
An Efficient Data Access Policy in shared Last Level Cache

 NITIN CHATURVEDI S GURUNARAYANAN
 EEE, Department EEE, Department
 Birla Institute of Technology & Science Birla Institute of Technology & Science
 Pilani, INDIA Pilani, INDIA
 nitin80@bits-pilani.ac.in sguru@bits-pilani.ac.in

Abstract: - Future multi-core systems will execute massive memory intensive applications with significant data
sharing. On chip memory latency further increases as more cores are added since diameter of most on chip
networks increases with increase in number of cores, which makes it difficult to implement caches with single
uniform access latency, leading to non-uniform cache architectures (NUCA). Data movement and their
management further impacts memory access latency and consume power. We observed that previous D-NUCA
design have used a costly data access scheme to search data in the NUCA cache in order to obtain significant
performance benefits. In this paper, we propose an efficient and implementable data access algorithm for D-
NUCA design using a set of pointers with each bank. Our scheme relies on low-overhead and highly accurate
in-hardware pointers to reduce miss latency and on-chip network contention. Using simulations of 8-core multi-
core, we show that our proposed data search mechanism in D-NUCA design reduces 40% dynamic energy
consumed per memory request and outperforms multicast access policy by an average performance speedup of
6%.

Key-Words: - Non-Uniform Cache Architecture (NUCA), Last Level Cache (LLC), Multi-core Processors
(CMP)

1 Introduction

As Multi-core Processors have become the
predominant topology for the leading processors,
the critical components including cache of the
system are also integrated along with processing
cores on a single chip. Cache hierarchy is of primary
concern as it can be dominant in controlling overall
throughput. With advent of every new technology
there is an exponential increase in multi-core
processor (CMP) cache sizes accompanied by
growing on-chip wire delays which makes it
difficult to implement traditional caches with single,
uniform access latency. Non-Uniform Cache
Architecture (NUCA) designs have been proposed
to address this issue. In order to reduce the
dominance of wire delays in upcoming new
fabrication technologies, a NUCA logically divides
the entire shared cache memory into smaller
multiple banks where a cache line placed in the
closer banks are accessed by the processor cores
with reduced access latencies as compared to cache
lines in banks that are placed further away from the
requesting core. Conventionally, non-uniform
organizations have been classified as static non-

uniform cache architecture (S-NUCA) and dynamic
non uniform cache architecture (D-NUCA). A cache
line is always mapped to a fixed unique bank in the
static organization as compared to dynamic
organization where a cache line can be mapped in
different banks of the shared cache. D-NUCA
provides dynamic features like migration of cache
line between multiple banks and moves frequently
accessed data close to the requesting core. Multiple
possible locations of data and its migration between
multiple banks, complicates data access policy in
the D-NUCA organizations. Previous research from
both academia and industry proposed different
schemes to access data in the heavily banked
caches, which includes prioritizing banks which are
frequently used, serial access scheme, in this
scheme all the banks in the bank set are accessed
serially by starting from the bank that is close to the
requester core and continues to search the requested
data block in the other banks, till the data block is
found, or it results in a miss in the entire NUCA
cache. This scheme minimizes energy consumption
at the cost of reduced performance. Finally, parallel
access scheme, in this scheme the entire bank set is
accessed in parallel thereby providing much better

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 38 Volume 14, 2015

Fig. 1: Non-uniform cache architecture (NUCA)

performance as compared to serial access with
penalty in-terms of the increased energy
consumption and on-chip network traffic. However,
these techniques used costly access scheme [2], [3],
[4] to search data in the NUCA cache before
sending request to the upper-level memory. To
address this problem, in this paper we propose an
efficient and implementable data access algorithm
for D-NUCA designs in CMP architectures. It
utilizes the migration feature and provides fast and
power efficient access to data which is located in
any one of the banks of the bank set. Moreover, this
scheme implements an efficient and low-cost search
mechanism to reduce miss latency and on-chip
network traffic. The rest of the paper is organized
as follows: The next section describes the related
work. Section III provides detailed explanation of
proposed architecture and simulation environment.
Section IV provides proposed implementation
details followed by results that are presented in
section V and finally conclusions are given in
section VI.

2 Related Work

Research on cache memory organization in chip
multiprocessors mostly concentrated on the last
level cache designs. Different proposals have been
made to manage last level cache as: either private to
each core, or shared among all the cores or it can be
a hybrid combination of both shared and private
organizations [1, 2, 3, 4 and 6]. Private LLC
organization provides limited cache capacity to a
thread with large working set size, where as it can
lead to inefficient cache utilization if some threads
have small working set sizes. On the other hand,
shared cache organizations provides flexibility for
threads to share and store data at different locations
in the cache and hence provides larger storage for
applications with large working set size. Shared
organization, have longer average access latency
and higher on chip network traffic as compared to
private organizations, however their off-chip miss
rate are low as compared to private organization
because data is not replicated in LLC. The influence
of wire delays in shared LLC design leads to non-
uniform access latencies. To address this problem of
non-uniform access latencies, Kim et al. [1]
introduced the original non uniform cache
architecture (NUCA) as shown in Fig. 1. In shared
NUCA, the whole LLC is partitioned into smaller
banks and it provides nearer cache banks to have
lower access latencies as compared to farther banks,

thus mitigating the effects of on chip wire-delays.
To improve CMP performance with shared D-
NUCA, the capability of migration scheme depends
on an accurate data access scheme which was
complex and difficult to implement. The importance
of data access scheme in dynamic NUCA
organizations was first emphasized by Kim [1].

Although block migration schemes were proposed
to improve D-NUCA benefits, but it is limited by
the quality of the bank access scheme with in
NUCA. This work was further extended by Huh et
al. [3] on D-NUCA and analyzed different NUCA
organizations, he also came to the same conclusion
that, dynamic cache organization performs better
that the other organizations but data access policy
becomes a critical issue in the heavily banked
shared cache designs, since then researchers from
industry and academia proposed different studies
using NUCA organization in the literature that
manage: block placement [3], [10], [15], [17], block
migration [13], [15], [26] replacement [16], [31] and
access scheme [18], [29]. Multi-core architectures
brought additional challenges to the multi-banked
NUCA organization. Chisthi et al. [21] also
proposed an alternative NUCA design called
NuRAPID, in which the Last level cache is divided
into a few large banks instead of many smaller
banks for higher reliability, efficiency and lower
data migration rates with further extension to
accommodate a limited number of cores. The
concept of cooperative caching in multi-core
processor systems was introduced by Chang et al.
[25], where each processor core has a local L2 cache
and cache consistency, sharing are achieved by
listening in on all the L2 cache traffic and
cooperating in decreasing the conflicts and increase

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 39 Volume 14, 2015

Fig. 2: Multibank NUCA with bank clusters

Fig. 3: Each bank holds one way of the set (16-way

bank set associative)

the overall capacity. Another variant of NUCA is
proposed by Liu et al. Beckmann and Wood [3]
analysis shows that block migration policy is less
effective for CMP because 40-60% of total hits in
commercial workloads were satisfied in the central
banks. A novel Nahalal cache architecture was
proposed by Guz et al. [24] in which the L2 cache is
divided into two different partitions: (i) the private
L2 partition for each core and (ii) and a separate L2
partition that is shared among all cores [27] by
introduced a fully shared multi-banked L2 cache in
which the most frequently shared data blocks are
placed in a central bank located centrally to all
cores. In this design, the shared banks are at the
centre of the processor cores enclose the shared
elements, and private L2 caches are located close to
the cores. Kim et al. [1] analyzed two distinct
access schemes: incremental search and multi-cast
access. Incremental access scheme, accesses all the
banks sequentially from the closest to the farthest
bank, whereas multi-cast search accesses all the
NUCA banks in parallel. Another way to improve
data access algorithm is to introduce tag replication
information along the NUCA cache [3], [5], [15],
but this approach leads to increased access time,
energy consumption and die area. Muralimanohar et
al. [17] alleviates the interconnection delay
bottleneck. They proposed the use of two different
physical wires to connect NUCA banks, one of
these wires provided lower latency and the other
provides wider bandwidth. Abhishek et al. [30]
proposed dynamic directories to eliminate large
fraction of on-chip interconnect traversals and
reduce power consumption. Akioka et al. [29]
divided the entire NUCA into rings to denote a set
of banks that exhibit the same access latency and
introduced a Last Access based policy. This policy
first accesses the ring that satisfied the previous
request for the same data. They showed that,
compared with parallel and serial access, LAB
reduces energy consumption while maintaining
similar performance. However, an accurate
implementation is not addressed in terms of die area
and access time. Keun et al. [32] argues that thread
migration can better exploit shared data locality for
NUCA design but it requires complex online
predictors.

3 Search Policy: Owner bank tracks
data movement
3.1 Baseline Architecture
We base our design on a distributed shared LLC
design derived from Kim et al.’s Dynamic non-

uniform cache architecture [1]. The shared L2 cache
is distributed on the chip in multiple banks and these
multiple banks are inter-connected via on-chip 2D
mesh interconnection network. This cache
organization is not a limitation, as the policy we
explain can easily apply to different cache
organizations. We first define few terms to ease
describing our baseline architecture.

Owner Bank: The bank in which data is mapped
first time during off-chip access using address
mapping scheme.

Bank clusters: A group of eight banks compose a
bank cluster and the entire NUCA banks (128
banks) are divided into 16 bank cluster shown by
red dotted box in Fig. 2. Each bank cluster consists
of a single bank of each bank set.

Bank set: All the banks that compose NUCA cache
are treated as a set-associative structure as shown in
Fig. 3, where in each bank holds one way of the set,
which is called as bank sets.

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 40 Volume 14, 2015

Fig. 4: Address Interpretation

As shown in Fig. 3, the entire NUCA cache is
partitioned into 128 banks, which is logically
organized into 16-way bank-set associative structure
(Grey color banks constitute a bank set). Now, the
groups of eight banks (bank cluster) that are located
close to the cores are called local banks whereas the
other eight banks that are located at the center of the
NUCA cache are called central banks. Therefore, in
bank-set associative NUCA cache a data block can
have 16 possible placements (eight local banks and
eight central banks). The address mapping of the
incoming data block during first reference when it
comes from off chip memory is statically
predetermined by selecting lower bits of the data
block address as shown in Fig. 4.

The LRU data block in the referenced set of this
bank would be evicted if the set is completely
occupied by data blocks. Once the data block is in
the bank of NUCA cache, the migration policy is
used to determine its optimal position. We assume
gradual promotion as migration policy for data
blocks that has been widely used in the literature
[2], [3]. Gradual migration moves data block one
step close to the core that has initiated the memory
request. In Ideal D-NUCA, a data block can be
mapped into any cache bank to maximize placement
flexibility of the block. However, the overhead of
searching a data block in that scenario may be too
large as each bank in entire NUCA must be
searched. This can be done either through a
centralized tag store or by broadcasting the tags to
all the banks. To address this issue, our baseline
architecture allows data blocks to be mapped
(migrated) only to one bank-set. Our baseline D-
NUCA design uses a two-step multicast data access
algorithm. In the First step, it broadcasts a block

request to the local banks that are close to the core
that has launched the memory request, and to the
eight other banks in the bank set called central
banks. If all nine requests results in a miss, then in
second step, the request is sent in parallel to the
remaining seven banks from the requested data’s
bank-set. Finally, if the request misses in the
remaining 7 banks, then the request would be
forwarded to the off-chip memory. Therefore, when
we evaluate NUCA further, we will assume the
same NUCA architecture described above in this
section, but we will use our proposed data access
algorithm to find the exact location of data instead
of the two step multicast data access algorithm.

3.1.2 Owner Bank
In the proposed scheme, the owner banks keep track
of a set of data blocks within the multi-banked
NUCA cache. Before explaining the access policy,
we introduced the term owner which should first be
explained to better understand the rest of the
scheme. Multiple banks from different bank clusters
compose a bank-set and a cache line can be placed
in any of these banks in the bank-set as shown in
Fig. 3, but only one of the banks in the bank-set is
called its owner bank in NUCA. The ownership of
the data block is statically determined using the
lower bits of the data block’s address described in
Fig. 4. Therefore, each bank in heavily banked
cache acts as owner bank, and every individual bank
manages equal number of data blocks. The owner
bank keeps track of which other NUCA banks have
the data blocks that it manages. For dynamic
tracking of data movement within bank set, a set of
bits are used to point to the other banks called owner
pointers, it assigns a single bit to each bank from the
bank-set so that there are 16 extra bits within a set.
If the data block is migrated from owner bank to
some other bank, then the corresponding bit is set to
1. If the bit is zero, it means none of the data block
from this owner bank is moved to some other bank.
So, there are 16 bits that acts as a pointer for each
cache-set in the NUCA bank. We have used pointer
at the cache-set level to increase the precision of our
search policy to reduce on-chip network traffic
which in turn improves access latency.

3.1.3 Working of the Proposed Scheme
The working of the proposed access policy along
with the details to owner pointer management tasks
is presented in this section. As a result of
compulsory miss, a data block is fetched in the
cache hierarchy. After its initial placement in owner
bank the migration policy moves data blocks in the
multiple banks in bank-sets depending on the

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 41 Volume 14, 2015

Fig. 5: Multibank NUCA with set pointers

workload. This makes data search a key challenge
as a data block can be in local banks or in central
banks. In order to utilize benefits offered by
migration feature, the L2 cache controller are
designed to start search mechanism into the closest
NUCA bank of the requesting core, where the data
block can be placed within the cache with reduced
access latency. Now, if the cache line is found then
this closest bank will send the requested cache line
to the requesting core with minimum access latency
and on-chip network usage. In case of a miss, the
request is passed to the owner bank of the cache
line. Now again a fresh search starts by accessing
the requested data's owner bank in NUCA by using
the lower address bits of the block address. If the
requested data block is found, the request results in
a hit and the block is forwarded to the requesting
core and the search scheme is completed. In case of
a miss in owner bank, the owner bank checks the
corresponding set pointer to identify which other
banks in the bank set may store requested data
block. Then in the next step the request is
forwarded, in parallel to all these banks in bank-set
which have their bit sets to 1 in the corresponding
set pointer as shown in Fig. 5. In case of hit in any
of the bank in the corresponding bank set, the block
is forwarded to the requesting core and the search is
complete. This reduces the on-chip traffic as the
memory request is forwarded to only few banks in
parallel instead of sending it to all the remaining
banks. In the worst case, if the cache line is not
found, the request is finally forwarded to the main
memory. In our analysis we have considered few
special cases, that further accelerate the proposed
data access scheme. For example, during the initial
search into the bank closer to the core, the same
bank is actually the requested data block’s owner

bank, which results in reduced steps in the search
policy. In another special case, if none of the bits
from set pointer in the owner bank is set (0), then
the request would be forwarded to the main
memory. Algorithm-1 demonstrates how lookup
carried out on every reference from the cores. Let
the set C = {C0, C1, C2, C3, C4, C5, C6, C7} represent
the cores as described in the baseline NUCA
architecture. Let L1 = { L10, L11, L12, L14, L15, L16,
L17} be the respective private L1 caches. We use
BC local and BC owner to refer to the local and owner
bank-clusters respectively. Also assumed is a LRU
based replacement policy, implemented using a
queue.

Algorithm 1## To be carried out on every request
1: function handle Read/ write Request
2: INPUT: ReadReq j from Ci є C
3:Begin:
4:Lookup L1i
5:if (hit)
6:Load cacheLine j
7:LRUQueueset .movetoEnd (cacheLine j)
8:else
9:Fwd ReadReq j → BC local
10:if (hit)
11:Load CacheLinej
12:LRUQueueset .movetoEnd (cacheLine j)
13:else // local bank-cluster miss
14:send request to the owner bank
15:if (hit)
16: send CacheLinej to the requesting core
17: LRUQueueset .movetoEnd (cacheLine j)
18: else (miss in owner banks)
19: lookup set-pointers in the corresponding set
20: if status (set pointer bits) =1
21:send request in parallel to all the banks (step 20)
22: if (hit)
23: send CacheLinej to the requesting core
24: LRUQueueset .movetoEnd (cacheLine j)
25 : else (miss)
26:Fwd ReadReq j → off-chip memory
27:endif
27:endif
28:endif
29:endif

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 42 Volume 14, 2015

3.1.4 Managing Set Pointers
To ensure the correct operation and accuracy of this
data search policy, the set pointers keeps the
updated status. For example, during migration, a
block is moved from one bank to the other bank,
therefore to dynamically update pointer bits in the
corresponding set of the owner bank, an update
message is sent to the owner bank. In other case, if
this cache line is evicted then the owner bank must
be notified, to reset the corresponding bits in the set
pointer. There are only few cases that require set
pointer update: 1) a new data entry to the bank
during first reference, 2) a data block eviction from
the cache bank, and 3) a data block migration to the
other banks. During initial data placement in the
owner bank from main memory, the set pointer
update is not necessary. However, in case of the
cache line eviction from a bank, the corresponding
owner bank must be notified dynamically to update
set pointer. When an incoming data block enters to
the NUCA bank from the upper-level memory, it is
mapped to its owner bank, thus updating the set
pointer is not necessary.

However, if there is an eviction in a bank then set
pointer must be updated by sending a notification
message to the corresponding owner bank. Finally
in order to ensure correctness and efficiency the
cache line movements must be synchronized with
the modifications made to the set pointers, to
prevent misalignments that provoke extra network
messages, but it does maintains the correctness of
the proposed scheme. Algorithm-2 demonstrates
how to keep track of the migrated blocks.

3.1.5 Cache Coherence Protocol
Our work is based on a directory protocol and this
protocol does not need ordered interconnect to
satisfy coherency. We also believe that future CMP
will be based on directory like structure to provide
coherence and it can scale to large on chip cores. To
sustain correctness and to implement different read
and write scenarios, cache coherence protocols
utilize transition states. Our protocol
implementation inherits such transition states from
the baseline cache coherence protocols and used
these transient states to maintain coherent view and
correctness. In the proposed cache access scheme,
for any cache line that does not exhibit a complex
sharing and therefore search mechanism, the
implemented protocol works similar to the baseline
cache coherence protocol which is basically
enforcing a write-invalidate policy for all cache
lines in the shared NUCA. Our proposed scheme
along with protocols is implemented on top of the
write-invalidate directory protocol, which is
modified baseline MOESI protocol. The exclusive
state (clean) obviates upgrade misses to non-shared
data. Race conditions are handled using busy or
active states for each request. Fig. 6, briefly
describes how a write-invalidate based protocol
works for a simple data sharing example. The
arrows present a specific location in the system with
hypothetical time line. From left to right, these
locations are the requester core, the L2 shared cache
which also includes the directory that is co-located,
the consumer cores, and the main memory. For
clarity, the example assumes a single requesting
core a single consumer core of the cache line. Also,
the cache line is assumed to be loaded and modified
earlier so that the cache line actually exists in the
requester’s cache. Similarly, the cache line also
exists in the shared L2 cache. We assume the initial
state of the cache line is OWNED in the requester’s
cache and SHARED in the consumer’s core cache.

Algorithm 2 ## Block ownership (owner bank)
1: function handle set pointers at owner bank
2: INPUT: ReadReq j from Ci є C
3:Begin:
4:Lookup L1i
5:if (compulsory Miss)
6: Fwd ReadReq j → off-chip memory
7: Block allocation (depending on address)
8: set bank as owner bank of the block
8:s send CacheLinej to the requesting core C
9:else (non compulsory miss)
10: Fwd ReadReq j → BC local
11: execute (algorithm-1)
12: endif
13: if (frequent request from Cj,k,l belongs to C)
14: migration algorithm
15: notification send to owner bank
16: update corresponding set-pointer
17:elsif (data block eviction)
18: lookup entire set
19: if (another block from same owner bank)
20: silent eviction
21: else
22: notification send to owner bank
23: update corresponding set-pointer
24: insert new cacheline
25: LRUQueueset .movetoEnd (cacheLine j)
26:endif
27:endif
28:endif

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 43 Volume 14, 2015

Fig. 6: Directory based write invalidation Protocol

Fig. 7: Directory based write invalidation Protocol

Table I. System Configuration

The directory is co-located with each cache line and
it tracks different cores. Fig. 7, shows how a request
is forwarded to the L2 bank containing data block
with a sequence diagram.

3.1.6 Verification of Coherence Protocol
Modified MESI based directory protocol relies on
the baseline coherence protocol for correctness.
However, the modifications made to the base MESI
protocol can easily create race conditions which
need to be verified and tested. For the verification,
we have utilized the stress tests provided by GEMS
tools set. This synthetic testing mechanism
generates excessive race conditions on the cache
coherence protocol to identify potential coherence
bugs.

4 Experimental setup

In this section, we describe our evaluation
methodology and all the results are obtained with
the system configuration described in Table I.

4.1.1 Simulation Environment
 We simulate the entire system using virtutech
simics full-system simulator [6] extended with the
GEMS toolset [4]. GEMS is an event driven
simulator that provides a complete memory-system
timing model that enabled us to model the multi-
banked NUCA cache architecture. Furthermore, the
RUBY memory system simulator provides support
to implement baseline system memory hierarchy.

This includes on chip interconnection network
parameters, bank access time, mapping, replacement
policies etc. In ruby each cache bank has its own
controller and using domain specific language called
SLICC we can specify with precision the coherence
protocol. This environment allows us to simulate a
complete multiprocessor system that is running a
commercial operating system without any
modification and it accurately models the network
contention introduced during the simulation. The
simulated system is organized as a single CMP that
consists of eight UltraSPARC IIIi homogeneous
cores with layout depicted in Fig. 2. Each processor
core has its own first-level cache (data and
instructions) and is connected to a node of the
network. The Last level of the memory hierarchy is
the D-NUCA distributed in 128 banks connected to
the cores via switches. We used MOESI based
directory protocol to maintain correctness and

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 44 Volume 14, 2015

Table II. Benchmarks

robustness in the memory subsystem. The main
system configuration parameters used in our
simulations are shown in Table I. To quantitatively
analyze the proposed scheme, we used two different
scenarios: 1) Multi-programmed and 2) Parallel
applications. The first one executes in parallel a set
of eight different SPEC CPU2006 workloads with
the reference input and fast forwarded to the
beginning of the main loops. Table II outlines the
workloads that make up this scenario. The Parallel
workload simulates the complete set of applications
from the PARSEC v2.0 benchmark suite [8] with
the simlarge input data sets. This benchmark suite
contains 13 programs from different areas such as,
computer vision, image processing, financial
analytics, video encoding and animation physics.

The method for the simulations involves first
skipping both the initialization and thread creation
phases, and then fast-forwarding while warming up
the cache for 500 million cycles. Then finally, we
performed a detailed simulation for 500 million
cycles. We use the aggregate number of user
instructions committed per cycle as performance
metric, which is proportional to the overall system
throughput [28].

4.1.2 Energy Calculations
To evaluate the energy consumed by the multi-
banked NUCA cache and the off-chip memory. We
used a similar energy model to that adopted by
Bardine et al. [10] which allowed us to calculate the

dynamic energy dissipated by the banks in LLC
cache in addition to energy required to access the
off-chip memory. As shown below, the total energy
consumed by the NUCA memory system is the sum
of all three components:

E Dynamic = E network + E banks + E off−chip

Therefore, total dynamic energy consumed is the
sum of the dynamic energy consumed by the NUCA
cache, which is energy consumed in network plus
the static energy consumed in banks and also the
energy dissipated during the off-chip memory
(Off−chip). CACTI 6.0 has been used to compute
energy dissipated in banks, while GEMS toolset also
integrates a power model based on Orion [10] that is
used to evaluate the dynamic power consumed by
the on-chip network (Energy in network). Energy
consumed per memory access is the metrics and it is
based on the energy per instruction (EPI) metric
[23] which is commonly used for the analysis of the
energy consumed by the whole processor. This
metric works independently of the amount of time
required to process an instruction and is ideal for
throughput performance.

5 Results

This section analyses the impact on performance
and hardware overhead using the proposed bank
access policy with set ownership pointer in the
baseline architecture.

5.1.1 Performance Improvement
We used two separate scenarios to analyze the
performance results obtained with our proposed
scheme. In the first case we have selected
applications from the parsec benchmark that shows
high cache miss rate like streamcluster, canneal,
vips and multiple applications from SPEC2006 to
make workload. We have observed that our scheme
outperforms the baseline architecture scheme by 8%
as shown in Fig. 8. By taking advantage of set
pointers with owner bank, memory requests are
directly forwarded and satisfied by only accessing
the cache banks that can have the requested data
which significantly lowers network traffic,

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 45 Volume 14, 2015

Fig. 10: Dynamic Energy

Fig. 9: Network Contention

Fig. 8: Normalized Performance

thus it reduces time to resolve cache miss before the
request is forwarded to the main memory.
Therefore, for the applications with higher miss
rates, the impact on the performance is even better.
In the second scenario, we have observed
applications with low miss rate, like raytrace, dedup,
swaptions and x264. In this scenario both the
scheme take equal access latencies when request hit
in the closest banks. While the two-step multicast
scheme introduces 8 extra messages to the on chip
network whereas set pointer scheme sends only one
message to the network. Therefore, this scheme
reduces congestion as shown in Fig. 9, due to reduce
on chip network traffic (on average 45%) and results
in performance improvement of nearly 4% as
compared to baseline architecture.

We have observed negligible performance
improvement for the applications with very high hit
rate like bodytrack. We assume that the applications
running on future processors will follow the first
case: where workloads with large working sets and
multiple applications will run simultaneously. Fig.
8, shows the performance improvement obtained
with the set pointers that we evaluated, as compared
to baseline architecture. We found that our proposed

scheme outperforms two-step multicast scheme by
an average of 6%. In general our scheme improves
performance for almost all the PARSEC
applications, by achieving more than 8-10%
improvement in canneal, ferret, streamcluster
applications. In case of SPEC2006 multi
programmed workloads an average improvement of
10% is observed.

5.1.2 Energy Results
Fig. 10, shows the dynamic energy consumption of
each benchmark using the proposed data access
scheme relative to the baseline two-step multicast
data access scheme. The energy reduction can be
primarily attributed to the reduction in network
traffic. It is important to note that our energy model
does not account for the off-chip memory.
Therefore, for benchmarks where our proposal
improves the L2 performance, the energy benefits
will in fact be higher. We observed that the
proposed scheme improves energy consumption of
the NUCA cache by more than 40% as compared to
the two-step data access in baseline architecture.

To summarize, the proposed data access scheme
provides reduced energy consumption and increased
performance as compared to the two-step multicast
scheme. It is important to balance the on chip data
locality and off-chip miss rate and overall our
scheme achieves the best trade-off.

5.1.3 Set Pointer Implementation overhead
This search policy requires additional hardware to
implement set pointers. As shown in Fig. 5, the set
pointers requires 256 bytes for each bank, so as per
our baseline configuration with 128 banks and total
shared cache size of 8 Mb, the extra bytes required
by set pointer is nearly 32 Kb, which adds extra
1.2% of the total cache size. In addition to extra
storage, the proposed scheme requires extra

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 46 Volume 14, 2015

comparators which slightly complicate cache
design. This data search scheme is proposed for
heavily-banked cache architecture, but it can be
easily adapted to tiled multi-core architectures.

6 Conclusions

Future chip multiprocessors will be based on tiled
architectures with large shared L2 cache. The
increasing wire delay makes data locality a key
performance bottleneck. Many existing data
migration schemes for NUCA caches succeed in
concentrating the most frequently accessed data in
the banks with the smallest access latency.
However, this migration of data blocks increases
complexity of data access policy. In order to address
this situation, we have proposed a data access
policy. This hybrid policy uses both serial and
parallel search to probe NUCA banks with optimal
access latency and make D-NUCA promising non
uniform cache architecture.

References:
[1] C. Kim, D. Burger, and S. W. Keckler, “An

adaptive, non-uniform cache structure for wire-
delay dominated on-chip caches,” in Procs. Of
the 10th Intl. Conf. on Architectural Support for
Programming Languages and operating
Systems, 2002.

[2] B. M. Beckmann and D. A. Wood, “Managing
wire delay in large chip-multiprocessor caches,”
in Procs. Of the 37thInternational Symposium
on Micro architecture, 2004.

[3] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger,
and S. W. Keckler, “A nuca substrate for
flexible cmp cache sharing, “in Procs. Of the
19th ACM International Conference on
Supercomputing, 2005.

[4] M. M. K. Martin, D. J. Sorin, B. M. Beckmann,
M. R. Marty, M. Xu, A. R. Alameldeen, K. E.
Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset,” in
Computer Architecture News, 2005

[5] R. Ricci, S. Barrus, and R. Balasubramonian,
“Leveraging bloom filters for smart search
within nuca caches,” in Procs.of the 7th
Workshop on Complexity-Effective Design,
2006.

[6] Alessandro Bardine, Pierfrancesco Foglia,
“Way adaptable D-NUCA caches” in

International Journal of High Performance
Systems Architecture (IJHPSA), Volume 2
Issue 3/4, August 2010, Pages 215-228.

[7] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren,G. Hallberg, J. H¨ogberg, F.
Larsson, A. Moestedt, and B. Werner, Simics: A
Full system Simulator Platform. Computer,
2002, vol. 35-2, pp. 50–58.

[8] Starvrou, Costas, Paraskevas “Chip
multiprocessor based on data-driven
multithreading model” in International Journal
of High Performance Systems Architecture
(IJHPSA), Volume 1 Issue 1, April 2007, Pages
34-43.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li,
“The parsec benchmark suite: Characterization
and architectural implications,” in Procs. Of the
International Conference on Parallel
Architectures and Compilation Techniques,
2008.

[10] A. Bardine, P. Foglia, G. Gabrielli, and C. A.
Prete, “Analysis of static and dynamic energy
consumption in nuca caches: Initial results,” in
Procs. Of the Workshop on Memory
Performance: Dealing with Applications,
Systems and Architecture, 2007.

[11] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik,
“Orion: A power- performance simulator for
interconnection networks,” in Procs. of the 35th
International Symposium on Microarchitecture,
2002.

[12] N. Nedja, A. S Nery “A massively parallel
hardware architecture for ray-tracing” in
International Journal of High Performance
Systems Architecture (IJHPSA), Volume 2
Issue 1,December2009,Pages 26-34.

[13] Micron, “System power calculator,” in http:
//www.micron.com/, 2009.

[14] M. Hammoud, S. Cho, and R. Melhem,
“Dynamic cache clustering for chip
multiprocessors,” in Procs. Of the Intl.
Conference on supercomputing, 2009.

[15] M. Kandemir, F. Li, M. J. Irwin, and S. W.
Son, “A novel migration-based nuca design for
chip multiprocessors,” in Procs. Of the
international Conference on Supercomputing,
2008.

[16] J. Lira, C. Molina, and A. Gonz´alez, “Last
bank: dealing with address reuse in non-uniform
cache architecture for cmps,” in Procs. of the
International Conference on Parallel and
Distributed Computing, 2009.

[17] N. Muralimanohar and R. Balasubramonian,
“Interconnect design considerations for large

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 47 Volume 14, 2015

nuca caches,” in Procs. Of the 34th
international Symposium on Computer
Architecture, 2007.

[18] M. Chaudhuri, “Pagenuca: Selected policies for
page-grain locality management in large shared
chip-multiprocessor caches,” in Procs. of the
15th IEEE Symposium on High-Performance
Computer Architecture, 2009

[19] J. Merino, V. Puente, and J. A. Gregorio, “Sp-
nuca: A cost effective dynamic non-uniform
cache architecture,” ACM SIGARCH Computer
Architecture News, vol. 36, no. 2, pp.64–71,
May 2008.

[20] M. Hammoud, S. Cho, and R. Melhem, “Acm:
An efficient approach for managing shared
caches in chip multiprocessors,” in Procs. Of
the 4th Intl. Conference on High-performance
and Embedded Architectures, 2009.

[21] Z. Chishti, M. D. Powell, and T. N.
Vijaykumar, “Distance associativity for high-
performance energy-efficient non-uniform
cache architectures,” in Procs. Of the
36thInternational Symposium on Micro
architecture, 2003.

[22] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and
D. Newell. “Exploring the cache design space
for large scale cmps.” SIGARCH Computer
Architecture News, 33(4): pages 24–33, 2005.

[23] Shekhar Srikantaiah, Mahmut Kandemir, Mary
Jane Irwin. “Adaptive Set Pinning: Managing
Shared Caches in Chip Multiprocessors.”
Proceedings of ASPLOS'08, ACM/IEEE, pages
135-144 March, 2008.

[24] Z. Guz, I. Keidar, A. Kolodny, and U. Weiser,
“Nahalal: Cache organization for chip
multiprocessors,” IEEE Comput.Archit. Lett.,
vol. 6, no. 1, 2007.

[25] J. Chang and G. S. Sohi, “Cooperative caching
for chip multiprocessors,” in ISCA ’06:
Proceedings of the 33rd annual international
symposium on Computer Architecture, 2006, pp.
264–276

[26] C. Liu, A. Sivasubramaniam, M. Kandemir,
and M. Irwin, “Enhancing L2 organization for
CMPs with a center cell,” in IPDPS 2006, 20th
international Parallel and Distributed
Processing Symposium, April 2006, p. 10.

[27] N. Muralimanohar, R. Balasubramonian, and
N. P. Jouppi,“Optimizing nuca organizations
and wiring delays alternatives for large caches
with cacti 6.0,” in Procs. Of the 40th
International symposium on microarchitecture,
2007.

[28] T. F. Wenisch, R. E. Wunderlich, M. Ferdman,
A. Ailamaki, B. Falsafi, and J. C. Hoe,
“Simflex: Statistical sampling of computer
system simulation,” IEEE Micro, vol. 26, no. 4,
pp.18–31, 2006.

[29] S. Akioka F. Li, K Malkowski, P. Raghavan,
M. Kandemir, and M. J. Irwin, “Ring data
location prediction scheme for non-uniform
cache architectures,” in Procs. Of the
International Conference on Computer Design,
2008.

[30] A. Das et al., “Dynamic Directories: A
Mechanism for Reducing On-Chip Interconnect
Power in Multicores,” Proc. 2012 Conf. Design,
Automation, and Test in Europe (DATE 12),
EDA Consortium, 2012, pp. 479-484.

[31] Aamer Jaleel, Hashem H. Najaf-abadi,
Samantika Subramaniam, Simon C. Steely Jr.,
and Joel Emer CRUISE: Cache Replacement
and Utility-aware Scheduling ASPLOS’12,
March 3–7, 2012, London, England, UK.

[32] Keun Sup Shim, Mieszko Lis, Omer Khan and
Srinivas Devadas “Judicious Thread Migration
When Accessing Distributed Shared Caches”
Procs. Of the Third Workshop on Computer
Architecture and Operating System Co-design
(CAOS), 2012.

WSEAS TRANSACTIONS on COMPUTERS Nitin Chaturvedi, S Gurunarayanan

E-ISSN: 2224-2872 48 Volume 14, 2015

