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Abstract: - Future multi-core systems will execute massive memory intensive applications with significant data 
sharing.  On chip memory latency further increases as more cores are added since diameter of most on chip 
networks increases with increase in number of cores, which makes it difficult to implement caches with single 
uniform access latency, leading to non-uniform cache architectures (NUCA). Data movement and their 
management further impacts memory access latency and consume power. We observed that previous D-NUCA 
design have used a costly data access scheme to search data in the NUCA cache in order to obtain significant 
performance benefits. In this paper, we propose an efficient and implementable data access algorithm for D-
NUCA design using a set of pointers with each bank. Our scheme relies on low-overhead and highly accurate 
in-hardware pointers to reduce miss latency and on-chip network contention. Using simulations of 8-core multi-
core, we show that our proposed data search mechanism in D-NUCA design reduces 40% dynamic energy 
consumed per memory request and outperforms multicast access policy by an average performance speedup of 
6%. 
 
Key-Words: - Non-Uniform Cache Architecture (NUCA), Last Level Cache (LLC), Multi-core Processors 
(CMP) 
 
1 Introduction 

As Multi-core Processors have become the 
predominant topology for the leading processors, 
the critical components including cache of the 
system are also integrated along with processing 
cores on a single chip. Cache hierarchy is of primary 
concern as it can be dominant in controlling overall 
throughput. With advent of every new technology 
there is an exponential increase in multi-core 
processor (CMP) cache sizes accompanied by 
growing on-chip wire delays which makes it 
difficult to implement traditional caches with single, 
uniform access latency. Non-Uniform Cache 
Architecture (NUCA) designs have been proposed 
to address this issue. In order to reduce the 
dominance of wire delays in upcoming new 
fabrication technologies, a NUCA logically divides 
the entire shared cache memory into smaller 
multiple banks where a cache line placed in the 
closer banks are accessed by the processor cores 
with reduced access latencies as compared to cache 
lines in banks that are placed further away from the 
requesting core. Conventionally, non-uniform 
organizations have been classified as static non-

uniform cache architecture (S-NUCA) and dynamic 
non uniform cache architecture (D-NUCA). A cache 
line is always mapped to a fixed unique bank in the 
static organization as compared to dynamic 
organization where a cache line can be mapped in 
different banks of the shared cache. D-NUCA 
provides dynamic features like migration of cache 
line between multiple banks and moves frequently 
accessed data close to the requesting core.  Multiple 
possible locations of data and its migration between 
multiple banks, complicates data access policy in 
the D-NUCA organizations. Previous research from 
both academia and industry proposed different 
schemes to access data in the heavily banked 
caches, which includes prioritizing banks which are 
frequently used, serial access scheme, in this 
scheme all the banks in the bank set are accessed 
serially by starting from the bank that is close to the 
requester core and continues to search the requested 
data block in the other banks, till the data block is 
found, or it results in a miss in the entire NUCA 
cache. This scheme minimizes energy consumption 
at the cost of reduced performance. Finally, parallel 
access scheme, in this scheme the entire bank set is 
accessed in parallel thereby providing much better 
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Fig. 1:  Non-uniform cache architecture (NUCA) 

performance as compared to serial access with 
penalty in-terms of the increased energy 
consumption and on-chip network traffic. However, 
these techniques used costly access scheme [2], [3], 
[4] to search data in the NUCA cache before 
sending request to the upper-level memory. To 
address this problem, in this paper we propose an 
efficient and implementable data access algorithm 
for D-NUCA designs in CMP architectures. It 
utilizes the migration feature and provides fast and 
power efficient access to data which is located in 
any one of the banks of the bank set. Moreover, this 
scheme implements an efficient and low-cost search 
mechanism to reduce miss latency and on-chip 
network traffic.  The rest of the paper is organized 
as follows: The next section describes the related 
work. Section III provides detailed explanation of 
proposed architecture and simulation environment. 
Section IV provides proposed implementation 
details followed by results that are presented in 
section V and finally conclusions are given in 
section VI. 

 
 

2 Related Work 

Research on cache memory organization in chip 
multiprocessors mostly concentrated on the last 
level cache designs. Different proposals have been 
made to manage last level cache as: either private to 
each core, or shared among all the cores or it can be 
a hybrid combination of both shared and private 
organizations [1, 2, 3, 4 and 6]. Private LLC 
organization provides limited cache capacity to a 
thread with large working set size, where as it can 
lead to inefficient cache utilization if some threads 
have small working set sizes. On the other hand, 
shared cache organizations provides flexibility for 
threads to share and store data at different locations 
in the cache and hence provides larger storage for 
applications with large working set size. Shared 
organization, have longer average access latency 
and higher on chip network traffic as compared to 
private organizations, however their off-chip miss 
rate are low as compared to private organization 
because data is not replicated in LLC. The influence 
of wire delays in shared LLC design leads to non-
uniform access latencies. To address this problem of 
non-uniform access latencies, Kim et al. [1] 
introduced the original non uniform cache 
architecture (NUCA) as shown in Fig. 1. In shared 
NUCA, the whole LLC is partitioned into smaller 
banks and it provides nearer cache banks to have 
lower access latencies as compared to farther banks, 

thus mitigating the effects of on chip wire-delays. 
To improve CMP performance with shared D-
NUCA, the capability of migration scheme depends 
on an accurate data access scheme which was 
complex and difficult to implement. The importance 
of data access scheme in dynamic NUCA 
organizations was first emphasized by Kim [1]. 

Although block migration schemes were proposed 
to improve D-NUCA benefits, but it is limited by 
the quality of the bank access scheme with in 
NUCA. This work was further extended by Huh et 
al. [3] on D-NUCA and analyzed different NUCA 
organizations, he also came to the same conclusion 
that, dynamic cache organization performs better 
that the other organizations but data access policy 
becomes a critical issue in the heavily banked 
shared cache designs, since then researchers from 
industry and academia proposed different studies 
using NUCA organization in the literature that 
manage: block placement [3], [10],  [15], [17], block 
migration [13], [15], [26] replacement [16], [31] and 
access  scheme [18], [29]. Multi-core architectures 
brought additional challenges to the multi-banked 
NUCA organization. Chisthi et al. [21] also 
proposed an alternative NUCA design called 
NuRAPID, in which the Last level cache is divided 
into a few large banks instead of many smaller 
banks for higher reliability, efficiency and lower 
data migration rates with further extension to 
accommodate a limited number of cores.  The 
concept of cooperative caching in multi-core 
processor systems was introduced by Chang et al. 
[25], where each processor core has a local L2 cache 
and cache consistency, sharing are achieved by 
listening in on all the L2 cache traffic and 
cooperating in decreasing the conflicts and increase 
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Fig. 2:  Multibank NUCA with bank clusters 

 
Fig. 3:  Each bank holds one way of the set (16-way 

bank set associative) 

the overall capacity. Another variant of NUCA is 
proposed by Liu et al. Beckmann and Wood [3] 
analysis shows that block migration policy is less 
effective for CMP because 40-60% of total hits in 
commercial workloads were satisfied in the central 
banks. A novel Nahalal cache architecture was 
proposed by Guz et al. [24] in which the L2 cache is 
divided into two different partitions: (i) the private 
L2 partition for each core and (ii) and a separate L2 
partition that is shared among all cores [27] by 
introduced a fully shared multi-banked L2 cache in 
which the most frequently shared data blocks are 
placed in a central bank located centrally to all 
cores. In this design, the shared banks are at the 
centre of the processor cores enclose the shared 
elements, and private L2 caches are located close to 
the cores.  Kim et al. [1] analyzed two distinct 
access schemes: incremental search and multi-cast 
access. Incremental access scheme, accesses all the 
banks sequentially from the closest to the farthest 
bank, whereas multi-cast search accesses all the 
NUCA banks in parallel. Another way to improve 
data access algorithm is to introduce tag replication 
information along the NUCA cache [3], [5], [15], 
but this approach leads to increased access time, 
energy consumption and die area. Muralimanohar et 
al. [17] alleviates the interconnection delay 
bottleneck. They proposed the use of two different 
physical wires to connect NUCA banks, one of 
these wires provided lower latency and the other 
provides wider bandwidth. Abhishek et al. [30] 
proposed dynamic directories to eliminate large 
fraction of on-chip interconnect traversals and 
reduce power consumption. Akioka et al. [29] 
divided the entire NUCA into rings to denote a set 
of banks that exhibit the same access latency and 
introduced a Last Access based policy. This policy 
first accesses the ring that satisfied the previous 
request for the same data. They showed that, 
compared with parallel and serial access, LAB 
reduces energy consumption while maintaining 
similar performance. However, an accurate 
implementation is not addressed in terms of die area 
and access time. Keun et al. [32] argues that thread 
migration can better exploit shared data locality for 
NUCA design but it requires complex online 
predictors. 
 
 
3 Search Policy: Owner bank tracks 
data movement  
3.1 Baseline Architecture 
We base our design on a distributed shared LLC 
design derived from Kim et al.’s Dynamic non-

uniform cache architecture [1]. The shared L2 cache 
is distributed on the chip in multiple banks and these 
multiple banks are inter-connected via on-chip 2D 
mesh interconnection network. This cache 
organization is not a limitation, as the policy we 
explain can easily apply to different cache 
organizations. We first define few terms to ease 
describing our baseline architecture. 

Owner Bank: The bank in which data is mapped 
first time during off-chip access using address 
mapping scheme. 

Bank clusters: A group of eight banks compose a 
bank cluster and the entire NUCA banks (128 
banks) are divided into 16 bank cluster shown by 
red dotted box in Fig. 2. Each bank cluster consists 
of a single bank of each bank set. 

 

Bank set: All the banks that compose NUCA cache 
are treated as a set-associative structure as shown in 
Fig. 3, where in each bank holds one way of the set, 
which is called as bank sets.  
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Fig. 4:  Address Interpretation 

As shown in Fig. 3, the entire NUCA cache is 
partitioned into 128 banks, which is logically 
organized into 16-way bank-set associative structure 
(Grey color banks constitute a bank set). Now, the 
groups of eight banks (bank cluster) that are located 
close to the cores are called local banks whereas the 
other eight banks that are located at the center of the 
NUCA cache are called central banks. Therefore, in 
bank-set associative NUCA cache a data block can 
have 16 possible placements (eight local banks and 
eight central banks). The address mapping of the 
incoming data block during first reference when it 
comes from off chip memory is statically 
predetermined by selecting lower bits of the data 
block address as shown in Fig. 4.  

 

The LRU data block in the referenced set of this 
bank would be evicted if the set is completely 
occupied by data blocks. Once the data block is in 
the bank of NUCA cache, the migration policy is 
used to determine its optimal position.  We assume 
gradual promotion as migration policy for data 
blocks that has been widely used in the literature 
[2], [3]. Gradual migration moves data block one 
step close to the core that has initiated the memory 
request. In Ideal D-NUCA, a data block can be 
mapped into any cache bank to maximize placement 
flexibility of the block. However, the overhead of 
searching a data block in that scenario may be too 
large as each bank in entire NUCA must be 
searched. This can be done either through a 
centralized tag store or by broadcasting the tags to 
all the banks. To address this issue, our baseline 
architecture allows data blocks to be mapped 
(migrated) only to one bank-set. Our baseline D-
NUCA design uses a two-step multicast data access 
algorithm. In the First step, it broadcasts a block 

request to the local banks that are close to the core 
that has launched the memory request, and to the 
eight other banks in the bank set called central 
banks. If all nine requests results in a miss, then in 
second step, the request is sent in parallel to the 
remaining seven banks from the requested data’s 
bank-set. Finally, if the request misses in the 
remaining 7 banks, then the request would be 
forwarded to the off-chip memory. Therefore, when 
we evaluate NUCA further, we will assume the 
same NUCA architecture described above in this 
section, but we will use our proposed data access 
algorithm to find the exact location of data instead 
of the two step multicast data access algorithm.  
 
3.1.2 Owner Bank 
In the proposed scheme, the owner banks keep track 
of a set of data blocks within the multi-banked 
NUCA cache. Before explaining the access policy, 
we introduced the term owner which should first be 
explained to better understand the rest of the 
scheme. Multiple banks from different bank clusters 
compose a bank-set and a cache line can be placed  
in any of these banks in the bank-set as shown in 
Fig. 3, but only one of the banks in the bank-set is 
called its owner bank in NUCA. The ownership of 
the data block is statically determined using the 
lower bits of the data block’s address described in 
Fig. 4. Therefore, each bank in heavily banked 
cache acts as owner bank, and every individual bank 
manages equal number of data blocks. The owner 
bank keeps track of which other NUCA banks have 
the data blocks that it manages. For dynamic 
tracking of data movement within bank set, a set of 
bits are used to point to the other banks called owner 
pointers, it assigns a single bit to each bank from the 
bank-set so that there are 16 extra bits within a set. 
If the data block is migrated from owner bank to 
some other bank, then the corresponding bit is set to 
1. If the bit is zero, it means none of the data block 
from this owner bank is moved to some other bank. 
So, there are 16 bits that acts as a pointer for each 
cache-set in the NUCA bank. We have used pointer 
at the cache-set level to increase the precision of our 
search policy to reduce on-chip network traffic 
which in turn improves access latency. 
 
3.1.3 Working of the Proposed Scheme 
The working of the proposed access policy along 
with the details to owner pointer management tasks 
is presented in this section.  As a result of 
compulsory miss, a data block is fetched in the 
cache hierarchy. After its initial placement in owner 
bank the migration policy moves data blocks in the 
multiple banks in bank-sets depending on the 
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Fig. 5:  Multibank NUCA with set pointers 

workload. This makes data search a key challenge 
as a data block can be in local banks or in central 
banks. In order to utilize benefits offered by 
migration feature, the L2 cache controller are 
designed to start search  mechanism into the closest 
NUCA bank of the requesting core, where the data 
block can be placed within the cache with reduced 
access latency. Now, if the cache line is found then 
this closest bank will send the requested cache line 
to the requesting core with minimum access latency 
and on-chip network usage. In case of a miss, the 
request is passed to the owner bank of the cache 
line. Now again a fresh search starts by accessing 
the requested data's owner bank in NUCA by using 
the lower address bits of the block address.  If the 
requested data block is found, the request results in 
a hit and the block is forwarded to the requesting 
core and the search scheme is completed. In case of 
a miss in owner bank, the owner bank checks the 
corresponding set pointer to identify which other 
banks in the bank set may store requested data 
block. Then in the next step the request is 
forwarded, in parallel to all these banks in bank-set 
which have their bit sets to 1 in the corresponding 
set pointer as shown in Fig. 5. In case of hit in any 
of the bank in the corresponding bank set, the block 
is forwarded to the requesting core and the search is 
complete. This reduces the on-chip traffic as the 
memory request is forwarded to only few banks in 
parallel instead of sending it to all the remaining 
banks. In the worst case, if the cache line is not 
found, the request is finally forwarded to the main 
memory. In our analysis we have considered few 
special cases, that further accelerate the proposed 
data access scheme. For example, during the initial 
search into the bank closer to the core, the same 
bank is actually the requested data block’s owner 

bank, which results in reduced steps in the search 
policy. In another special case, if none of the bits 
from set pointer in the owner bank is set (0), then 
the request would be forwarded to the main 
memory. Algorithm-1 demonstrates how lookup 
carried out on every reference from the cores. Let 
the set C = {C0, C1, C2, C3, C4, C5, C6, C7} represent 
the cores as described in the baseline NUCA 
architecture. Let L1 = { L10, L11, L12, L14, L15, L16, 
L17} be the respective private L1 caches. We use 
BC local  and BC owner  to refer to the local and owner 
bank-clusters respectively. Also assumed is a LRU 
based replacement policy, implemented using a 
queue. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Algorithm 1## To be carried out on every request 
1: function handle Read/ write Request 
2: INPUT:  ReadReq j from Ci є  C 
3:Begin: 
4:Lookup  L1i  
5:if (hit) 
6:Load cacheLine j 
7:LRUQueueset .movetoEnd (cacheLine j) 
8:else 
9:Fwd ReadReq j →   BC local   
10:if (hit) 
11:Load CacheLinej 
12:LRUQueueset .movetoEnd (cacheLine j) 
13:else // local bank-cluster miss 
14:send request to the owner bank 
15:if (hit) 
16: send CacheLinej  to the requesting core  
17: LRUQueueset .movetoEnd (cacheLine j) 
18: else (miss in owner banks) 
19: lookup set-pointers in the corresponding set 
20: if status (set pointer bits) =1 
21:send request in parallel to all the banks (step 20) 
22: if (hit) 
23: send CacheLinej  to the requesting core  
24: LRUQueueset .movetoEnd (cacheLine j) 
25 : else (miss)  
26:Fwd ReadReq j → off-chip memory  
27:endif 
27:endif 
28:endif 
29:endif 
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3.1.4 Managing Set Pointers 
To ensure the correct operation and accuracy of this 
data search policy, the set pointers keeps the 
updated status. For example, during migration, a 
block is moved from one bank to the other bank, 
therefore to dynamically update pointer bits in the 
corresponding set of the owner bank, an update 
message is sent to the owner bank. In other case, if 
this cache line is evicted then the owner bank must 
be notified, to reset the corresponding bits in the set 
pointer. There are only few cases that require set 
pointer update: 1) a new data entry to the bank 
during first reference, 2) a data block eviction from 
the cache bank, and 3) a data block migration to the 
other banks.  During initial data placement in the 
owner bank from main memory, the set pointer 
update is not necessary. However, in case of the 
cache line eviction from a bank, the corresponding 
owner bank must be notified dynamically to update 
set pointer. When an incoming data block enters to 
the NUCA bank from the upper-level memory, it is 
mapped to its owner bank, thus updating the set 
pointer is not necessary.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, if there is an eviction in a bank then set 
pointer must be updated by sending a notification 
message to the corresponding owner bank. Finally 
in order to ensure correctness and efficiency the 
cache line movements must be synchronized with 
the modifications made to the set pointers, to 
prevent misalignments that provoke extra network 
messages, but it does maintains the correctness of 
the proposed scheme. Algorithm-2 demonstrates 
how to keep track of the migrated blocks. 

 
3.1.5 Cache Coherence Protocol 
Our work is based on a directory protocol and this 
protocol does not need ordered interconnect to 
satisfy coherency. We also believe that future CMP 
will be based on directory like structure to provide 
coherence and it can scale to large on chip cores. To 
sustain correctness and to implement different read 
and write scenarios, cache coherence protocols 
utilize transition states. Our protocol 
implementation inherits such transition states from 
the baseline cache coherence protocols and used 
these transient states to maintain coherent view and 
correctness. In the proposed cache access scheme, 
for any cache line that does not exhibit a complex 
sharing and therefore search mechanism, the 
implemented protocol works similar to the baseline 
cache coherence protocol which is basically 
enforcing a write-invalidate policy for all cache 
lines in the shared NUCA. Our proposed scheme 
along with protocols is implemented on top of the 
write-invalidate directory protocol, which is 
modified baseline MOESI protocol. The exclusive 
state (clean) obviates upgrade misses to non-shared 
data. Race conditions are handled using busy or 
active states for each request. Fig. 6, briefly 
describes how a write-invalidate based protocol 
works for a simple data sharing example. The 
arrows present a specific location in the system with 
hypothetical time line. From left to right, these 
locations are the requester core, the L2 shared cache 
which also includes the directory that is co-located, 
the consumer cores, and the main memory. For 
clarity, the example assumes a single requesting 
core a single consumer core of the cache line. Also, 
the cache line is assumed to be loaded and modified 
earlier so that the cache line actually exists in the 
requester’s cache. Similarly, the cache line also 
exists in the shared L2 cache. We assume the initial 
state of the cache line is OWNED in the requester’s 
cache and SHARED in the consumer’s core cache. 

Algorithm 2 ## Block ownership (owner bank)  
1: function handle set pointers at owner bank 
2: INPUT:  ReadReq j from Ci є C 
3:Begin: 
4:Lookup  L1i  
5:if (compulsory Miss)  
6: Fwd ReadReq j → off-chip memory  
7: Block allocation (depending on address) 
8:  set bank as owner bank of the block 
8:s send CacheLinej  to the requesting core C 
9:else (non compulsory miss) 
10:  Fwd ReadReq j →   BC local  
11:  execute (algorithm-1) 
12: endif 
13: if (frequent request from Cj,k,l belongs to C) 
14:  migration algorithm 
15:  notification send to owner bank 
16:  update corresponding set-pointer 
17:elsif (data block eviction) 
18: lookup entire set 
19: if (another block from same owner bank) 
20: silent eviction 
21: else  
22: notification send to owner bank 
23: update corresponding set-pointer  
24: insert new cacheline 
25: LRUQueueset .movetoEnd (cacheLine j) 
26:endif 
27:endif 
28:endif 
 

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 43 Volume 14, 2015



 
Fig. 6:  Directory based write invalidation Protocol 

 
Fig. 7:  Directory based write invalidation Protocol 

Table I.  System Configuration 

 
 

The directory is co-located with each cache line and 
it tracks different cores. Fig. 7, shows how a request 
is forwarded to the L2 bank containing data block 
with a sequence diagram. 

 
3.1.6 Verification of Coherence Protocol 
Modified MESI based directory protocol relies on 
the baseline coherence protocol for correctness. 
However, the modifications made to the base MESI 
protocol can easily create race conditions which 
need to be verified and tested. For the verification, 
we have utilized the stress tests provided by GEMS 
tools set. This synthetic testing mechanism 
generates excessive race conditions on the cache 
coherence protocol to identify potential coherence 
bugs.  

 
4 Experimental setup 
 
In this section, we describe our evaluation 
methodology and all the results are obtained with 
the system configuration described in Table I. 
 
4.1.1 Simulation Environment 
 We simulate the entire system using virtutech 
simics full-system simulator [6] extended with the 
GEMS toolset [4].  GEMS is an event driven 
simulator that provides a complete memory-system 
timing model that enabled us to model the multi-
banked NUCA cache architecture. Furthermore, the 
RUBY memory system simulator provides support 
to implement baseline system memory hierarchy.  

 

This includes on chip interconnection network 
parameters, bank access time, mapping, replacement 
policies etc. In ruby each cache bank has its own 
controller and using domain specific language called 
SLICC we can specify with precision the coherence 
protocol. This environment allows us to simulate a 
complete multiprocessor system that is running a 
commercial operating system without any 
modification and it accurately models the network 
contention introduced during the simulation. The 
simulated system is organized as a single CMP that 
consists of eight UltraSPARC IIIi homogeneous 
cores with layout depicted in Fig. 2. Each processor 
core has its own first-level cache (data and 
instructions) and is connected to a node of the 
network. The Last level of the memory hierarchy is 
the D-NUCA distributed in 128 banks connected to 
the cores via switches. We used MOESI based 
directory protocol to maintain correctness and 
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Table II.  Benchmarks 

 
 

robustness in the memory subsystem. The main 
system configuration parameters used in our 
simulations are shown in Table I. To quantitatively 
analyze the proposed scheme, we used two different 
scenarios: 1) Multi-programmed and 2) Parallel 
applications. The first one executes in parallel a set 
of eight different SPEC CPU2006 workloads with 
the reference input and fast forwarded to the 
beginning of the main loops. Table II outlines the 
workloads that make up this scenario. The Parallel 
workload simulates the complete set of applications 
from the PARSEC v2.0 benchmark suite [8] with 
the simlarge input data sets. This benchmark suite 
contains 13 programs from different areas such as, 
computer vision, image processing, financial 
analytics, video encoding and animation physics. 

The method for the simulations involves first 
skipping both the initialization and thread creation 
phases, and then fast-forwarding while warming up 
the cache for 500 million cycles. Then finally, we 
performed a detailed simulation for 500 million 
cycles. We use the aggregate number of user 
instructions committed per cycle as performance 
metric, which is proportional to the overall system 
throughput [28]. 

 
4.1.2 Energy Calculations 
To evaluate the energy consumed by the multi-
banked NUCA cache and the off-chip memory. We 
used a similar energy model to that adopted by 
Bardine et al. [10] which allowed us to calculate the 

dynamic energy dissipated by the banks in LLC 
cache in addition to energy required to access the 
off-chip memory. As shown below, the total energy 
consumed by the NUCA memory system is the sum 
of all three components:  

E Dynamic = E network + E banks + E off−chip 

Therefore, total dynamic energy consumed is the 
sum of the dynamic energy consumed by the NUCA 
cache, which is energy consumed in network plus 
the static energy consumed in banks and also the 
energy dissipated during the off-chip memory 
(Off−chip).  CACTI 6.0 has been used to compute 
energy dissipated in banks, while GEMS toolset also 
integrates a power model based on Orion [10] that is 
used to evaluate the dynamic power consumed by 
the on-chip network (Energy in network). Energy 
consumed per memory access is the metrics and it is 
based on the energy per instruction (EPI) metric 
[23] which is commonly used for the analysis of the 
energy consumed by the whole processor. This 
metric works independently of the amount of time 
required to process an instruction and is ideal for 
throughput performance.   

 
5 Results 
 
This section analyses the impact on performance 
and hardware overhead using the proposed bank 
access policy with set ownership pointer in the 
baseline architecture.  
 
5.1.1 Performance Improvement 
We used two separate scenarios to analyze the 
performance results obtained with our proposed 
scheme. In the first case we have selected 
applications from the parsec benchmark that shows 
high cache miss rate like streamcluster, canneal, 
vips and multiple applications from SPEC2006 to 
make workload. We have observed that our scheme 
outperforms the baseline architecture scheme by 8% 
as shown in Fig. 8. By taking advantage of set 
pointers with owner bank, memory requests are 
directly forwarded and satisfied by only accessing 
the cache banks that can have the requested data 
which significantly lowers network traffic, 
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Fig. 10: Dynamic Energy 

 
Fig. 9:  Network Contention 

 

Fig. 8:  Normalized Performance 

thus it reduces time to resolve cache miss before the 
request is forwarded to the main memory. 
Therefore, for the applications with higher miss 
rates, the impact on the performance is even better. 
In the second scenario, we have observed 
applications with low miss rate, like raytrace, dedup, 
swaptions and x264. In this scenario both the 
scheme take equal access latencies when request hit 
in the closest banks. While the two-step multicast 
scheme introduces 8 extra messages to the on chip 
network whereas set pointer scheme sends only one 
message to the network. Therefore, this scheme 
reduces congestion as shown in Fig. 9, due to reduce 
on chip network traffic (on average 45%) and results 
in performance improvement of nearly 4% as 
compared to baseline architecture.  

We have observed negligible performance 
improvement for the applications with very high hit 
rate like bodytrack. We assume that the applications 
running on future processors will follow the first 
case: where workloads with large working sets and 
multiple applications will run simultaneously. Fig. 
8, shows the performance improvement obtained 
with the set pointers that we evaluated, as compared 
to baseline architecture. We found that our proposed 

scheme outperforms two-step multicast scheme by 
an average of 6%.  In general our scheme improves 
performance for almost all the PARSEC 
applications, by achieving more than 8-10% 
improvement in canneal, ferret, streamcluster 
applications. In case of SPEC2006 multi 
programmed workloads an average improvement of 
10% is observed. 

 
5.1.2 Energy Results 
Fig. 10, shows the dynamic energy consumption of 
each benchmark using the proposed data access 
scheme relative to the baseline two-step multicast 
data access scheme. The energy reduction can be 
primarily attributed to the reduction in network 
traffic. It is important to note that our energy model 
does not account for the off-chip memory. 
Therefore, for benchmarks where our proposal 
improves the L2 performance, the energy benefits 
will in fact be higher. We observed that the 
proposed scheme improves energy consumption of 
the NUCA cache by more than 40% as compared to 
the two-step data access in baseline architecture.  

To summarize, the proposed data access scheme 
provides reduced energy consumption and increased 
performance as compared to the two-step multicast 
scheme. It is important to balance the on chip data 
locality and off-chip miss rate and overall our 
scheme achieves the best trade-off. 
 
5.1.3 Set Pointer Implementation overhead 
This search policy requires additional hardware to 
implement set pointers. As shown in Fig. 5, the set 
pointers requires 256 bytes for each bank, so as per 
our baseline configuration with 128 banks and total 
shared cache size of 8 Mb, the extra bytes required 
by set pointer is nearly 32 Kb, which adds extra 
1.2% of the total cache size.  In addition to extra 
storage, the proposed scheme requires extra 
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comparators which slightly complicate cache 
design. This data search scheme is proposed for 
heavily-banked cache architecture, but it can be 
easily adapted to tiled multi-core architectures. 
 
 
6 Conclusions 
 
Future chip multiprocessors will be based on tiled 
architectures with large shared L2 cache. The 
increasing wire delay makes data locality a key 
performance bottleneck. Many existing data 
migration schemes for NUCA caches succeed in 
concentrating the most frequently accessed data in 
the banks with the smallest access latency.  
However, this migration of data blocks increases 
complexity of data access policy. In order to address 
this situation, we have proposed a data access 
policy. This hybrid policy uses both serial and 
parallel search to probe NUCA banks with optimal 
access latency and make D-NUCA promising non 
uniform cache architecture. 
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