
A Hybrid Approach for Discovery of OWL-S Services Based on
Functional and Non-Functional Properties

M. DEEPA LAKSHMI1, Dr. JULIA PUNITHA MALAR DHAS2

1Department of Computer Applications
2Department of Computer Science and Engineering

Noorul Islam University
Kumaracoil, Thuckalay, Kanyakumari District-629180, Tamilnadu

INDIA
1deepasuresh12@gmail.com, 2julaps113@yahoo.com

Abstract:- Web services are independent software systems designed to offer machine-to-machine interactions
over the WWW to achieve well-described operations. Typically, service providers expose their services to the
public by providing brief descriptions of the service’s operations; the challenge is to discover the right service
in response to a specific service request based on rather sparse service descriptions. In this work, we present a
hybrid semantic web service discovery framework that offer semantic web service discovery based on both
functional (Input, Output, Precondition and Effect - IOPE) and non-functional (text-description) properties of
OWL-S (Semantic Markup for Web Services) services. For functional parameter matching, we have used the
bipartite graph-based approach for matching the parameters of services. For non-functional parameter
matching, we have used natural language processing techniques on the textual-description of a web service.
The cumulative similarly measures determine the overall similarity of the advertised service with the service
request. We evaluated the performance of our Service Matchmaking framework using the OWLS-TC4 (Test
Collection version 4) dataset, and furthermore compared its performance with some existing discovery models.
Our results indicate that the proposed web service matchmaking framework offers an improved discovery
mechanism with a significant increase in recall rate.

Key-Words:- Bipartite matching, Discovery, Functional parameters, OWL-S, Text-description

1 Introduction
Web Services are loosely coupled software
components that are published, located and invoked
across the web. Recently, web services have gained
an increasing popularity. Since the existing
traditional technologies describe web services only
in syntactical level, it is difficult for service
requestors and service providers to interpret or
represent information such as the meaning of inputs
and outputs or applicable constraints. Semantic
description of web services can help overcome this
difficulty. Semantic web service (SWS) is a web
service which is semantically rich and defined
through service ontology, capable of automatic
discovery, execution, composition and
interpretation.

OWL-S [1] is one of the proposals for describing
semantic metadata about web services, which is
based on the OWL (Web Ontology Language)
ontology language. The OWL-S ontology is
organized in three modules: the Service Profile
module describes the functionality of the service;
the Service Model module describes how it does it;

and the Service Grounding module describes how to
access the service. Semantic service discovery is the
process of locating existing web services based on
the description of their functional and non-
functional properties of the Service Profile.

The proposed matching algorithm returns a
ranked set of relevant services as its answer set to
the user. For this purpose, it first uses the bipartite-
graph based matching of the functional properties
(IOPE). Next it performs some Natural language
Processing (NLP) techniques like Part-Of-Speech
(POS) tagging and Word Sense Disambiguation
(WSD) and uses Jaccard similarity measure to
perform the non-functional parameter (text-
description) matching. Finally a cumulative
similarity is calculated based on the above two
similarity measures and a ranked set of relevant
services are returned to the user.

2 Related Work
Majority of current Semantic web service discovery
algorithms perform logic-based service profile

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 62 Volume 14, 2015

matching, and are restricted to OWL-S. The most
influencing among them is Paolucci’s algorithm [2],
which has been cited in subsequent proposals.
Paolucci proposed an ontology-based solution, in
which matching of input and output parameters of
services are done according to the hierarchical
concept subsumption relationships defined in an
ontology tree. There are four semantic similarity
grades: Exact, Subsumes, Plugln, and Fail. Li and
Horrocks [3] used a DAML-S (DARPA Agent
Markup Language for Services) based ontology and
a Description Logic (DL) reasoner to compare
ontology based service descriptions. They extended
the degrees of match of Paolucci’s work by adding
an intersection match. The hybrid semantic service
matchmaker FCMATCH [4] performs a combined
logic-based and text similarity-based matching of
monolithic service and query concepts written in
OWL-DL. Dong-Wei et al. [5] proposes a matching
process in which firstly DL subsumption reasoning
method is used to get the coarse set of services, and
then more refined semantic distance calculation is
made to improve the services distinguish capability.
Their algorithm is based on input and output
annotations.

Wang and Li [6] proposed a method for PE
matching based on description logic SHOIN+(D).
This method groups the matchmaking results in four
categories: exact match, perfect match, side-effects
match, and common match. This algorithm is not
suitable for automatic matchmaking since it results
in just a categorization of the match results and it is
not designed for web services described in OWL-S
either. Lamparter [7] presents an approach to hybrid
matching of monolithic logic-based service
descriptions in OWL-DL extended with pricing
policies (modeled in DL-safe Semantic Web Rule
Language (SWRL) rules) according to given
references by means of SPARQL (Simple Protocol
and RDF (Resource Description Framework) Query
Language) queries to a given service repository.
Similarly, Umesh Bellur’s [8] work semantically
matches requested and offered parameters, modeling
the matchmaking problem as one of matching
bipartite graphs. Peng and Shi [9] have replaced the
match grades of Paolucci with fine values denoted
by real number, and it is used to further rank
advertisements. Wang et al.’s [10] work proposes a
semantic match algorithm based on improved
semantic distance. Bener et al. [11] considers
semantic matching of input, output, precondition
and effect. They also provide ranking. Liu et al. [12]
achieve a fusion with five grades of matching, a

collaboration of syntactic and semantic matching, as
well as considering QoS (Quality of Service) and
other dependency features.

The OWLS-MX [13] matchmaker performs
hybrid semantic matching that complements logic
based reasoning with syntactic IR (Information
Retrieval) based similarity metrics. OWL-SLR [14]
provides retrieval of services based not only on
subsumption relationships, but also exploits the
structural information of OWL ontologies.
According to the work of Golsa Heidary [15], in
first phase, two web services` Input / Output
parameters are compared semantically. In second
phase, services’ parameter type is compared. In third
phase, the matching rate of service is computed
based on the results of first and second phase. Zhang
et al. [16] proposed a way to precisely compute the
similarity of concepts after classifying the services
into five different matchmaking levels. The
weighted semantic distance and the common
features of concepts are considered in similarity
computation. Cai et.al [17] proposes a semantic
matchmaker, which focuses only on manufacturing
domain. The similarity matching assumes either the
total number of super classes subsuming the
compared concepts or the total number of subclasses
subsumed by the compared concepts in a shared
ontological taxonomy. In addition, constraint
reasoning is performed to deal with more complex
matches. Sangers et al.’s [18] work uses natural
language processing techniques for service
discovery. But it focuses on WSMO (Web Service
Modeling Ontology) service descriptions in WSML
(Web Service Modeling Language), instead of the
OWL-S specifications

Majority of the works mentioned above expects
user input to be given in the form of a service
description. Less support is provided for accepting
user request in natural language. Also most of the
work focuses only on the Input and Output
parameter of the services. So our work proposes a
hybrid matchmaking algorithm which accepts user
input even in natural language and performs
matchmaking based on both the text-description and
the IOPE parameters of services and returns back a
set of related services based on user request.

3 Semantic Services in OWL-S
Our semantic service matchmaker focuses on
semantic services that are described in OWL-S. In
the following, we briefly introduce the essentials of
OWL-S.

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 63 Volume 14, 2015

3.1 Overview
OWL-S is an upper ontology used to describe the
semantics of services based on the W3C standard
ontology OWL and is grounded in WSDL (Web
Service Description Language). It has its roots in the
DAML Service Ontology (DAML-S) released in
2001, and became a W3C candidate
recommendation in 2005. The OWL-S ontology
consists of three main components: the service
profile for advertising and discovering services; the
process model, which gives a detailed description of
a service’s operation; and the grounding, which
provides details on how to interoperate with a
service.

In particular, the semantic service profile in
OWL-S specifies the semantics of the service
signature, which are the inputs required by the
service and the outputs generated. Furthermore,
since a service may require external conditions to be
satisfied, and it has the effect of changing such
conditions, the profile also describes the
preconditions to be satisfied before, and the
expected effects that result from the execution of the
service. The majority of existing OWL-S service
matchmakers focuses on semantic service profiles.

3.2 OWL-S service profile
The OWL-S profile ontology is used to describe
what the service does, and is meant to be mainly
used for the purpose of service discovery. An
OWL-S service profile or signature encompasses its
functional parameters, i.e. Input, Output,
Precondition and Effect, as well as non-functional
parameters such as serviceName, serviceCategory,
qualityRating, textDescription, and meta-data about
the service provider such as name and location.
Inputs and outputs relate to data channels, where
data flows between processes. Preconditions specify
facts of the world (state) that must be asserted in
order for an agent to execute a service. Effects
characterize facts that become asserted given a
successful execution of the service in the physical
world (state). In OWL-S, the semantics of each
service input and output parameter is defined in
terms of a referenced OWL concept in a given
ontology, typically in a decidable description logic
OWL-DL or OWL-Lite, the preconditions and
effects can be expressed in any appropriate first
order logic (rule) language such as KIF (Knowledge
Interchange Format) or SWRL.

4 Proposed System
The overall architecture of the proposed hybrid
Semantic web service discovery framework is
shown in fig. 1. The proposed framework accepts
the user request which may be in terms of some text
description or the functional properties of required
service like input, output, precondition, and effect.
Next the user query information is parsed for further
processing. The IOPE parameters are matched with
the available services in the repository using
bipartite graph-based approach. The text description
is matched after performing some NLP techniques
like POS tagging and Word sense disambiguation.
Based on the cumulative similarity measure the
retrieved relevant services are provided to the user.
The architecture of the proposed work is explained
below.

Fig.1. Overall architecture of the proposed system

4.1 Functional parameter matching
A good measure for calculating the degree of
similarity of two services is the degree of similarity
between their functional properties such as their
inputs, outputs, preconditions and effects. For
example, consider the OWL-S profile of a user
request ‘R’ and an available advertisement ‘A’ in
Fig. 2, taken from the standard test collection
OWLS-TC4 (OWL-S Test Collection version 4).
The user request ‘R’ expects to find a book selling
service that accepts a user’s payment card and will
deliver the requested book and acknowledge to the
user after the complete transaction is over. The e-
shopping service ‘S’ like flipkart.com offers
arbitrary articles including books that are requested
by some customer whose own credit card account
gets respectively charged while sending pricing
information and the book to the customer. Both
services are written in OWL-S with semantic
signature (IO) concept definitions in description
logic and their logical preconditions and effects (PE)

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 64 Volume 14, 2015

in SWRL. In the following, we assume the
matchmaker to have an appropriate shared ontology
(a portion of it is shown in fig. 2) and a service
registry (OWL-S TC4) available, over which
semantic service selection is performed. Our
proposed matchmaking algorithm will be able to
perform IOPE matching using bipartite graph
approach and match the user request with the
mentioned advertisement.

Fig. 2. Example Relevant Advertisement and

service request and part of ontology

For performing functional parameter match using

the bipartite graph approach, as a first step, the
service reader extracts information from the
<Profile:hasInput>, <Profile:hasOutput>,
<profile:hasResult>, <profile:hasPrecondition>
tags of the OWL-S description file. A snippet of an
OWL-S file is shown in fig. 3.

Fig. 3. Snippet of an OWL-S service

Each service has a set of inputs and a set of
outputs and each input/output parameter is
semantically annotated with mapping it to an OWL
concept. Therefore, the problem here is to calculate
the similarity of two sets of concepts. We have used
the bipartite graph based approach for this. In
addition the precondition and effects are also
considered. In the bipartite graph based
matchmaking algorithm, the search procedure
accepts a query as input and tries to match its output
concepts and input concepts with each
advertisement. If there exist a match in both input
and output concepts, it appends the advertisement to
the result set. To match inputs as well as it outputs,
it uses a modified approach followed by Paolucci,
where four degrees of match are considered (Exact,
Subsume, Plug-in and Fail). And when multiple
such matches occur, it invokes Hungarian algorithm
[19], [20] on the graph created with suitable weights
to compute an optimal matching of the graph. The
degree of match is defined by the weight of the
maximum-weight edge in the matching. In addition,
the precondition and effects are also matched with
the user request. In the end, a list of related
advertised services are returned.

The algorithm for computing the degree of match
of the output concepts is given in algorithm 1. Here
outA and outQ represents an Advertisement’s and
Query’s output concept respectively.

Algorithm: match(outA, outQ)
if outA = outQ then
 return Exact
else if outQ superclass of outA then
 return Plug-in
else if outQ subsumes outA then
 return Plug-in
else if outA subsumes outQ then
 return Subsumes
else
 return Fail

Algorithm 1. Degree of match

A bipartite graph is a graph in which the vertex
set can be divided into two disjoint sets such that no
edge of the graph lies between the two vertices in
the same set. In our work, a bipartite graph is
constructed using the IO concepts of Query and
Advertisement.

A matching of a bipartite graph G = (V, E) is a
sub graph G’ = (V, E’) such that no two edges e1, e2
in E’ share the same vertex. Let the set of output
concepts for query and advertisement be Q and A.

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 65 Volume 14, 2015

We will construct a graph G = (Q + A, E) which has
one vertex corresponding to each concept in query
and advertisement. If there exists a degree of match
(≠ Fail) between a concept v1 belonging to Q and a
concept v2 belonging to A, then we define an edge
(v1, v2) with weight as the degree of match. We need
a matching in which all the output concepts of Q are
matched with some concept of A. If such a matching
exists, we would say that the advertisement and the
query match. If there exist multiple such matching,
we will choose the one which is optimal. For, this
we would assign different numerical weights to
edges with different degrees of match. In this
implementation we have assigned weights as 1 for
Exact, multiplying number of vertices in Q by Exact
weight plus one for Plug-in and multiplying number
of vertices in Q by Plug-in weight plus one for
Subsume [8]. Let max(wi) be the maximum
weighted edge in the matching. An optimal
matching in this case would be a complete matching
with minimum max(wi). Hungarian algorithm is
used for optimal matching, which computes a
complete matching for a weighted bipartite graph
such that sum of weights of all the edges in the
matching is minimized. By this approach, a set of
relevant services based on the user request is
retrieved.

4.2 Non-functional parameter Matching
Sometimes logical matching fails because of the
lack of the logical relationship between a pair of
concepts in a domain ontology. Also, users may not
be expert enough to specify their requirements in
terms of OWL-S query. In such situations, totally
relying on functional (signature) similarity measures
would fail to discover two similar web services.
Therefore, in order to get better results, specification
(i.e. textual description) similarity measures should
be combined with signature similarity measures.
Service descriptions often contain parts which
include textual information and the similarity of
terms which are in these parts of the service
descriptions can be used as an alternative measure
for similarity of services. Usually, a textual
description of a web service provides a brief
functional description of what it is. For this, the
information from the <textDescription> tag can be
retrieved. The text-based similarity is done by
performing three key steps. The first step of the
proposed approach involves service reader, which
will extract the information from the user query.
Likewise, the description files of web services

described in semantic language (OWL-S) is also
parsed to get the text-description. Then the retrieved
description of the web service and user request is
tagged using POS tagger into set of nouns and
verbs. The next step deals with word sense
disambiguation, which disambiguates the word
sense given by the user and description retrieved
from the description file of web service (Algorithm
2). Finally Jaccard matching is used to discover the
related web services based on the user’s request.
The steps are diagrammatically illustrated in fig. 4.

Fig. 4. Various phases of Text-based similarity
matching

4.2.1 Service reader
The DOM (Document Object Model) parser is used
to parse the required information from the web
service Profile file. The information available in the
<profile:textDescription> tag is extracted here.

Next, POS tagging is performed. A Part-Of-
Speech Tagger (POS Tagger) is a piece of software
that reads text in some language and assigns parts of
speech to each word, such as noun, verb, adjective,
etc. The Stanford POS tagger is used in our work.
This software is a Java implementation. Each
description is processed with the POS tagger. As a
result, for each description D = w1, w2, …wn, a
string of Part-Of-Speech tags p1,p2,…pn is produced,
where pi ∈ P is the Part-Of-Speech tag chosen by
Stanford tagger for word wi, and P = {N, V} is a
simplified set of syntactic categories (respectively,
nouns and verbs).

4.2.2 Word sense disambiguation
 Structural Semantic Interconnections (SSI) [21] is a
knowledge based iterative approach to Word Sense
Disambiguation. The purpose of SSI algorithm is to
choose the correct sense of the given description.

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 66 Volume 14, 2015

Input:
 T : list of terms to be disambiguated
 I: list of interpretation synsets (initially empty)
Output:
 I: the list of sense-tagged keywords

for each t ∈ T
 if (t is monosemous) I(t) = the only sense of t
 P = {t ∈ T : I(t) = Ø}
// while there are more terms to disambiguate
do
{
 P’ = P
 for each t ∈ P’ // for pending terms
 {
 bestSense = Ø
 maxValue = 0
 // for each possible interpretation of t
 for each sense S of t in WordNet
 {
 f[S] = 0
 for each synset S’ E I
 {
 X = 0
// for each semantic path between S and S’
 X = X + weight(S, S’)
 f[S] = f[S] + X
 }
 if (f[S] > maxValue)
 {
 maxValue = f[S]
 bestSense = S
 }
 }
 if(maxValue > 0)
 {
 I(t) = bestSense
 P = P \ {t}
 }
 }
}while(P ≠ P’)

return I

Algorithm 2. Structural Semantic Interconnection

For example, the keyword mouse is referenced in

WordNet [22] by the following four synsets:
• mouse#n#1: {mouse} (with the gloss any of
numerous small rodents typically resembling
diminutives rats,...).
• mouse#n#2: {shiner, black eye, mouse} (with the
gloss a swollen bruise caused by a blow to the eye)

• mouse#n#3: {mouse} (with the gloss a swollen
bruise caused by a blow to the eye)
• mouse#n#4: {mouse, computer mouse} (with the
gloss a hand operated electronic device ...).

Given W, an ordered list of words to be
disambiguated, the SSI algorithm performs as
follows. During the initialization step, all
monosemous words are included into the set I of
already interpreted words, and the polysemous
words are included in P (all of them pending to be
disambiguated). At each step, the set I is used to
disambiguate one word of P, selecting the word
sense which is closer to the set I of already
disambiguated words. Once a sense is
disambiguated, the word sense is removed from P
and included into I. The algorithm finishes when no
more pending words remain in P. The pseudo code
of the SSI algorithm is given in algorithm 1.

4.2.3 Jaccard matching
For matching the user request sense with a set of
senses from web service description, the Jaccard
matcher [23], is used. It computes the similarity
between two sets and so can compare the different
set of senses:

 (1)
By dividing the number of senses which appear

in both sets by the total number of senses in both
sets, a similarity coefficient can be calculated. With
this approach the Jaccard matcher retrieves the
similar services.

4.3 Compound Similarity
Finally, the compound similarity of two services S1
and S2 is calculated by the linear combination of
bipartite matching (functional similarity) and text-
based similarity as follows:

 (2)

Where FS is the Functional Similarity and TS is

the Text-based Similarity of two services S1 and S2.

5 Implementation
The proposed work is implemented using Java. It
can search web services annotated using OWL-S.
To read the OWL-S files which are basically XML

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 67 Volume 14, 2015

(eXtensible Markup Language) files, the DOM
parser is used. For the Part-Of-Speech tagging, the
Stanford parser [24] is used. The stanford-
postagger.jar file is used for this purpose. For the
Word Sense Disambiguation, WordNet [25] is used
through two WordNet APIs, in order to find senses
belonging to words. The Java WordNet Library
(JWNL) [26] is used for the morphological analysis
of each word, and the MIT Java WordNet Interface
(JWI) [27] is subsequently employed for retrieving
WordNet synsets. Next, JWordNetSim [28] is used
to calculate the similarity between two WordNet
senses.

The overall implementation is done in Java due
to the availability many predefined external
packages. The implementation of the framework is
based on the work of [18], which mainly focuses on
WSMO services. Also additionally, as part of our
framework, the functional properties (IOPE) of
services are also considered, which is matched by
using Bipartite Graph matching algorithm. The
Pellet reasoner [29] is used to classify the loaded
ontologies. The Jena API (Application
Programming Interface) [30] is used to query the
reasoner for concept relationships.

5.1 Evaluation Setup
For discovery process, the atomic OWL-S services
are selected from the OWLS-TCv4 collection [31],
which is a publicly available collection of OWL-S
services, used to evaluate and compare different
matchmaking algorithms. It comprises 1083
services, which uses reference ontology with 4694
concepts from 9 different domains. The service
IOPE parameters and service text-description are
considered during the discovery process.

5.2 Experimental Results
To test the performance of the proposed framework,
two other frameworks (our previous works) are
implemented. The first framework performs only the
non-functional parameter matching. It uses NLP
techniques like stop word removal and POS tagging
on the text description and uses the Jaccard
matching for calculating the similarity [32]. The
second framework performs only functional
parameter matching. It performs functional
matching of Input, Output, Precondition and Effects.
It uses Bipartite Graph matching approach for this
purpose. Our proposed framework performs both
functional matching (Input, Output, Preconditions

and Effects) and Non-functional parameter matching
(POS tagging, Word Sense Disambiguation, Jaccard
matching).

The results of our proposed framework will be
displayed in the ranked order. Retrieved web
services with rank value greater than 0.8 is
considered to be highly relevant since some level of
match occurs for all the IOPE parameters requested
by user and the text descriptions also match.
Services with rank value between 0.4 and 0.7 is
considered relevant since some level of match
occurs for all the IO parameters and there may not
be a match for either precondition or effect
requested by user. Services with rank value less
than 0.4 are considered less relevant since there may
not be a correct match for IOPE parameters. These
services are matched based on their non-functional
text-description only.

The performance of various discovery
frameworks is measured based on the precision and
recall rates. Precision and recall are the basic
measures used in evaluating search strategies. It is
possible to measure how well a search performed
with respect to these two parameters. As shown in
fig. 5 these measures assume:

• There is a set of services in the database
which is relevant to the search topic

• Services are assumed to be either relevant or
irrelevant

• The actual retrieval set may not perfectly
match the set of relevant services.

Fig. 5. Available services vs. Retrieved services

RECALL is the ratio of the number of relevant

services retrieved to the total number of relevant
services in the database as shown in fig. 6.

A: Number of relevant services
retrieved
B: Number of relevant services
not retrieved

RECALL =

Fig. 6. Recall rate computation

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 68 Volume 14, 2015

PRECISION is the ratio of the number of
relevant services retrieved to the total number of
irrelevant and relevant services retrieved as shown
in fig. 7.

A: Number of relevant services
retrieved
C: Number of irrelevant
services retrieved

PRECISION =

Fig. 7. Precision rate computation

For the sample test collection used, there are
about 164 services relevant to the user query. The
number of relevant and irrelevant services retrieved
by the various discovery approaches is shown in
Table 1.

Table 1. Details of Service retrieval

SWS discovery

frameworks A B C

NFP matching 19 145 0
FP matching 24 140 0
Proposed
matching 160 4 504*

* Including even the least relevant services

The performance of various approaches namely
Simple text similarity of Non-functional parameter
(NFP), Functional parameter (FP) matching and the
proposed Hybrid matching (Functional Parameter
(FP) and Non-functional Parameter (NFP))
matching based on the recall and precision rates is
shown in table 2.

Table 2. Precision and Recall rates of various

discovery frameworks

SWS discovery
frameworks

Recall
(in %)

Precision
(in %)

NFP matching 11.59 100
FP matching 14.63 100
Proposed
matching 97.57 24.1

Our proposed approach retrieves 160 highly

relevant services. The precision rate of the proposed
approach seems to be low because here the rest of

the services are considered irrelevant (Though they
are either relevant or least relevant). Hence, it is
evident from the above table that the proposed
hybrid approach for discovery of services based on
both functional and non-functional parameters is
efficient when compared to the other two
approaches. The graphical representation of the
performance of various discovery frameworks is
illustrated in fig. 8.

Fig. 8. Performance of various discovery

frameworks

The retrieval of related web services based on the

user query (which may be in either natural language
or in the form of IOPE parameters or both) by our
proposed hybrid framework is comparatively high
than other frameworks.

6 Conclusion
The increasing number of web services on the web
results in difficulty to discover the required web
service. To overcome this difficulty and to discover
the required Semantic web service, a new
framework is developed. The Semantic web service
discovery framework proposes a natural language
based discovery process with matchmaking
algorithms for searching web services that are
described using semantically enriched annotations.
In this work we have introduced a cumulative
similarity (combination of functional similarity and
their text similarities) of OWL-S annotated web
services. Functional (IOPE) similarity is determined
using bipartite matching of services. To measure
textual similarity, POS tagging, Word Sense
Disambiguation and Jaccard similarity is used. To
summarize, our proposed framework presents a
discovery mechanism that enables web service

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 69 Volume 14, 2015

discovery based on Input, Output, Preconditions and
Effects parameters and/or keywords written in
natural language. Also the experimental results
show the effectiveness of our proposed approach.

7 Future Work
We have proposed hybrid approach for discovery of
OWL-S services based on functional and non-
functional parameters. It is one of the efficient
methods for OWL-S service discovery, but with
some limitations. Mainly the word sense
disambiguation process takes a longer time. It is
evident that the performance of service discovery
will be significantly reduced when the number of
services increases. But this discovery framework is
promising because it has a better recall rate.
Therefore, our future work will focus on reducing
the search time by limiting the search space. This
can be achieved by including a preprocessing
(filtering - removing irrelevant services) stage
before the actual discovery process [33]. To achieve
maximum performance, this preprocessing can be
performed in a distributed manner. The filtering
followed by the actual discovery process can be
performed simultaneously on different domains
based on the user request. The independent results
obtained can be finally combined to get the relevant
services. Thus the spilt-and-merge technique [34]
can be used to obtain the relevant services. It is
expected that this technique will significantly reduce
the search time and provide better results.

References:
[1] David Martin et al., “OWL-S Semantic Markup

for Web services”, W3C Member Submission,
22 November 2004, Available at
< http://www.w3.org/Submission/OWL-S/>.

[2] Paolucci, M., Kawamura, T., Payne, T.R.,
Sycara, K.P., “Semantic Matching of web
service Capabilities”, Springer Verlag, LNCS,
International Semantic Web Conference, 2002,
pp. 333 – 347.

[3] Lei Li and Ian Horrocks, “A software
framework for matchmaking based on
Semantic Web technology”, Proceedings of the
12th International Conference on WWW, 2003,
pp. 331-339.

[4] D. Bianchini, V. D. Antonellis, M. Melchiori,
D. Salvi, “Semantic-enriched service
discovery”, Proceedings of IEEE ICDE 2nd
International Workshop on Challenges in Web

Information Retrieval and Integration
(WIRI06), Atlanta, USA, 2006.

[5] Dong-Wei, B., Chuan-Chang, L., Yong, P., &
Jun-Liang, C., “Web services matchmaking
with incremental semantic precision”, Wireless
communications, networking and mobile
computing, 2006, pp. 1–4.

[6] Wang, H., & Li, Z., “A semantic matchmaking
method of web services based on
SHOIN+(D)”, Asia–Pacific conference on
Services Computing, 2006, pp. 26–33.

[7] S. Lamparter, A. Ankolekar, “Automated
selection of configurable web services”, 8.
Internationale Tagung Wirtschaftsinformatik.
Universitaetsverlag Karlsruhe, Germany, 2007

[8] Umesh Bellur, Roshan Kulkarni, “Improved
Matchmaking Algorithm for Semantic web
services based on Bipartite Graph Matching”,
IEEE International Conference on Web
Services, 2007, pp. 86-93.

[9] H. Peng, Z. Shi, L. Chang, and W. Niu,
“Improving Grade Match to Value Match for
Semantic web service discovery” The IEEE
International Conference on Natural
Computation (ICNC), IEEE Computer Society,
Jinan, China, 2008, pp. 232 -236.

[10] Gongzhen Wang, Donghong Xu, Yong Qi, Di
Hou, “A Semantic Match Algorithm for web
services based on Improved Semantic
Distance” IEEE, 4th International Conference
on Next Generation Web Services Practices,
2008.

[11] B. Bener, V. Ozadali, and E. S. llhan,
“Semantic Matchmaker with Precondition and
Effect Matching Using SWRL”, Expert
Systems with Applications, Vol. 36, Issue 5,
2009.

[12] M. Liu, Q. Gao, W. Shen, Q. Hao, and I. Van,
“A Semantic-Augmented Multi-level Matching
Model of web services", Service Oriented
Computing and Applications, Vol. 3, Issue 3,
2009, pp. 205-215.

[13] K. Klusch M, Fries B, Sycara, “OWLS-MX: A
Hybrid Semantic web service matchmaker for
OWL-S services”, Journal of Web Semantics:
Science, Services and Agents on the WWW,
Vol. 7, No. 2, 2009, pp. 121–133.

[14] Georgios Meditskos and Nick Bassiliades,
“Structural and Role-Oriented web service
discovery with Taxonomies in OWL-S”, IEEE
Transaction on Knowledge and Data
Engineering, Vol. 22, No. 2, 2010, pp. 278 –
290.

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 70 Volume 14, 2015

[15] Golsa Heidary, Kamran Zamanifar, Naser
Nematbakhsh, “A Three phase Semantic Web
Matchmaker”, International Journal of Smart
Home Vol. 4, No.3, 2010.

[16] Yang Zhang, Fagui Liu, Nan Zhang, “Toward
Fine Grained Matchmaking of Semantic web
services based on Concept Similarity”, Journal
of Information & Computational Science. Vol.
8, No.2, 2011, pp. 377-384.

[17] M. Cai, W. Y. Zhang, & K. Zhang, “ManuHub:
A Semantic Web System for Ontology-Based
Service Management in Distributed
Manufacturing Environments”, IEEE
Transaction on Systems, Man & Cybernetics-
Part A: Systems & Humans, Vol. 41, No. 3,
2011.

[18] Jordy Sangers, Flavius Frasincar, Frederik
Hogenboom , Vadim Chepegin, “Semantic web
service discovery using natural language
processing techniques”, Expert Systems with
Applications, 40, 2013, pp. 4660–4671.

[19] H. Kuhn, “The Hungarian Method for the
Assignment Problem”, Naval Research
Logistic Quarterly, 1955.

[20] Rahul Jain, “Combinatorial Algorithms
(Algorithms in Bipartite Graphs)”, 2013,
Available at <www.comp.nus.edu.sg/~rahul
/.../cs6234-13-combinatorial-algorithm.ppt >.

[21] Navigli, R., and Velardi, P., “Structural
semantic interconnections: A knowledge-based
approach to word sense disambiguation”, IEEE
Transactions on Pattern analysis and Machine
intelligence, Vol. 27, 2005, pp. 1075–1086.

[22] “WordNet – A Lexical database for English”,
Available at <http://wordnet.princeton.edu/>.

[23] “Jaccard, P.”, 1901, Available at
<http://people.revoledu.com/kardi/tutorial/Simi
larity /Jaccard.html>.

[24] “The Stanford natural language processing
group. Stanford log-linear part-of-speech
tagger”, 2009, Available from
<http://nlp.stanford.edu/software/tagger.shtml>

[25] Miller, G. A., Beckwith, R., Fellbaum, C.,
Gross, D., & Miller, K., “Introduction to
WordNet: An on-line lexical database”,
International Journal of Lexicography, 3(4),
1990, pp. 235–244.

[26] Walenz, B., & Didion, J., “JWNL: Java
WordNet library”, 2011, Available at <http://
sourceforge.net/projects/jwordnet/>.

[27] Finlayson, M., “JWI: The MIT java WordNet
interface”, 2012, Available at <http://
projects.csail.mit.edu/jwi/>.

[28] Greenwood, M., “JWordNetSim”, 2007,
Available at <http://nlp.shef.ac.uk/result/
software.html>.

[29] E. Sirin et al., “Pellet: An OWL DL Reasoner”,
Journal of Web Semantics. 2005.

[30] “JENA: Java Framework for Building
Semantic Web Applications”, Available at
<http://jena.sourceforge.net/.>

[31] “OWL-S Service Retrieval Test Collection.
Version 4.0”, Available at <http://projects.
semweb central.org /projects/ owls-tc/>.

[32] M. Deepa Lakshmi, Dr. Julia Punitha Malar
Dhas, “An user-friendly and improved
Semantic-based web service discovery
approach using Natural Language Processing
Techniques”, International Journal of
Innovative Research in Computer and
Communication Engineering, Vol. 1, Issue 10,
December 2013, pp. 2435-2442.

[33] M. Deepa Lakshmi, Dr. Julia Punitha Malar
Dhas, “An improved Light-weight
matchmaking mechanism for discovering
OWL-S services based on SPARQL, Bipartite
and NLP approach”, Malaysian Journal of
Science, Vol. 33, No.1, June 2014, pp. 68-77.

[34] Szénási, S., "Distributed Implementations of
Cell Nuclei Detection Algorithm", Recent
Advances in Image, Audio and Signal
Processing, WSEAS Press, Budapest, 2013, pp.
105-109.

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 71 Volume 14, 2015

http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html
http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html
http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html

