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Abstract:- Web services are independent software systems designed to offer machine-to-machine interactions 
over the WWW to achieve well-described operations. Typically, service providers expose their services to the 
public by providing brief descriptions of the service’s operations; the challenge is to discover the right service 
in response to a specific service request based on rather sparse service descriptions. In this work, we present a 
hybrid semantic web service discovery framework that offer semantic web service discovery based on both 
functional (Input, Output, Precondition and Effect - IOPE) and non-functional (text-description) properties of 
OWL-S (Semantic Markup for Web Services) services. For functional parameter matching, we have used the 
bipartite graph-based approach for matching the parameters of services. For non-functional parameter 
matching, we have used natural language processing techniques on the textual-description of a web service. 
The cumulative similarly measures determine the overall similarity of the advertised service with the service 
request. We evaluated the performance of our Service Matchmaking framework using the OWLS-TC4 (Test 
Collection version 4) dataset, and furthermore compared its performance with some existing discovery models. 
Our results indicate that the proposed web service matchmaking framework offers an improved discovery 
mechanism with a significant increase in recall rate. 
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1 Introduction 
Web Services are loosely coupled software 
components that are published, located and invoked 
across the web. Recently, web services have gained 
an increasing popularity. Since the existing 
traditional technologies describe web services only 
in syntactical level, it is difficult for service 
requestors and service providers to interpret or 
represent information such as the meaning of inputs 
and outputs or applicable constraints.  Semantic 
description of web services can help overcome this 
difficulty. Semantic web service (SWS) is a web 
service which is semantically rich and defined 
through service ontology, capable of automatic 
discovery, execution, composition and 
interpretation. 

OWL-S [1] is one of the proposals for describing 
semantic metadata about web services, which is 
based on the OWL (Web Ontology Language) 
ontology language. The OWL-S ontology is 
organized in three modules: the Service Profile 
module describes the functionality of the service; 
the Service Model module describes how it does it; 

and the Service Grounding module describes how to 
access the service. Semantic service discovery is the 
process of locating existing web services based on 
the description of their functional and non-
functional properties of the Service Profile. 

The proposed matching algorithm returns a 
ranked set of relevant services as its answer set to 
the user. For this purpose, it first uses the bipartite-
graph based matching of the functional properties 
(IOPE). Next it performs some Natural language 
Processing (NLP) techniques like Part-Of-Speech 
(POS) tagging and Word Sense Disambiguation 
(WSD) and uses Jaccard similarity measure to 
perform the non-functional parameter (text-
description) matching. Finally a cumulative 
similarity is calculated based on the above two 
similarity measures and a ranked set of relevant 
services are returned to the user. 
 
 
2 Related Work 
Majority of current Semantic web service discovery 
algorithms perform logic-based service profile 
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matching, and are restricted to OWL-S. The most 
influencing among them is Paolucci’s algorithm [2], 
which has been cited in subsequent proposals. 
Paolucci proposed an ontology-based solution, in 
which matching of input and output parameters of 
services are done according to the hierarchical 
concept subsumption relationships defined in an 
ontology tree. There are four semantic similarity 
grades: Exact, Subsumes, Plugln, and Fail. Li and 
Horrocks [3] used a DAML-S (DARPA Agent 
Markup Language for Services) based ontology and 
a Description Logic (DL) reasoner to compare 
ontology based service descriptions. They extended 
the degrees of match of Paolucci’s work by adding 
an intersection match. The hybrid semantic service 
matchmaker FCMATCH [4] performs a combined 
logic-based and text similarity-based matching of 
monolithic service and query concepts written in 
OWL-DL. Dong-Wei et al. [5] proposes a matching 
process in which firstly DL subsumption reasoning 
method is used to get the coarse set of services, and 
then more refined semantic distance calculation is 
made to improve the services distinguish capability. 
Their algorithm is based on input and output 
annotations.  

Wang and Li [6] proposed a method for PE 
matching based on description logic SHOIN+(D). 
This method groups the matchmaking results in four 
categories: exact match, perfect match, side-effects 
match, and common match. This algorithm is not 
suitable for automatic matchmaking since it results 
in just a categorization of the match results and it is 
not designed for web services described in OWL-S 
either. Lamparter [7] presents an approach to hybrid 
matching of monolithic logic-based service 
descriptions in OWL-DL extended with pricing 
policies (modeled in DL-safe Semantic Web Rule 
Language (SWRL) rules) according to given  
references by means of SPARQL (Simple Protocol 
and RDF (Resource Description Framework) Query 
Language) queries to a given service repository. 
Similarly, Umesh Bellur’s [8] work semantically 
matches requested and offered parameters, modeling 
the matchmaking problem as one of matching 
bipartite graphs. Peng and Shi [9] have replaced the 
match grades of Paolucci with fine values denoted 
by real number, and it is used to further rank 
advertisements. Wang et al.’s [10] work proposes a 
semantic match algorithm based on improved 
semantic distance. Bener et al. [11] considers 
semantic matching of input, output, precondition 
and effect. They also provide ranking. Liu et al. [12] 
achieve a fusion with five grades of matching, a 

collaboration of syntactic and semantic matching, as 
well as considering QoS (Quality of Service) and 
other dependency features.  

The OWLS-MX [13] matchmaker performs 
hybrid semantic matching that complements logic 
based reasoning with syntactic IR (Information 
Retrieval) based similarity metrics. OWL-SLR [14] 
provides retrieval of services based not only on 
subsumption relationships, but also exploits the 
structural information of OWL ontologies. 
According to the work of Golsa Heidary [15], in 
first phase, two web services` Input / Output 
parameters are compared semantically. In second 
phase, services’ parameter type is compared. In third 
phase, the matching rate of service is computed 
based on the results of first and second phase. Zhang 
et al. [16] proposed a way to precisely compute the 
similarity of concepts after classifying the services 
into five different matchmaking levels. The 
weighted semantic distance and the common 
features of concepts are considered in similarity 
computation. Cai et.al [17] proposes a semantic 
matchmaker, which focuses only on manufacturing 
domain. The similarity matching assumes either the 
total number of super classes subsuming the 
compared concepts or the total number of subclasses 
subsumed by the compared concepts in a shared 
ontological taxonomy. In addition, constraint 
reasoning is performed to deal with more complex 
matches. Sangers et al.’s [18] work uses natural 
language processing techniques for service 
discovery. But it focuses on WSMO (Web Service 
Modeling Ontology) service descriptions in WSML 
(Web Service Modeling Language), instead of the 
OWL-S specifications 

Majority of the works mentioned above expects 
user input to be given in the form of a service 
description. Less support is provided for accepting 
user request in natural language. Also most of the 
work focuses only on the Input and Output 
parameter of the services. So our work proposes a 
hybrid matchmaking algorithm which accepts user 
input even in natural language and performs 
matchmaking based on both the text-description and 
the IOPE parameters of services and returns back a 
set of related services based on user request. 
 
 
3 Semantic Services in OWL-S 
Our semantic service matchmaker focuses on 
semantic services that are described in OWL-S. In 
the following, we briefly introduce the essentials of 
OWL-S. 
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3.1 Overview 
OWL-S is an upper ontology used to describe the 
semantics of services based on the W3C standard 
ontology OWL and is grounded in WSDL (Web 
Service Description Language). It has its roots in the 
DAML Service Ontology (DAML-S) released in 
2001, and became a W3C candidate 
recommendation in 2005. The OWL-S ontology 
consists of three main components: the service 
profile for advertising and discovering services; the 
process model, which gives a detailed description of 
a service’s operation; and the grounding, which 
provides details on how to interoperate with a 
service. 

In particular, the semantic service profile in 
OWL-S specifies the semantics of the service 
signature, which are the inputs required by the 
service and the outputs generated. Furthermore, 
since a service may require external conditions to be 
satisfied, and it has the effect of changing such 
conditions, the profile also describes the 
preconditions to be satisfied before, and the 
expected effects that result from the execution of the 
service. The majority of existing OWL-S service 
matchmakers focuses on semantic service profiles. 
 
 
3.2 OWL-S service profile 
The OWL-S profile ontology is used to describe 
what the service does, and is meant to be mainly 
used for the purpose of service discovery. An  
OWL-S service profile or signature encompasses its 
functional parameters, i.e. Input, Output, 
Precondition and Effect, as well as non-functional 
parameters such as serviceName, serviceCategory, 
qualityRating, textDescription, and meta-data about 
the service provider such as name and location. 
Inputs and outputs relate to data channels, where 
data flows between processes. Preconditions specify 
facts of the world (state) that must be asserted in 
order for an agent to execute a service. Effects 
characterize facts that become asserted given a 
successful execution of the service in the physical 
world (state). In OWL-S, the semantics of each 
service input and output parameter is defined in 
terms of a referenced OWL concept in a given 
ontology, typically in a decidable description logic 
OWL-DL or OWL-Lite, the preconditions and 
effects can be expressed in any appropriate first 
order logic (rule) language such as KIF (Knowledge 
Interchange Format) or SWRL.  
 
 

4 Proposed System 
The overall architecture of the proposed hybrid 
Semantic web service discovery framework is 
shown in fig. 1. The proposed framework accepts 
the user request which may be in terms of some text 
description or the functional properties of required 
service like input, output, precondition, and effect. 
Next the user query information is parsed for further 
processing. The IOPE parameters are matched with 
the available services in the repository using 
bipartite graph-based approach. The text description 
is matched after performing some NLP techniques 
like POS tagging and Word sense disambiguation. 
Based on the cumulative similarity measure the 
retrieved relevant services are provided to the user. 
The architecture of the proposed work is explained 
below. 

 
Fig.1. Overall architecture of the proposed system 

 
 
4.1 Functional parameter matching 
A good measure for calculating the degree of 
similarity of two services is the degree of similarity 
between their functional properties such as their 
inputs, outputs, preconditions and effects. For 
example, consider the OWL-S profile of a user 
request ‘R’ and an available advertisement ‘A’ in 
Fig. 2, taken from the standard test collection 
OWLS-TC4 (OWL-S Test Collection version 4). 
The user request ‘R’ expects to find a book selling 
service that accepts a user’s payment card and will 
deliver the requested book and acknowledge to the 
user after the complete transaction is over. The e-
shopping service ‘S’ like flipkart.com offers 
arbitrary articles including books that are requested 
by some customer whose own credit card account 
gets respectively charged while sending pricing 
information and the book to the customer. Both 
services are written in OWL-S with semantic 
signature (IO) concept definitions in description 
logic and their logical preconditions and effects (PE) 
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in SWRL. In the following, we assume the 
matchmaker to have an appropriate shared ontology 
(a portion of it is shown in fig. 2) and a service 
registry (OWL-S TC4) available, over which 
semantic service selection is performed. Our 
proposed matchmaking algorithm will be able to 
perform IOPE matching using bipartite graph 
approach and match the user request with the 
mentioned advertisement. 
 

 

 
Fig. 2. Example Relevant Advertisement and 

service request and part of ontology 
 
For performing functional parameter match using 

the bipartite graph approach, as a first step, the 
service reader extracts information from the 
<Profile:hasInput>, <Profile:hasOutput>, 
<profile:hasResult>, <profile:hasPrecondition>   
tags of the OWL-S description file. A snippet of an 
OWL-S file is shown in fig. 3.  

 

 
Fig. 3. Snippet of an OWL-S service 

Each service has a set of inputs and a set of 
outputs and each input/output parameter is 
semantically annotated with mapping it to an OWL 
concept. Therefore, the problem here is to calculate 
the similarity of two sets of concepts. We have used 
the bipartite graph based approach for this. In 
addition the precondition and effects are also 
considered. In the bipartite graph based 
matchmaking algorithm, the search procedure 
accepts a query as input and tries to match its output 
concepts and input concepts with each 
advertisement. If there exist a match in both input 
and output concepts, it appends the advertisement to 
the result set. To match inputs as well as it outputs, 
it uses a modified approach followed by Paolucci, 
where four degrees of match are considered (Exact, 
Subsume, Plug-in and Fail). And when multiple 
such matches occur, it invokes Hungarian algorithm 
[19], [20] on the graph created with suitable weights 
to compute an optimal matching of the graph. The 
degree of match is defined by the weight of the 
maximum-weight edge in the matching. In addition, 
the precondition and effects are also matched with 
the user request. In the end, a list of related 
advertised services are returned.   

The algorithm for computing the degree of match 
of the output concepts is given in algorithm 1. Here 
outA and outQ represents an Advertisement’s and 
Query’s output concept respectively. 
 

Algorithm: match(outA, outQ) 
if outA = outQ then  
       return Exact 
else if outQ superclass of  outA then 
       return Plug-in 
else if outQ subsumes outA then 
       return Plug-in 
else if outA subsumes outQ then 
       return Subsumes 
else 
       return Fail 

Algorithm 1. Degree of match 
 

A bipartite graph is a graph in which the vertex 
set can be divided into two disjoint sets such that no 
edge of the graph lies between the two vertices in 
the same set. In our work, a bipartite graph is 
constructed using the IO concepts of Query and 
Advertisement. 

A matching of a bipartite graph G = (V, E) is a 
sub graph G’ = (V, E’) such that no two edges e1, e2 
in E’ share the same vertex. Let the set of output 
concepts for query and advertisement be Q and A. 

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 65 Volume 14, 2015



We will construct a graph G = (Q + A, E) which has 
one vertex corresponding to each concept in query 
and advertisement. If there exists a degree of match 
(≠ Fail) between a concept v1 belonging to Q and a 
concept v2 belonging to A, then we define an edge 
(v1, v2) with weight as the degree of match. We need 
a matching in which all the output concepts of Q are 
matched with some concept of A. If such a matching 
exists, we would say that the advertisement and the 
query match. If there exist multiple such matching, 
we will choose the one which is optimal. For, this 
we would assign different numerical weights to 
edges with different degrees of match. In this 
implementation we have assigned weights as 1 for 
Exact, multiplying number of vertices in Q by Exact 
weight plus one for Plug-in and multiplying number 
of vertices in Q by Plug-in weight plus one for 
Subsume [8]. Let max(wi) be the maximum 
weighted edge in the matching. An optimal 
matching in this case would be a complete matching 
with minimum max(wi). Hungarian algorithm is 
used for optimal matching, which computes a 
complete matching for a weighted bipartite graph 
such that sum of weights of all the edges in the 
matching is minimized. By this approach, a set of 
relevant services based on the user request is 
retrieved. 
 
 
4.2 Non-functional parameter Matching 
Sometimes logical matching fails because of the 
lack of the logical relationship between a pair of 
concepts in a domain ontology. Also, users may not 
be expert enough to specify their requirements in 
terms of OWL-S query. In such situations, totally 
relying on functional (signature) similarity measures 
would fail to discover two similar web services. 
Therefore, in order to get better results, specification 
(i.e. textual description) similarity measures should 
be combined with signature similarity measures. 
Service descriptions often contain parts which 
include textual information and the similarity of 
terms which are in these parts of the service 
descriptions can be used as an alternative measure 
for similarity of services. Usually, a textual 
description of a web service provides a brief 
functional description of what it is. For this, the 
information from the <textDescription> tag can be 
retrieved. The text-based similarity is done by 
performing three key steps. The first step of the 
proposed approach involves service reader, which 
will extract the information from the user query. 
Likewise, the description files of web services 

described in semantic language (OWL-S) is also 
parsed to get the text-description. Then the retrieved 
description of the web service and user request is 
tagged using POS tagger into set of nouns and 
verbs. The next step deals with word sense 
disambiguation, which disambiguates the word 
sense given by the user and description retrieved 
from the description file of web service (Algorithm 
2). Finally Jaccard matching is used to discover the 
related web services based on the user’s request. 
The steps are diagrammatically illustrated in fig. 4. 
 

 
 

Fig. 4. Various phases of Text-based similarity 
matching 

 
 

4.2.1 Service reader 
The DOM (Document Object Model) parser is used 
to parse the required information from the web 
service Profile file. The information available in the 
<profile:textDescription> tag is extracted here.  

Next, POS tagging is performed. A Part-Of-
Speech Tagger (POS Tagger) is a piece of software 
that reads text in some language and assigns parts of 
speech to each word, such as noun, verb, adjective, 
etc. The Stanford POS tagger is used in our work. 
This software is a Java implementation. Each 
description is processed with the POS tagger. As a 
result, for each description D = w1, w2, …wn, a 
string of Part-Of-Speech tags p1,p2,…pn is produced, 
where pi ∈ P is the Part-Of-Speech tag chosen by 
Stanford tagger for word wi, and P = {N, V} is a 
simplified set of syntactic categories (respectively, 
nouns and verbs). 
 
 
4.2.2 Word sense disambiguation 
 Structural Semantic Interconnections (SSI) [21] is a 
knowledge based iterative approach to Word Sense 
Disambiguation. The purpose of SSI algorithm is to 
choose the correct sense of the given description.  
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Input:  
   T : list of terms to be disambiguated 
    I: list of interpretation synsets (initially empty) 
Output: 
    I: the list of sense-tagged keywords 
 
for each t ∈ T 
     if (t is monosemous) I(t) = the only sense of t 
     P = {t ∈ T : I(t) = Ø} 
// while there are more terms to disambiguate 
do 
{ 
      P’ = P 
     for each t ∈ P’  // for pending terms 
    { 
 bestSense = Ø 
 maxValue = 0 
 // for each possible interpretation of t 
 for each sense S of t in WordNet 
 { 
                f[S] = 0 
  for each synset S’ E I 
  { 
    X = 0 
// for each semantic path between S and S’ 
  X = X + weight(S, S’) 
    f[S] = f[S] + X 
  } 
   if (f[S] > maxValue) 
    { 
      maxValue = f[S] 
      bestSense = S 
    }  
   } 
  if(maxValue > 0) 
  { 
     I(t) = bestSense 
     P = P \ {t} 
  } 
     } 
}while(P ≠ P’) 
 
return I 
 
Algorithm 2. Structural Semantic Interconnection 

 
For example, the keyword mouse is referenced in 

WordNet [22] by the following four synsets: 
• mouse#n#1: {mouse} (with the gloss any of 
numerous small rodents typically resembling 
diminutives rats,...). 
• mouse#n#2: {shiner, black eye, mouse} (with the 
gloss a swollen bruise caused by a blow to the eye) 

• mouse#n#3: {mouse} (with the gloss a swollen 
bruise caused by a blow to the eye) 
• mouse#n#4: {mouse, computer mouse} (with the 
gloss a hand operated electronic device ...). 
 

Given W, an ordered list of words to be 
disambiguated, the SSI algorithm performs as 
follows. During the initialization step, all 
monosemous words are included into the set I of 
already interpreted words, and the polysemous 
words are included in P (all of them pending to be 
disambiguated). At each step, the set I is used to 
disambiguate one word of P, selecting the word 
sense which is closer to the set I of already 
disambiguated words. Once a sense is 
disambiguated, the word sense is removed from P 
and included into I. The algorithm finishes when no 
more pending words remain in P. The pseudo code 
of the SSI algorithm is given in algorithm 1. 
 
 
4.2.3 Jaccard matching 
For matching the user request sense with a set of 
senses from web service description, the Jaccard 
matcher [23], is used. It computes the similarity 
between two sets and so can compare the different 
set of senses: 

  (1) 
By dividing the number of senses which appear 

in both sets by the total number of senses in both 
sets, a similarity coefficient can be calculated. With 
this approach the Jaccard matcher retrieves the 
similar services. 
 
 
4.3 Compound Similarity 
Finally, the compound similarity of two services S1 
and S2 is calculated by the linear combination of 
bipartite matching (functional similarity) and text-
based similarity as follows: 

   
     (2) 

 
Where FS is the Functional Similarity and TS is 

the Text-based Similarity of two services S1 and S2. 
 
 
5 Implementation 
The proposed work is implemented using Java. It 
can search web services annotated using OWL-S. 
To read the OWL-S files which are basically XML 

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 67 Volume 14, 2015



(eXtensible Markup Language) files, the DOM 
parser is used. For the Part-Of-Speech tagging, the 
Stanford parser [24] is used. The stanford-
postagger.jar file is used for this purpose. For the 
Word Sense Disambiguation, WordNet [25] is used 
through two WordNet APIs, in order to find senses 
belonging to words. The Java WordNet Library 
(JWNL) [26] is used for the morphological analysis 
of each word, and the MIT Java WordNet Interface 
(JWI) [27] is subsequently employed for retrieving 
WordNet synsets. Next, JWordNetSim [28] is used 
to calculate the similarity between two WordNet 
senses.  

The overall implementation is done in Java due 
to the availability many predefined external 
packages. The implementation of the framework is 
based on the work of [18], which mainly focuses on 
WSMO services. Also additionally, as part of our 
framework, the functional properties (IOPE) of 
services are also considered, which is matched by 
using Bipartite Graph matching algorithm. The 
Pellet reasoner [29] is used to classify the loaded 
ontologies. The Jena API (Application 
Programming Interface) [30] is used to query the 
reasoner for concept relationships. 
 
 
5.1 Evaluation Setup 
For discovery process, the atomic OWL-S services 
are selected from the OWLS-TCv4 collection [31], 
which is a publicly available collection of OWL-S 
services, used to evaluate and compare different 
matchmaking algorithms. It comprises 1083 
services, which uses reference ontology with 4694 
concepts from 9 different domains. The service 
IOPE parameters and service text-description are 
considered during the discovery process. 
 
 
5.2 Experimental Results 
To test the performance of the proposed framework, 
two other frameworks (our previous works) are 
implemented. The first framework performs only the 
non-functional parameter matching. It uses NLP 
techniques like stop word removal and POS tagging 
on the text description and uses the Jaccard 
matching for calculating the similarity [32]. The 
second framework performs only functional 
parameter matching. It performs functional 
matching of Input, Output, Precondition and Effects. 
It uses Bipartite Graph matching approach for this 
purpose. Our proposed framework performs both 
functional matching (Input, Output, Preconditions 

and Effects) and Non-functional parameter matching 
(POS tagging, Word Sense Disambiguation, Jaccard 
matching).  

The results of our proposed framework will be 
displayed in the ranked order. Retrieved web 
services with rank value greater than 0.8 is 
considered to be highly relevant since some level of 
match occurs for all the IOPE parameters requested 
by user and the text descriptions also match. 
Services with rank value between 0.4 and 0.7 is 
considered relevant since some level of match 
occurs for all the IO parameters and there may not 
be a match for either precondition or effect 
requested by user.  Services with rank value less 
than 0.4 are considered less relevant since there may 
not be a correct match for IOPE parameters. These 
services are matched based on their non-functional 
text-description only.  

The performance of various discovery 
frameworks is measured based on the precision and 
recall rates. Precision and recall are the basic 
measures used in evaluating search strategies. It is 
possible to measure how well a search performed 
with respect to these two parameters. As shown in 
fig. 5 these measures assume: 

• There is a set of services in the database 
which is relevant to the search topic 

• Services are assumed to be either relevant or 
irrelevant 

• The actual retrieval set may not perfectly 
match the set of relevant services. 

 

 
Fig. 5. Available services vs. Retrieved services 

 
RECALL is the ratio of the number of relevant 

services retrieved to the total number of relevant 
services in the database as shown in fig. 6.  

 

A: Number of relevant services 
retrieved 
B: Number of relevant services 
not retrieved 

 
RECALL =  

Fig. 6. Recall rate computation 
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PRECISION is the ratio of the number of 
relevant services retrieved to the total number of 
irrelevant and relevant services retrieved as shown 
in fig. 7.  
 

 

A: Number of relevant services 
retrieved 
C: Number of irrelevant 
services retrieved 

 
PRECISION =  

Fig. 7. Precision rate computation 
 

For the sample test collection used, there are 
about 164 services relevant to the user query. The 
number of relevant and irrelevant services retrieved 
by the various discovery approaches is shown in 
Table 1.  

 
Table 1. Details of Service retrieval 

 
SWS discovery 

frameworks A B C 

NFP matching 19 145 0 
FP matching 24 140 0 
Proposed 
matching 160 4 504* 

* Including even the least relevant services 
 
 

The performance of various approaches namely 
Simple text similarity of Non-functional parameter 
(NFP), Functional parameter (FP) matching and the 
proposed Hybrid matching (Functional Parameter 
(FP) and Non-functional Parameter (NFP)) 
matching based on the recall and precision rates is 
shown in table 2. 

 
Table 2. Precision and Recall rates of various 

discovery frameworks 
 

SWS discovery 
frameworks 

Recall 
(in %) 

Precision 
(in %) 

NFP matching 11.59 100 
FP matching 14.63 100 
Proposed 
matching 97.57 24.1 

 
 
Our proposed approach retrieves 160 highly 

relevant services. The precision rate of the proposed 
approach seems to be low because here the rest of 

the services are considered irrelevant (Though they 
are either relevant or least relevant). Hence, it is 
evident from the above table that the proposed 
hybrid approach for discovery of services based on 
both functional and non-functional parameters is 
efficient when compared to the other two 
approaches. The graphical representation of the 
performance of various discovery frameworks is 
illustrated in fig. 8. 

 

 
Fig. 8. Performance of various discovery 

frameworks 
 
 
The retrieval of related web services based on the 

user query (which may be in either natural language 
or in the form of IOPE parameters or both) by our 
proposed hybrid framework is comparatively high 
than other frameworks. 
 
 
6 Conclusion 
The increasing number of web services on the web 
results in difficulty to discover the required web 
service. To overcome this difficulty and to discover 
the required Semantic web service, a new 
framework is developed. The Semantic web service 
discovery framework proposes a natural language 
based discovery process with matchmaking 
algorithms for searching web services that are 
described using semantically enriched annotations. 
In this work we have introduced a cumulative 
similarity (combination of functional similarity and 
their text similarities) of OWL-S annotated web 
services. Functional (IOPE) similarity is determined 
using bipartite matching of services. To measure 
textual similarity, POS tagging, Word Sense 
Disambiguation and Jaccard similarity is used. To 
summarize, our proposed framework presents a 
discovery mechanism that enables web service 
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discovery based on Input, Output, Preconditions and 
Effects parameters and/or keywords written in 
natural language. Also the experimental results 
show the effectiveness of our proposed approach. 
 
 
7 Future Work 
We have proposed hybrid approach for discovery of 
OWL-S services based on functional and non-
functional parameters. It is one of the efficient 
methods for OWL-S service discovery, but with 
some limitations. Mainly the word sense 
disambiguation process takes a longer time. It is 
evident that the performance of service discovery 
will be significantly reduced when the number of 
services increases. But this discovery framework is 
promising because it has a better recall rate. 
Therefore, our future work will focus on reducing 
the search time by limiting the search space. This 
can be achieved by including a preprocessing 
(filtering - removing irrelevant services) stage 
before the actual discovery process [33]. To achieve 
maximum performance, this preprocessing can be 
performed in a distributed manner. The filtering 
followed by the actual discovery process can be 
performed simultaneously on different domains 
based on the user request. The independent results 
obtained can be finally combined to get the relevant 
services. Thus the spilt-and-merge technique [34] 
can be used to obtain the relevant services. It is 
expected that this technique will significantly reduce 
the search time and provide better results. 
 
 
References: 
[1] David Martin et al., “OWL-S Semantic Markup 

for Web services”, W3C Member Submission, 
22 November 2004, Available at                            
< http://www.w3.org/Submission/OWL-S/>. 

[2] Paolucci, M., Kawamura, T., Payne, T.R., 
Sycara, K.P., “Semantic Matching of web 
service Capabilities”, Springer Verlag, LNCS, 
International Semantic Web Conference, 2002,  
pp. 333 – 347. 

[3] Lei Li and Ian Horrocks, “A software 
framework for matchmaking based on 
Semantic Web technology”, Proceedings of the 
12th   International Conference on WWW, 2003, 
pp. 331-339. 

[4] D. Bianchini, V. D. Antonellis, M. Melchiori, 
D. Salvi, “Semantic-enriched service 
discovery”, Proceedings of IEEE ICDE 2nd 
International Workshop on Challenges in Web 

Information Retrieval and Integration 
(WIRI06), Atlanta, USA, 2006. 

[5] Dong-Wei, B., Chuan-Chang, L., Yong, P., & 
Jun-Liang, C., “Web services matchmaking 
with incremental semantic precision”, Wireless 
communications, networking and mobile 
computing, 2006, pp. 1–4. 

[6] Wang, H., & Li, Z., “A semantic matchmaking 
method of web services based on 
SHOIN+(D)”,  Asia–Pacific conference on 
Services Computing, 2006, pp. 26–33. 

[7] S. Lamparter, A. Ankolekar, “Automated 
selection of configurable web services”, 8. 
Internationale Tagung Wirtschaftsinformatik. 
Universitaetsverlag Karlsruhe, Germany, 2007 

[8] Umesh Bellur, Roshan Kulkarni, “Improved 
Matchmaking Algorithm for Semantic web 
services based on Bipartite Graph Matching”, 
IEEE International Conference on Web 
Services, 2007, pp. 86-93. 

[9] H. Peng, Z. Shi, L. Chang, and W. Niu, 
“Improving Grade Match to Value Match for 
Semantic web service discovery” The IEEE 
International Conference on Natural 
Computation (ICNC), IEEE Computer Society, 
Jinan, China, 2008, pp. 232 -236. 

[10] Gongzhen Wang, Donghong Xu, Yong Qi, Di 
Hou, “A Semantic Match Algorithm for web 
services based on Improved Semantic 
Distance” IEEE, 4th International Conference 
on Next Generation Web Services Practices, 
2008. 

[11] B. Bener, V. Ozadali, and E. S. llhan, 
“Semantic Matchmaker with Precondition and 
Effect Matching Using SWRL”,  Expert 
Systems with Applications, Vol. 36, Issue 5, 
2009. 

[12] M. Liu, Q. Gao, W. Shen, Q. Hao, and I. Van, 
“A Semantic-Augmented Multi-level Matching 
Model of web services", Service Oriented 
Computing and Applications, Vol. 3, Issue 3, 
2009, pp. 205-215. 

[13] K. Klusch M, Fries B, Sycara, “OWLS-MX: A 
Hybrid Semantic web service matchmaker for 
OWL-S services”, Journal of Web Semantics: 
Science, Services and Agents on the WWW, 
Vol. 7, No. 2, 2009, pp. 121–133. 

[14] Georgios Meditskos and Nick Bassiliades, 
“Structural and Role-Oriented web service 
discovery with Taxonomies in OWL-S”, IEEE 
Transaction on Knowledge and Data 
Engineering, Vol. 22, No. 2, 2010, pp. 278 – 
290.  

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 70 Volume 14, 2015



[15] Golsa Heidary, Kamran Zamanifar, Naser 
Nematbakhsh, “A Three phase Semantic Web 
Matchmaker”,  International Journal of Smart 
Home Vol. 4, No.3, 2010. 

[16] Yang Zhang, Fagui Liu, Nan Zhang, “Toward 
Fine Grained Matchmaking of Semantic web 
services based on Concept Similarity”, Journal 
of Information & Computational Science.  Vol. 
8, No.2, 2011, pp. 377-384. 

[17] M. Cai, W. Y. Zhang, & K. Zhang, “ManuHub: 
A Semantic Web System for Ontology-Based 
Service Management in Distributed 
Manufacturing Environments”, IEEE 
Transaction on Systems, Man & Cybernetics-
Part A: Systems & Humans, Vol. 41, No. 3, 
2011. 

[18] Jordy Sangers, Flavius Frasincar, Frederik 
Hogenboom , Vadim Chepegin, “Semantic web 
service discovery using natural language 
processing techniques”, Expert Systems with 
Applications, 40, 2013,     pp.  4660–4671. 

[19] H. Kuhn, “The Hungarian Method for the 
Assignment Problem”, Naval Research 
Logistic Quarterly, 1955. 

[20] Rahul Jain, “Combinatorial Algorithms 
(Algorithms in Bipartite Graphs)”, 2013, 
Available at <www.comp.nus.edu.sg/~rahul 
/.../cs6234-13-combinatorial-algorithm.ppt >. 

[21] Navigli, R., and Velardi, P., “Structural 
semantic interconnections: A knowledge-based 
approach to word sense disambiguation”, IEEE 
Transactions on Pattern analysis and Machine 
intelligence, Vol. 27, 2005, pp. 1075–1086.  

[22] “WordNet – A Lexical database for English”, 
Available at <http://wordnet.princeton.edu/>.  

[23] “Jaccard, P.”, 1901, Available at 
<http://people.revoledu.com/kardi/tutorial/Simi
larity /Jaccard.html>. 

[24] “The Stanford natural language processing 
group. Stanford log-linear part-of-speech 
tagger”, 2009, Available from 
<http://nlp.stanford.edu/software/tagger.shtml> 

[25] Miller, G. A., Beckwith, R., Fellbaum, C., 
Gross, D., & Miller, K., “Introduction to 
WordNet: An on-line lexical database”, 
International Journal of Lexicography, 3(4), 
1990, pp. 235–244. 

[26] Walenz, B., & Didion, J., “JWNL: Java 
WordNet library”, 2011, Available at <http:// 
sourceforge.net/projects/jwordnet/>. 

[27] Finlayson, M., “JWI: The MIT java WordNet 
interface”, 2012, Available at <http:// 
projects.csail.mit.edu/jwi/>. 

[28] Greenwood, M., “JWordNetSim”, 2007, 
Available at <http://nlp.shef.ac.uk/result/ 
software.html>. 

[29] E. Sirin et al., “Pellet: An OWL DL Reasoner”, 
Journal of Web Semantics. 2005. 

[30] “JENA: Java Framework for Building 
Semantic Web Applications”, Available at 
<http://jena.sourceforge.net/.> 

[31] “OWL-S Service Retrieval Test Collection. 
Version 4.0”, Available at <http://projects. 
semweb central.org /projects/ owls-tc/>. 

[32] M. Deepa Lakshmi, Dr. Julia Punitha Malar 
Dhas, “An user-friendly and improved 
Semantic-based web service discovery 
approach using Natural Language Processing 
Techniques”, International Journal of 
Innovative Research in Computer and 
Communication Engineering, Vol. 1, Issue 10, 
December 2013, pp. 2435-2442.  

[33] M. Deepa Lakshmi, Dr. Julia Punitha Malar 
Dhas, “An improved Light-weight 
matchmaking mechanism for discovering 
OWL-S services based on SPARQL, Bipartite 
and NLP approach”, Malaysian Journal of 
Science, Vol. 33, No.1, June 2014, pp. 68-77. 

[34] Szénási, S., "Distributed Implementations of 
Cell Nuclei Detection Algorithm", Recent 
Advances in Image, Audio and Signal 
Processing, WSEAS Press, Budapest, 2013, pp. 
105-109. 

 
 

WSEAS TRANSACTIONS on COMPUTERS M. Deepa Lakshmi, Julia Punitha Malar Dhas

E-ISSN: 2224-2872 71 Volume 14, 2015

http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html
http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html
http://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html



