

operation of changing a state requires two

The current state of the object, and the chosen

transition. We model these as two input components

currentState? and transition?, of types STATE and

TRANSITION, respectively.

The operation of changing state is described by:

on to the example of VOD

system in Figure 3, the state machine diagram of

will be described by the following

Statechart={(INITIALSTATE , select , Init),

, Streaming),

, stop , FINALSTATE)}

stating that the source is

the target is never an initial

ialization schema is provided to define the

initial value of the state machine diagram. A

statechart is initially an empty set.

To check that the components of the state

machine diagram are consistent, it is enough to

establish that an initial state machine exists and

hence also that at least one state machine exists

fulfilling the requirements defined in the predicate

part of the schema statechartDiagram.

represents an input, then its

name should end with a query (?) [18]. The

operation of changing a state requires two inputs:

he current state of the object, and the chosen

transition. We model these as two input components

currentState? and transition?, of types STATE and

TRANSITION, respectively.

The operation of changing state is described by:

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 75 Volume 14, 2015

The effect of this operation is defined only when

guard of the transition is satisfied.

Once a UML state machine diagram is translated

into a Z specification, the multi view consistency

can be analyzed using Z tools. The predicate part of

the schema StatechartDiagram will be discussed in

details in Section 4 by means of a series of well

formedness rules.

4 Well-Formedness Rules in Multi

View Modeling
In order to ensure the correctness of a state machine

diagram and its consistency with class and sequence

diagrams in multi view modeling, a set of well

formedness and consistency rules must be satisfied.

We provide through the proposed model the

formalization of these well-formedness rules using

Z notation. We used published well

rules to show the effectiveness of our model.

4.1 Intra-view well-formedness rules

and transitions
Two additional functions that return respectively the

set of transitions departing from and entering a

specific state are used in the formal definition of the

consistency rules.

Rule 1: A final state cannot have any outgoing

transitions.

This rule is represented as a predicate in the schema

statechartDiagram by the following Z expression

using the outgoings function defined above.

Rule 2: An initial state can have at most one

outgoing transition and no incomings transitions.

The formalization of this rule is similar to rule 1.

operation is defined only when the

Once a UML state machine diagram is translated

into a Z specification, the multi view consistency

can be analyzed using Z tools. The predicate part of

l be discussed in

details in Section 4 by means of a series of well-

Formedness Rules in Multi

In order to ensure the correctness of a state machine

diagram and its consistency with class and sequence

ti view modeling, a set of well-

formedness and consistency rules must be satisfied.

We provide through the proposed model the

formedness rules using

Z notation. We used published well-formedness

f our model.

formedness rules: states

Two additional functions that return respectively the

set of transitions departing from and entering a

specific state are used in the formal definition of the

: A final state cannot have any outgoing

This rule is represented as a predicate in the schema

statechartDiagram by the following Z expression

using the outgoings function defined above.

: An initial state can have at most one

outgoing transition and no incomings transitions.

The formalization of this rule is similar to rule 1.

4.2 Consistency rules between state machine

diagrams and class diagrams
A state machine diagram can show the different

states of an object also how

one state to another using transitions. Objects and

states in state machine diagrams are related to class

diagrams. Therefore, some consistency rules

between class diagram and state machine diagram

must be satisfied to ensure a multi

Rule 3: an object that the state machine diagram

describes must correspond to an instance of a class

in class diagrams [19].

To express this consistency rule, a Z theorem is

provided. The following theorem states that the

object whose behavior is specified by the state

machine diagram must belong to the set of obj

of an existing class defined in class diagram.

The function ObjectsOfClass returns for each class

the set of its instances. CLASS and OBJECT are

defined in the class diagram formalization. More

details are available in [4].

Rule 4: if the event related to a transition in state

machine diagrams is to call an operation of a class,

the operation must be defined as an operation in

owner’s class [17]. The relation inverse of the

function OperationAsCallEvent is used to reach the

operation used in the event definition. This

operation must belong to the set of operations

corresponding to the object Obj.

The function methodsOfObject defined in our

previous work on sequence diagram formalization

Consistency rules between state machine

diagrams and class diagrams
A state machine diagram can show the different

states of an object also how an object changes from

one state to another using transitions. Objects and

states in state machine diagrams are related to class

diagrams. Therefore, some consistency rules

between class diagram and state machine diagram

must be satisfied to ensure a multi view consistency.

: an object that the state machine diagram

describes must correspond to an instance of a class

To express this consistency rule, a Z theorem is

provided. The following theorem states that the

object whose behavior is specified by the state

machine diagram must belong to the set of objects

of an existing class defined in class diagram.

The function ObjectsOfClass returns for each class

the set of its instances. CLASS and OBJECT are

defined in the class diagram formalization. More

: if the event related to a transition in state

machine diagrams is to call an operation of a class,

the operation must be defined as an operation in

. The relation inverse of the

function OperationAsCallEvent is used to reach the

operation used in the event definition. This

operation must belong to the set of operations

e object Obj.

The function methodsOfObject defined in our

previous work on sequence diagram formalization

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 76 Volume 14, 2015

 [5] returns the set of the class oper

corresponding to each object.

4.3 Consistency rules between state machine

diagrams and sequence diagrams
As one of UML behavioral diagrams, sequence

diagrams illustrate object interaction. A consistency

problem may occur caused by the fact that

components of the sequence diagram may be

described by more than one diagram. Hence, the

consistency of the system should be checked.

We define the semantics of a state machine diagram

in the context of a sequence diagram that is also

formalized.

Rule 5: if an event in state machine diagram is to

call an operation, the operation should be a message

in sequence diagram.

The sequence diagram is previously defined in

as a Z sequence of messages. Each message is

defined by a tuple representing the sender of the

message, the receiver of the message and the

operation invoked.

Therefore, in order to ensure the consistency

between state machine and sequence diagrams, the

operation invoked by the call event must appear in a

message of an existing sequence diagram.

As shown above, this predicate is included in the

predicate part of the schema statechartDiagram in

order to guarantee the multi view consistency.

Checking these properties for the class and sequence

diagrams of VOD system introduced respectively in

Figure 1 and Figure 2, the well formedness rules are

satisfied. The operations invoked by the state

machine diagram in Figure 3 are defined by

class Service and used as messages in sequence

diagram.

The set of operations of the object o1 is as follows:

methodsOfObject o1={select, go, stop}

The sequence diagram in Figure 2 illustrates a call

of method select in an object o1 of type Service.

The operation select is also invoked by the transition

which makes the object of type Service change from

the initial state to the state Init. Therefore,

formedness rule 6 is satisfied. The operations go and

returns the set of the class operations

Consistency rules between state machine

diagrams and sequence diagrams
As one of UML behavioral diagrams, sequence

diagrams illustrate object interaction. A consistency

problem may occur caused by the fact that some

components of the sequence diagram may be

described by more than one diagram. Hence, the

consistency of the system should be checked.

We define the semantics of a state machine diagram

in the context of a sequence diagram that is also

: if an event in state machine diagram is to

call an operation, the operation should be a message

The sequence diagram is previously defined in [5]

as a Z sequence of messages. Each message is

defined by a tuple representing the sender of the

message, the receiver of the message and the

Therefore, in order to ensure the consistency

sequence diagrams, the

operation invoked by the call event must appear in a

message of an existing sequence diagram.

As shown above, this predicate is included in the

predicate part of the schema statechartDiagram in

nsistency.

Checking these properties for the class and sequence

diagrams of VOD system introduced respectively in

Figure 1 and Figure 2, the well formedness rules are

satisfied. The operations invoked by the state

machine diagram in Figure 3 are defined by the

class Service and used as messages in sequence

The set of operations of the object o1 is as follows:

methodsOfObject o1={select, go, stop}

The sequence diagram in Figure 2 illustrates a call

of method select in an object o1 of type Service.

The operation select is also invoked by the transition

which makes the object of type Service change from

the initial state to the state Init. Therefore, the well-

formedness rule 6 is satisfied. The operations go and

stop invoked in the state diagram in Figure 3 are not

used by the sequence diagram illustrated in Figure

2. In this case, to guarantee the multi view

consistency, the existence of another seque

diagram which calls these operations must be

ensured. Often when this is the cas

the model helps understanding the problem and

therefore suggesting a correc

5. Conclusions and Future Work

The goal of this paper is to overcome the main

limitations of UML state machine diagrams

semantics in multi view modeling. It provides a

formal semantics of state machi

according to class and sequence diagrams formal

model previously published. Numerous well

formedness and consistency rules are provided to

ensure the multi view consistency. The main

benefits of our approach are the conciseness and

clarity of the formal model providing one of the first

Z formal specifications for the state machine

diagram in multi view context. The resulting Z

specification allows the definition of a precise and

unambiguous semantics of UML state machine

diagram. All the present

thoroughly type-checked using the Z/EVES system

 [20]. The Z/EVES immediately uncovers such

inconsistencies. As future

considering a large subset of UML state machine

diagrams and checking consistency with other UML

diagrams such as use case diagrams

case studies in several domains are in our targets.

addition, we are currently extending

for automatically translating class diagrams into

specifications [4] to take into account UML

behavioral diagrams.

References:

[1] OMG Unified Modeling Language

Infrastructure 2.4.1. Available from:

http://www.omg.org/spec/UML/2.4.1/Superstru

cture. Accessed 23March 2014

[2] Booch, G.; Rumbaugh, J.; Jacobson,

Unified Modeling Language User Guide

Addison Wesley Longman. ISBN: 0

57168-4, 1998.

[3] Spivey, J.M., The Z Notation: A Reference

Manual. 2nd Edn., England: J. M. Spivey, Oriel

College, Oxford, OX1 4EW

[4] El Miloudi, K.; El Amrani, Y.;

An Automated Translation of UML Class

stop invoked in the state diagram in Figure 3 are not

used by the sequence diagram illustrated in Figure

2. In this case, to guarantee the multi view

consistency, the existence of another sequence

diagram which calls these operations must be

Often when this is the case, examination of

tanding the problem and

a correction.

Conclusions and Future Work

The goal of this paper is to overcome the main

limitations of UML state machine diagrams

semantics in multi view modeling. It provides a

formal semantics of state machine diagrams

according to class and sequence diagrams formal

model previously published. Numerous well-

formedness and consistency rules are provided to

ensure the multi view consistency. The main

benefits of our approach are the conciseness and

he formal model providing one of the first

Z formal specifications for the state machine

diagram in multi view context. The resulting Z

specification allows the definition of a precise and

cs of UML state machine

All the presented specifications were

using the Z/EVES system

immediately uncovers such

As future work, we aim at

a large subset of UML state machine

diagrams and checking consistency with other UML

such as use case diagrams. More complex

case studies in several domains are in our targets. In

extending the support tool

ranslating class diagrams into Z

to take into account UML

OMG Unified Modeling Language

Infrastructure 2.4.1. Available from:

http://www.omg.org/spec/UML/2.4.1/Superstru

Accessed 23March 2014.

Booch, G.; Rumbaugh, J.; Jacobson, I., The

Unified Modeling Language User Guide,

Addison Wesley Longman. ISBN: 0-201-

The Z Notation: A Reference

. 2nd Edn., England: J. M. Spivey, Oriel

College, Oxford, OX1 4EW, 1998.

El Miloudi, K.; El Amrani, Y.; Ettouhami, A.,

An Automated Translation of UML Class

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 77 Volume 14, 2015

Diagrams into a Formal Specification to Detect

UML Inconsistencies. Sixth International

Conference on Software Engineering Advances.

Barcelona, Spain, 23-29 October 2011, pp. 432-

438.

[5] El Miloudi, K.; El Amrani, Y.; Ettouhami, A.,

Using Z Formal Specification for Ensuring

Consistency in Multi-View Modeling, Journal

of Theoretical and Applied Information

Technology. Vol. 57, 2013, pp. 407-411.

[6] Tian, B.; Gu, Y., Formal Validation for

Software Modeling, International Journal of

Computer Science Issues. Vol. 10, 2013, pp.

308-312.

[7] Ledang, H.; Souquières, J., New Approach for

Modeling State-chart Diagrams in B, Technical

Report A01-R-082, Laboratoire Lorrain de

Recherche en Informatique et ses Applications,

2001.

[8] Meng, S.; Naixiao, Z.; Aichernig, B.K., The

Formal Foundations in RSL for UML Statechart

Diagrams, UNU/IIST Technical Report 299,

2004.

[9] McUmber, W.E.; Cheng, B. H. C., A General

Framework for Formalizing UML with Formal

Languages. Proceedings of the 23rd

International Conference on Software

Engineering (ICSE01), Toronto, CA, May 2001,

pp. 433-442.

[10] Latella, D.; Majzik, I.; Massink, M., Towards a

Formal Operational Semantics of UML

Statechart Diagrams. In: Ciancarini, P.;

Fantechi, A.; Gorrieri, R. (eds.) Third

International Conference on Formal Methods

for Open Object-Oriented Distributed Systems,

1999, pp. 331-347. Kluwer Academic

Publishers.

[11] David, A.; Deneux, J.; d’Orso, J., A Formal

Semantics for UML Statecharts, Technical

Report 2003-010, Uppsala University, 2003.

[12] Mostafa, A. M.; Ismail, M. A.; EL-Bolok, H. ;

Saad, E. M., Toward a Formalization of

UML2.0 Metamodel using Z Specifications,

Eighth ACIS International Conference on

Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed

Computing, 2007.

[13] Santos, L. B. R. D.; Júnior, V. A. D. S.; &

Vijaykumar, N. L., Transformation of UML

Behavioral Diagrams to Support Software

Model Checking. arXiv preprint

arXiv:1404.0855, 2014.

[14] Fernandes, F.; Song, M., UML-Checker: An

Approach for Verifying UML Behavioral

Diagrams. Journal of Software, Vol. 9(5), 2014,

pp. 1229-1236.

[15] Liu, S.; Liu, Y.; André, E.; Choppy, C.; Sun, J.;

Wadhwa, B.; Dong, J. S., A formal semantics

for complete UML state machines with

communications. In Integrated Formal

Methods, 2013, pp. 331-346, Springer Berlin

Heidelberg.

[16] Snook, C.; Savicks, V.; Butler, M., Verification

of UML models by translation to UML-B.

In Formal Methods for Components and

Objects, 2012, pp. 251-266. Springer Berlin

Heidelberg.

[17] Lopez-Herrejon,R.E.; Egyed, A., Detecting

Inconsistencies in Multi-view Models with

Variability, 6th European Conference on

Modelling Foundations and Applications

(ECMFA), 2010, pp. 217-232.

[18] Woodcock, J.; Davies, J., Using Z:

Specification, Refinement, and Proof, Upper

Saddle River, NJ, USA: Prentice-Hall, 1996.

[19] Liu, X., Identification and Check of

Inconsistencies between UML Diagrams.

Journal of Software Engineering and

Applications, Vol. 6, 2013, pp. 73-77.

[20] Meisels, I., Software Manual for Windows

Z/EVES Version 2.3. ORA Canada Technical

Report TR-97-5505-04h, 2004.

WSEAS TRANSACTIONS on COMPUTERS Khadija El Miloudi, Aziz Ettouhami

E-ISSN: 2224-2872 78 Volume 14, 2015

