

Reliability Improvement and Reliability Assessment for Distributed
Hardware-Software Multi-Agent Systems

ALEXEI V. IGUMNOV and SERGEY E. SARADGISHVILI

Information and Control Systems Department
Institute of Computing and Control

Saint-Petersburg State Polytechnical University
29 Polytechnicheskaya Street, Saint-Petersburg

RUSSIAN FEDERATION
Alexei.Igumnov@gmail.com, SSaradg@yandex.ru

Abstract: - The problem of reliability of new object of distributed hardware software (DHS) multi-agent
system (MAS) is considered. DHS MAS is determined as a system that is based on agent technologies and
consists of both agents and hardware components required for execution of agents and for interaction of agents
with an environment. Reliability improvement, fault-recovery and several reliability assessment approaches for
DHS MAS are presented. The reliability improvement methodology is built upon replication of unique
functional components and redundancy of universal components. The fault-recovery methodology defines a set
of fault-recovery procedures required for restoration of consistent system configuration after failures of its
components. Methodology for operability function formation was developed to enable utilization of logical-
and-probabilistic methods for reliability assessment. Another approach for reliability assessment is based on
Markovian model and system state graph and was developed to overcome limitations of logical-and-
probabilistic methods that are suitable only for systems with hot standby. The state graph based approach
allows reliability assessment for DHS MAS with cold standby and different operating modes of system
components. The state graph based approach is also applicable for a case when probability of failure of one of
components depends on states of other components. New failure model for determination of failure rates of
system components in accordance with system state is introduced. Computing experiments described in the
article have validated developed methodologies.

Key-Words: - multi-agent system, reliability, fault-recovery, operability function, redundancy, state graph,
logical-and-probabilistic method

1 Introduction
An increasing interest in application of multi-agent
technologies for development of various industry
systems is caused by benefits of multi-agent systems
(MAS) declared by an artificial intelligence theory.
In [1] MAS is defined as a system in which several
agents operate and interact with one another. It’s
worth noting that researches name a problem of
fault-tolerance as the reason of small amount of
deployed real world multi-agent systems [2], [3].
Thus a contradiction between an interest in
utilization of agent-oriented technologies and the
lack of MAS fault-tolerance defines the problem of
MAS reliability considered in the article.

We define a distributed hardware-software
(DHS) multi-agent system as an industry system
that is based on agent technology. DHS MAS is the
object of the presented research. Some examples of
industry systems for hospitals that are based on
agent technologies are presented in [4], [5].
Whereas typical MAS is defined by a set of agents,

DHS MAS also include hosts required for execution
of an agent model and actuators required for
interaction of agents with an environment. MAS is
typically considered as software system, however
the necessity of utilization of hardware components
for MAS execution and for enabling interaction of
MAS with an environment is highlighted in [5].
Thus RFID readers, medical devices and sensors
mentioned in [5] as system components may be
considered as actuators and embedded computers
shall be treated as hosts.

Existing methods for achieving fault-tolerance in
MAS such as DarX [6], AAA for broker teams [7],
Sentinels approach [8], FATMAS [9] improve fault-
tolerance only in cases of occurred faults of
individual agents or faults of hosts on that an agent
model is deployed for execution because they
consider MAS as a set of agents. Failure of each of
components of DHS MAS may result in failure of
the whole system. Thus we state that new reliability
improvement methodology shall be developed

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 670 Volume 13, 2014

mailto:Alexei.Igumnov@gmail.com�
mailto:SSaradg@yandex.ru�

taking into account failures of all components of
DHS MAS. Whereas it is important to improve
fault-tolerance of DHS MAS it is also required to
determine a level of this improvement or an assured
level of reliability. Such theoretical assessments of
assured reliability level are not provided by existing
methodologies mentioned above. Moreover
effectiveness of existence fault-tolerance
methodologies is proved only via experiments.

The objective of the research includes both
reliability improvement for DHS MAS in cases of
failures of agents, tasks of agents, hosts and
actuators and theoretical assessment of assured
reliability level in cases of different standby
techniques and various operating modes of system
components.

2 Methodology for Reliability
Improvement

2.1 Distributed Hardware-Software Multi-
Agent System Model
A formal model of DHS MAS is required for
development of reliability improvement and
reliability assessment approaches. Our model of
DHS MAS was developed based on following
elements of MAS model introduced by FATMAS
methodology [9]: agents and tasks supposed to be
executed by agents. We have introduced terms of an
agent platform (AP) and an actuator (ACT). AP is
defined as a system component required for both
execution of agents and provision of services
required for agent interaction. If MAS is a control
system then it shall be situated in some environment
and moreover is intended to operate with the said
environment. Thus we define an actuator as a
system component intended for interaction of agents
with an environment in that DHS MAS is situated.
Our DHS MAS model is based on theory of sets and
predicate logic.

We define DHS MAS as an ordered set MAS =
<T, A, HWP, HWR>, where T is a set of tasks, A – a
set of agents, HWP – a set of APs, HWR – a set of
ACTs. The following set of predicates determines a
configuration of DHS MAS:
• confTaskAgent(t, a) is intended for determination

of deployment of a particular task t in a particular
agent a;

• confAgentHwp(a, hwp) is intended for
determination of deployment of a particular agent
a in a particular AP hwp;

• reqHwrTask(hwr, t) is intended for determination
of necessity of utilization of a particular ACT hwr
for performing of a task t;

• confHwrHwp(hwr, hwp) is intended for
determination of accessibility of a particular ACT
hwr for a particular AP hwp, i.e. for all tasks of all
agents deployed in AP hwp.

Each task of DHS MAS is supposed to
implement some unique functionality in accordance
with requirements or specification and is treated as
a minimal functional instance. Thus an inability to
perform of at least one of tasks leads whole DHS
MAS to a failure state. Failures of other system
components result in an inability to perform one of
more of system tasks and in turn lead DHS MAS to
a failure state, e.g.:
• failure of an agent a leads to an inability to

perform all tasks deployed in this agents, i.e. each
task t such that confTaskAgent(t, a) = true;

• failure of AP hwp results in failure of each agent a
deployed in this AP (i.e.
confAgentHwp(a, hwp) = true) that in turn causes
an inability to perform all agent’s tasks;

• failure of ACT hwr result in an inability to
perform all tasks that require utilization of this
ACT, i.e. each task t such that
reqHwrTask(hwr, t) = true.

It’s worth noting that DHS MAS model specifies
only system structure and components dependencies
and does not determine particular operating modes
or standby techniques.

2.2 Reorganization Technique
Incorporating redundant copies of system
components has been recognized as one of the best
methods for improvement of fault-tolerance.
FATMAS methodology [9] has introduced
duplicating of tasks instead of duplicating of non-
critical agents for the first time in the art. However
FATMAS also utilizes duplication of critical agents
and does not consider ACTs and APs as MAS
components.

We suggest distinguishing components of DHS
MAS that are unique in terms of implemented
functionality such as tasks and ACTs and
components that act as universal executive
containers. Although we have defined AP as a
component responsible for execution of agents we
shall explicitly state that each AP is supposed to be
able to execute any of system agents. Thus AP can
be treated as a universal executive container.
Similarly each agent is supposed to be able to

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 671 Volume 13, 2014

perform any of system tasks and therefore is also
considered as a universal executive container.
Based on these assumptions there longer is no
reason to replicate existing agents and APs. Instead
it’s suggested to introduce redundant sets of
universal executive containers that may be
considered as a redundant network for deployment
of system tasks. Thus we define our methodology
for reliability improvement through a reorganization
technique that shall be applied to an existing DHS
MAS. The reorganization technique shall use both
replication of functional components and
introduction of redundant sets of universal
executive containers. It’s assumed that application
of our reorganization technique turns an existing
DHS MAS to a redundant one.

To enable identification of equivalent functional
system components we have introduced terms of
task type and actuator type. Let TT be a set of task
types and THWR be a set of actuator types. These
sets shall be determined based on the set of tasks T
and the set of actuator HWR of the existing DHS
MAS respectively. Moreover the univocal
correspondence shall exist between the set of task
types TT and the set of tasks T of the existing
system so that all redundant DHS MAS tasks of a
similar type are equal to a particular task of the
existing DHS MAS and thus can replace each other
in case of failures. Similarly the one-to-one
mapping shall exist between the set of actuator
types THWR and the set of actuator HWR of the
existing DHS MAS. Two actuators of redundant
DHS MAS of a similar type are equal in terms of
their functionality but they may distinguish in terms
of accessibility for various APs. It’s worth noting
that due to introduction of terms of task type and
actuator type the necessity of utilization of a
particular ACT for performing of a particular task is
turned into the necessity of utilization of ACT of a
particular type for performing of a task of a
particular type.

The developed reorganization technique that
defines our reliability improvement methodology
comprises of following steps:
• define a set of task types TT and a set of actuator

types THWR in accordance with respectively the
set of tasks T and the set of actuator HWR of the
existing DHS MAS;

• define necessity of utilization of ACT of a
particular type for performing of a task of a
particular type in accordance with reqHwrTask()
predicate of the existing DHS MAS;

• introduce replication of tasks and ACTs and
define a set of tasks and a set of actuators of a
redundant DHS MAS;

• define a redundant set of agents and a redundant
set of agent platforms;

• determine configuration of redundant DHS MAS,
i.e. deployment of tasks on the redundant set of
agents, deployment of agents of the redundant set
of APs, accessibility of actuators for APs.

2.3 Redundant Distributed Hardware-
Software Multi-Agent System Model
The redundant DHS MAS that is a result of
application of our reorganization technique to the
existing DHS MAS is defined by an ordered set
RMAS = <TT, RT, RA, RHWP, THWR, RHWR>,
where TT is a set of task types, RT – a set of tasks,
RA – a set of agents, RHWP – a set of APs, THWR –
a set of actuator types and RHWR is a set of
actuators. The following set of predicates
determines its configuration:
• confTypeTask(tt, t) is intended for determination

of a type of a particular task (i.e. the predicate is
true if a type of a task t is tt);

• confTypeHwr(thwr, hwr) is intended for
determination of a type of a particular ACT (i.e.
the predicate is true if a type of ACT hwr is thwr);

• confTaskAgent(t, a) is intended for determination
of deployment of a particular task t in a particular
agent a;

• confAgentHwp(a, hwp) is intended for
determination of deployment of a particular agent
a in a particular AP hwp;

• reqTHwrTTask(thwr, tt) is intended for
determination of necessity of utilization of an
actuator of a particular type thwr for performing
of a task of a particular type tt;

• confHwrHwp(hwr, hwp) is intended for
determination of accessibility of a particular ACT
hwr for a particular AP hwp.

We have introduced a term of active replica. The
active replica of a particular type is defined as one
task from a replication group of equivalent tasks of
the same type that exert an influence on an
environment. It’s worth noting that for each task
type one and only one active replica shall exist in a
particular time instant. Other aspect of the model of
a redundant DHS MAS is described in [10], [11].

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 672 Volume 13, 2014

3. Fault-Recovery Methodology

3.1 Message-Based Communication and
Database Schemas
The message based communication protocol is
required to ensure that the reorganization technique
is applied transparently and is intended to enable
execution of an active replica of a particular type as
well as utilization of ACT of a particular type
independently of its deployment in particular
executive container. We suggest that a receiver of a
message shall be bounded based on type of
originator component. Thus an agent is able to send
a message to AP if and only if the said agent is
deployed in this AP. Similarly AP is able to send a
message to the agent if and only if this AP acts as
an executive container for this agent. Also it’s
assumed that there is no limitation on message
based communication between APs. Moreover each
AP shall be able to interact with all remote agent
platforms via sending a broadcast message.

To simplify the system we have limited
knowledge regarding system configuration that
agents and APs shall maintain for successful
operation. Each agent a shall have a database (DB)
ADB(a) comprised of following tables: deployment
table ATBT(a), required actuators table ATBR(a)
and active replicas table ATBAT(a). Each AP hwp
shall have a database HDB(hwp) comprised of
following tables: deployment table HTBD(hwp),
required actuators table HTBR(hwp), available
actuators table HTBAR(hwp) and active replicas
table HTBAT(hwp). Formats of DB tables for agents
and APs are defined as follows:
• ATBT(a) contains records (t, tt) that links the task t

deployed in the agent and its type tt;
• ATBR(a) contains records (tt, {thwri}) that links a

type of task tt with required types of actuators for
all task types from ATBT(a);

• ATBAT(a) contains records (tt, t) that links a type
of task tt and an active replica t deployed in the
agent in accordance with ATBT(a);

• HTBD(hwp) contains records (a, t, tt) that links an
agent a deployed in AP, a task t deployed in the
agent a and its type tt;

• HTBR(hwp) contains records (tt, {thwri}) and acts
as an aggregator of ATBR(a) tables of all agents
deployed in AP;

• HTBAR(hwp) contains records (hwr, thwr) that
links an available ACT hwr with its type;

• HTBAT(hwp) contains records (tt, a, 0) that links
the task type tt with an agent a deployed in this
AP if an active replica of type tt is deployed in this
agent;

• HTBAT(hwp) contains records (tt, 0, rhwp) that
links the task type tt with a remote agent platform
rhwp if an active replica of type tt is deployed in
one of agents of this remote AP

One of MAS tasks may require execution of
another system task. As our reliability improvement
methodology utilizes replication of tasks we have
replaced a request to execute a particular task with a
request to execute a task of particular type. Let’s
consider a task t of the agent a deployed in AP hwp.
If the task t requires execution of another task of
type tt it sends the pfm(tt) message to its agent a. An
active replica of type tt may be deployed in the
agent a, one of other agents of AP hwp or in one of
agents of one of other APs. Thus the pfm(tt) request
shall be handled iteratively by the agent that has
received it, AP in which the agent is deployed and
all remote APs in the following manner:
• if an active replica t’ of type tt is deployed in the

agent a in accordance with (tt, t’) record in table
ATBAT(a) then the agent a shall execute it,
otherwise the agent a shall escalate the processing
to AP hwp through the pfm(tt) message;

• if an active replica of type tt is deployed in the
agent a’ of AP hwp in accordance with (tt, a’, 0)
record of table HTBAT(hwp) then AP hwp shall
request the agent a’ to execute an active replica
through the pfm(tt) message;

• if an active replica of type tt is deployed in one of
agents of one of remote APs rhwp in accordance
with (tt, 0, rhwp) record of table HTBAT(hwp)
then AP hwp shall escalate the processing to AP
rhwp though the pfm(tt) message.

If a particular task of the redundant DHS MAS
requires utilization of an actuator of a particular
type thwr it sends use_hwr(thwr) message to its
agent which will route the received message to its
AP hwp without any further processing. On
reception of the use_hwr(thwr) message AP will
find an accessible actuator of the thwr type in
accordance with the available actuators table
HTBAR(hwp) of its DB and will perform the
requested action.

3.2 Fault-Recovery Procedures
In section 2.1 we have stated that an inability to
perform of at least one of tasks leads whole DHS
MAS to a failure state. In a redundant DHS MAS

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 673 Volume 13, 2014

only active replicas are executed or exert an
influence on an environment as described in
sections 2.3 and 3.1. Thus a redundant DHS MAS
is in failure if it is not able to perform an active
replica of at least one type. It’s worth noting that
this inability may be caused by failures of other
components of redundant system, e.g. an agent in
that the active replica is deployed or an actuator that
is required for performing of the active replica.
Thus fault-recovery task may be treated as a task of
search and activation of new replicas of all required
types.

To represent an operable state of a redundant
DHS MAS we have introduced a term of a
consistent configuration. The consistent
configuration of a redundant DHS MAS is defined
by a set of conditions that DBs of each agent and
AP shall meet for successful operation of whole
system.

Conditions for DB ADB(a) of each agent a are as
follows:
• deployment table ATBT(a) of each agent a shall

contain (t, tt) record if and only if the task t is
deployed in the agent a (i.e.
confTaskAgent(t, a) = true) and the task t could be
executed;

• active replicas table ATBAT(a) of each agent a
shall contain record (tt, t) if and only if the task t
is an active replica of type tt and there is a record
(t, tt) in ATBT(a) (i.e. the task t could be
executed).

DB HDB(hwp) of each AP hwp shall meet
following conditions:
• deployment table HTBD(hwp) of each AP hwp

shall contain (a, t, tt) record if and only if the task
t is deployed in the agent a that is deployed in AP
hwp (i.e. confAgentHwp(a, hwp) = true &
confTaskAgent(t, a) = true), the agent a is not in
failure state and the task t could be executed;

• available actuators table HTBAR(hwp) of each AP
hwp shall contain record (hwr, thwr) if and only if
ACT hwr is not in failure and is accessible (i.e.
confHwrHwp(hwr, hwp) = true);

• active replicas table HTBAT(hwp) of each AP hwp
shall contain record (tt, a, 0) if and only if the
agent a is deployed in AP hwp (i.e.
confAgentHwp(a, hwp) = true), the agent a is not
in failure and there is a record (tt, t) in active
replicas table ATBAT(a);

• active replicas table HTBAT(hwp) of each AP hwp
shall contain record (tt, 0, rhwp) if and only if AP
rhwp is not in failure and there is a record (tt, a’,
0) in active replicas table HTBAT(rhwp).

If conditions mentioned above are met then DBs
of agents and APs represent the actual configuration
of a redundant DHS MAS and do not contain
records related to components that are in failure
state. However as a consistent configuration shall
represent an operable state of the system then for
each task type there shall exist an active replica that
is not in failure state. Thus DB HDB(hwp) of each
AP hwp shall meet following additional condition:
its active replicas table HTBAT(hwp) shall contain
record (tt, a, rhwp) for each task type tt.

Fault-recovery procedures shall restore a
consistent configuration of redundant DHS MAS
that has been broken by an occurred fault of one of
system components via excluding records related to
failed components and updating records related to
locations of new active replicas in databases of
agents and agent platforms. All fault-recovery
procedures are supposed to be performed iteratively
in accordance with components hierarchy, i.e. each
procedure starts from the component responsible for
failure detection, is escalated though a set of
executive containers and may finish in one of
remote APs.

Let’s consider a failure of a task t of the agent a
deployed in AP hwp. Each agent is responsible for
detection of failures of its tasks. Thus the agent a
has detected a failure of the task t and shall perform
the a_r_tpfailt(t) procedure comprised of following
steps:
• determine a type tt of the task t in accordance with

the deployment table ATBT(a);
• remove all records related to failed task t from its

DB and DB of its AP hwp:
- remove a record (t, tt) from ATBT(a);
- remove a record (tt, t) from the active replicas

table ATBAT(a);
- send the a_cmd_rm_task(t) message to AP hwp

that shall process this message by excluding
(a, t, tt) record from the deployment table
HTBD(hwp);

• if the task t is not an active replica of type tt than
finish processing;

• initiate search and activation of new replica of
type tt:
- if there is a record (t’, tt) in the deployment table

ATBT(a) then select t’ as new active replica, add
a record (tt, t’) to the active replicas table
ATBAT(a) and finish processing;

- escalate fault-recovery procedure to AP hwp via
sending the req_atask(tt).
When AP hwp receives the req_atask(tt)

message from one of its agents a it shall continue a

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 674 Volume 13, 2014

process of search and activation of new replica of
type tt started by the agent a via execution of the
h_r_tfail(tt) procedure comprised of following
steps:
• if there is a record (a’, t’, tt) in the deployment

table HTBD(hwp) then:
- select the task t’ deployed in the agent a’ as new

active replica;
- update the active replicas table HTBAT(hwp) to

contain a record (tt, a’, 0) for a type of task tt;
- send the h_cmd_atask(t’) message to the agent a’

that shall process this message by adding a
record (tt, t’) to its active replicas table
ATBAT(a);

- finish processing;
• escalate fault-recovery procedure to all other APs

of a redundant DHS MAS via sending the
broadcast req_atask(tt) message.

When AP rhwp receives the broadcast
req_atask(tt) message from AP hwp it shall
continue a process of search and activation of new
replica of type tt through execution of the
recv_req_atask(tt) procedure comprised of
following steps:
• if there is a record (a’, t’, tt) in the deployment

table HTBD(rhwp) then:
- select the task t’ deployed in the agent a’ as new

active replica;
- update the active replicas table HTBAT(hwp) to

contain a record (tt, a’, 0) for a type of task tt;
- send the h_cmd_atask(t’) message to the agent

a’;
- send the broadcast atask_announce(tt, rhwp)

message to all APs.
The broadcast atask_announce(tt, rhwp)

message is required for update of active replicas
tables of other APs, i.e. each AP hwp shall ensure
that its active replicas table HTBAT(hwp) contains a
record (tt, 0, rhwp) for a task type tt.

Each AP is responsible for detection of failures
of its agents. If AP hwp detects a failure of its agent
a then it shall perform the h_r_afailt(a) procedure
comprised of following steps:
• determine a set TF of tasks deployed in the agent a

in accordance with the deployment table
HTBD(hwp) (i.e. the set TF shall contain each task
t such that there exists a record (a, t, tt) in
HTBD(hwp));

• determine a set TTF of types of active replicas
deployed in the the agent a:
- for each task t of type tt from the set TF:

 if there is a record (tt, a, 0) in the active
replicas table HTBAT(hwp) then add the task
type tt to the set TTF;

• remove all records related to failed agent a from
the deployment table HTBD(hwp) (i.e. each record
that matches a template (a, x, xx))

• for each task type tt from the set TTF initiate
search and activation of new replica of this type
via performing the h_r_tfail(tt) procedure.

Each AP is also responsible for detection of
failures of accessible actuators. When AP hwp
detects a failure of the accessible actuator hwr it
shall perform the h_r_hwrfail(hwr) procedure
comprised of following steps:
• determine a type thwr of the actuator hwr in

accordance with the available actuators table
HTBAR(hwp);

• remove a record (hwr, thwr) related to the failed
ACT from HTBAR(hwp);

• if there is a record (hwr’, thwr) in the available
actuators table HTBAR(hwp) then finish
processing because another ACT of the same type
is available;

• determine a set TF of tasks that are in failure
caused by a failure of the actuator hwr (i.e. the set
TF shall contain each task t of type tt such that
there is a record (tt, {thwr1, …, thwr, … thwrn}) in
the required actuators table HTBR(hwp));

• determine a set TTF of types of active replicas that
are in failure caused by a failure of the actuator
hwr (i.e. the set TTF shall contain each task type tt
such that there is a task t of this type in a set TF
and there exists a record (tt, x, 0) in the active
replicas table HTBAT(hwp));

• remove all records related to tasks that are in
failure caused by a failure of the actuator hwr
from the deployment table HTBD(hwp) and DBs
of corresponding agents, i.e. for each task t from
the set TF:
- remove a record (a, t, tt) from HTBD(hwp);
- send the h_cmd_rm_task(t) message to the agent

a that shall process this message by excluding of
(t, tt) record from the deployment table ATBT(a)
and by excluding of (tt, t) record from the active
replicas table ATBAT(a));

• synchronize all APs;
• for each task type tt from the set TTF initiate

search and activation of new replica of this type
via performing the h_r_tfail(tt) procedure.

When AP hwp detects a failure of another AP
rhwp it shall perform the h_r_hwpfail(rhwp)
procedure comprised of following steps:

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 675 Volume 13, 2014

• determine a set TTF of types of active replicas that
are located in AP rhwp (i.e. the set TTF shall
contain each task type tt such that there exists a
record (tt, 0, rhwp) in the active replicas table
HTBAT(hwp));

• remove all records related to active replicas that
are in failure caused by a failure of AP rhwp from
the deployment table HTBAT(hwp) (i.e. each
record that matches a template (xx, 0, rhwp));

• for each task type tt from the set TTF:
- initiate search and activation of new replica of

this type via performing the h_r_tfail(tt)
procedure;

- if there is a record (tt, a, 0) in the active replicas
table HTBAT(hwp) (i.e. after execution of the
h_r_tfail(tt) procedure new active replica is
located in the agent a of AP hwp) then send the
broadcast atask_announce(tt, hwp) message to
all APs.
It’s worth noting that in case of failure of AP

rhwp the h_r_hwpfail(rhwp) procedure shall be
performed only by one of remote APs.

4 Validation of Fault-Tolerance

Property of Redundant Multi-Agent
System
To define conditions that are required for the
success of fault-recovery procedures we have
introduced following additional functions and
predicates in accordance with the formal model of a
redundant DHS MAS:
• function agentOfT(t) is intended for determination

of an agent in that a particular task is deployed:

,),()(trueatentconfTaskAgatagentOfT =⇔= (1)

where t is a task, a – an agent;
• function hwpOfT(t) is intended for determination

of AP such that a particular task belongs to one of
its agents:

),),(
),(

:()(

truehwpawpconfAgentH
trueatentconfTaskAg

RAahwpthwpOfT

=
∧=
∈∃⇔=

 (2)

where t is a task, hwp is AP, a – an agent, RA – a
set of agents;

• function reqTHwr(tt) determines a set of actuator
types required for performing of a task of a
particular type:

},),(
|{)(

truethwrttskreqTHwrTTa
THWRthwrttreqTHwr
=

∈= (3)

where tt is a task type, thwr – an actuator type,
THWR – a set of actuator types;

• function tOfTask(t) is required for determination
of a type of a particular task:

,),()(truetttskconfTypeTattttOfTask =⇔= (4)

where t is a task, tt is a task type;

• function tOfHwr(hwr) is intended for
determination of a type of a particular actuator:

,),(
)(

truehwrthwrrconfTypeHw
thwrhwrtOfHwr

=
⇔= (5)

where hwr is an actuator, thwr is an actuator type;

• predicates failT(t), failA(a), failP(hwp), failR(hwr)
determine respectively states of failure of the task
t, the agent a, AP hwp and ACT hwr;

• predicate atType(tt, t) determines whether the task
t is an active replica of type tt.

In accordance with section 2.1 failure of each of
system components my lead to an inability to
perform of one or more of system tasks. Let the
predicate failTG(t) be true if and only if the task t
could not be performed. Thus an operable state of
the task t is defined as follows:

),))(,(
)()(

:)),(((
)))(((

)))(((
))(()(

truethwpOfThwrconfHwrHwp
falsehwrfailRthwrhwrtOfHwr

RHWRhwrttOfTaskreqTHwrthwr
falsethwpOfTfailP
falsetagentOfTfailA

falsetfailTfalsetfailTG

=
∧=∧=

∈∃∈∀
∧=
∧=

∧=⇔=

 (6)

where t is a task, thwr – an actuator type, hwr – an
actuator, RHWR – a set of actuators.

Let’s define conditions that are required for
success of fault-recovery procedures:
• in case of failure of an active replica t of type tt

there shall exist another task t’ of type tt that is in
an operable state:

)).)(
)()((:(

))),(()((

falsetfailTG
ttOfTaskttOfTaskttRTt
truetttOfTaskatTypetruetfailtT

=′
∧=′∧≠′∈′∃

⇒=∧=
 (7)

• in case of failure of an agent a for each active

replica ti of type tti which is deployed in the agent
a there shall exist another task ti’ of type tti that is
in an operable state:

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 676 Volume 13, 2014

)).)(
)()((:(

))),((
),(
)((:

falsetfailTG
ttOfTaskttOfTaskttRTt

truetttOfTaskatType
trueatentconfTaskAg
trueafailARTt

i

iiiii

ii

i

i

=′
∧=′∧≠′∈′∃

⇒=
∧=
∧=∈∀

 (8)

• in case of failure of an agent platform hwp for

each active replica ti of type tti that is deployed in
one of agents of AP hwp there shall exist another
task ti’ of type tti that is in an operable state:

)).)(
)()((:(

))),((
)(

)((:

falsetfailTG
ttOfTaskttOfTaskttRTt

truetttOfTaskatType
hwpthwpOfT

truehwpfailPRTt

i

iiiii

ii

i

i

=′
∧=′∧≠′∈′∃

⇒=
∧=

∧=∈∀

 (9)

• in case of failure of an actuator hwr of type thwr

for each task type tti which requires utilization of
an actuator of type thwr there shall exists a task ti’
of type tti that is in an operable state:

)).)(
)()((:(

))(
)()((:

falsetfailTG
ttOfTaskttOfTaskRTt

truehwrfailR
ttreqTHwrhwrtOfHwrTTtt

i

iii

i

=′
∧=′∈′∃

⇒=
∧∈∈∀

 (10)

Theorem. If the redundant DHS MAS have a

consistent configuration it will recover:
• from detected failure of a particular active replica

if condition (7) is met;
• from detected failure of a particular agent if

condition (8) is met;
• from detected failure of a particular agent platform

if condition (9) is met;
• from detected failure of a particular actuator if

condition (10) is met.
Proof is presented in [19] and is as follows. Let’s

consider a processing of a request to execute an
active replica of a particular type by redundant DHS
MAS with a consistent configuration. Let the
pfm(tt) request be received by an agent ar deployed
in AP hwpr from its task tr. As configuration is
consistent there is a task ta that is an active replica
of type tt. If the task ta is located in the agent ar then
due to consistent configuration there is a record
(tt, ta) in ATBAT(ar) and processing of the pfm(tt)
request by the agent ar will result in execution of
the task ta. Otherwise the agent ar will send the
pfm(tt) message to AP hwpr. If the task ta is located
in an agent a1 of the AP hwpr then there is a record
(tt, a1, 0) in HTBAT(hwpr) and a record (tt, ta) in
ATBAT(a1). Thus the processing of the pfm(tt)

message by AP hwpr will result in execution of the
task ta by the agent a1. Otherwise AP hwpr will send
a broadcast pfm(tt) message to other APs. If the task
ta is located in some agent a2 of remote AP hwp2
then the processing of the pfm(tt) message by AP
hwp2 will result in execution of task ta by the agent
a2 similarly to the case of deployment of the task ta
in the agent a1 of AP hwpr.

As the requested active replica is executed
independently of its deployment while DHS MAS
configuration is consistent and DHS MAS is
supposed to be in non-failure state if it is able to
execute an active replica of each type we shall proof
that fault-recovery procedures restore a consistent
configuration.

Let’s consider a failure of the task t of type tt.
Let a be an agent in that the task t is deployed, hwp
be AP in that the agent a is deployed. In accordance
with the conditions of theorem there is a task t’ that
is not in failure state. In accordance with
a_r_tpfail(t) procedure records (t, tt) of ATBT(a)
and (a, t, tt) of HTBD(hwp) will be removed. At this
step a consistent configuration is partially restored
in terms of conditions related to deployment tables.
If the task t is not an active replica then processing
will be finished, otherwise a record (tt, t) of
ATBAT(a) will be removed.

If the task t’ is deployed in the agent a (i.e. a
record (t’, tt) exists in ATBT(a)) then it will be
selected as new active replica. In this case a record
(tt, a, 0) of HTBAT(hwp) remains valid as well as a
record (tt, 0, hwp) of HTBAT(rhwp) of each remote
AP rhwp ≠ hwp. Thus including a record (tt, t’) in
ATBAT(a) will restore a consistent configuration.

If the task t’ is deployed in the agent a1 ≠ a of
the same AP hwp then it will be selected as new
active replica. In accordance with the h_r_fail(tt)
procedure a record (tt, a, 0) will be changed to a
record (tt, a1, 0) in HTBAT(hwp) and a record (tt, t’)
will be added to ATBAT(a1). A record (tt, 0, hwp) of
HTBAT(rhwp) of each remote AP rhwp ≠ hwp
remains valid. Thus a consistent configuration is
restored.

If the task t’ is deployed in the agent a2 ≠ a of
the remote AP rhwp ≠ hwp then it will be selected
as new active replica. In accordance with
recv_req_atask(tt) procedure a record (tt, a2, 0) will
be added to HTBAT(rhwp) and a record (tt, t’) will
be added to ATBAT(a2). A record (tt, 0, hwp) of
HTBAT(rhwpi) of each remote AP rhwpi ≠ rhwp will
be changed to a record (tt, 0, rhwp) in accordance
with processing of the broadcast atask_announce(tt,
rhwp) message. Thus a consistent configuration is
restored. Consequently consistent configuration of

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 677 Volume 13, 2014

redundant DHS MAS will be restored
independently of deployment of the task t’.

In case of a failure of the agent a deployed in AP
hwp each record (a, t, tt) will be removed from
HTBD(hwp) in accordance with the h_r_afail(a)
procedure and a consistent configuration will be
partially restored in terms of conditions related to
deployment tables. As was proved for a case of task
failure the h_r_tfail(tt) procedure will activate new
replica of the required type and will restore a
consistent configuration in terms of conditions
related to active replicas tables. The h_r_tfail(tt)
procedure will be performed by AP hwp for each
task type tt such than an active replica of this type
were deployed in the agent a. In accordance with
conditions of the theorem all h_r_tfail(tt)
procedures will succeed. Thus a consistent
configuration of DHS MAS will be restored.

Cases of failures of actuators and APs are
considered in a similar manner. Simplified proofs
for these cases were described in [10], [12].

5 Logical-and-Probabilistic Approach
for Reliability Assessment
Utilization of multi-agent technologies in industry
systems requires obtaining of a guaranteed
reliability level. Thus there is a need for methods
for theoretical assessment of redundant DHS MAS
reliability level achieved by application of our
reorganization technique and fault-recovery
procedures. Existing approaches described in [13],
[14] enable calculation of probability of survival
only in case of failures of hosts of a network on
which MAS is deployed. Moreover as mentioned in
[15] generic techniques developed for software
systems usually are not suitable for agent-based
systems. In this section the adaptation of logical-
and-probabilistic methods that enable synthesis of a
reliability function of a system in an analytic form
[16] for redundant DHS MAS is discussed.

5.1 Methodology for Operability Function
Formation
Logical-and-probabilistic methods are based on
transformation of a logical operability function that
determines a state of the system based on states of
its components to such form which allows
replacement of logical operators with arithmetical
operators and logical variables with corresponding
probabilities of no-failure [16]. Therefore we shall

develop a methodology for formation of an
operability function of redundant DHS MAS.

In section 3.2 we have argued that a redundant
DHS MAS is in failure if it is not able to perform an
active replica of at least one type. Thus in
accordance with definition of an operable state of a
particular task (6) the criterion of serviceability of a
redundant DHS MAS is as follows:

,)(:, falsetfailTGRTtTTtt =∈∃∈∀ (11)

where tt is a task type, t – a task, RT – a set of tasks.

It’s well known that an operability function may
be formed as a disjunction of all conjunction
defined by the shortest ways of successful operation
[16]. To define our methodology for formation of an
operability function we have introduced terms of
minimal functional configuration (MFC) and
minimal operable configuration (MOC). Each MFC
shall represent one of the shortest paths of
successful operation [16] without considering the
necessity of actuators utilization. Thus MFC shall
contain a minimal set of tasks required for
successful operation of the redundant DHS MAS as
well as sets of agents and APs required for
execution of these tasks. We define MFC as an
ordered set <MT, MA, MHWP>, where MT is a set
of tasks, MA – a set of agents, MHWP – a set of
APs. Based on each MFC one or more minimal
operable configurations could be formed. Each
MOC shall represent the shortest path of successful
operation in accordance with logical-and-
probabilistic method. We define MOC as an ordered
set <MFC, MWR>, where MFC is a minimal
functional configuration, MWR – a set of actuators
of MOC.

The operability function of the redundant MAS
shall be determined in the following form:

.))(())((

))(())((

∧

 ∧∧

∧∧

∧∧∨

∈∀∈∀

∈∀∈∀∀

hwrwhwpw

awtw

MWRhwrMHWPhwp

MAaMTtMOC (12)

In (12) MOC is a minimal operable

configuration, MT, MA, MHWP are respectively sets
of tasks, agents and APs of MFC used for
construction of MOC, MWR is a set of actuators of
MOC, t, a, hwp, hwr are respectively a task, an
agent, AP and an actuator, w() is a logical function
representing a state of particular component.

Determination of all MOCs is required for
formation of an operability function in form (12).

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 678 Volume 13, 2014

To define the methodology for formation of a set of
all MOCs we have introduced a set of additional
functions:
• tasksOfTT(tt) determines a set of tasks of a

particular type:

},),(|{)(truetttskconfTypeTaRTttttasksOfTT =∈= (13)

where tt is a task type, t – a task, RT – a set of
tasks;

• rTHwrOfP(MFC, hwp) determines a set of
actuator types required for performing tasks of
MFC that are deployed in agents of AP hwp:

))},((
),(

),(
:,

|{),(

ttOfTaskreqTHwrthwr
truehwpawpconfAgentH

trueatentconfTaskAg
MFCMAaMFCMTt

THWRthwrhwpMFCrTHwrOfP

∈
∧=

∧=
∈∈∃∈∈∃

∈=

 (14)

where hwp is AP, thwr – ACT type, THWR – a set
of ACT types, t – a task, MT – a set of tasks of
MFC, a – an agent, MA – a set of agents of MFC;

• avTHwrOfP(MFC, hwp, thwr) determines a set of
actuators of a type thwr that are accessible for AP
hwp:

},)(
),(

|{),,(

thwrhwrtOfHwr
truehwphwrconfHwrHwp

RHWRhwrthwrhwpMFCavTHwrOfP

=
∧=

∈=
 (15)

where hwp is AP, thwr – ACT type, hwr – ACT,
RHWR is a set of ACTs.

The developed methodology for formation of a
set of all MOCs comprises of following steps.

At the first step a set MTA of all sets of tasks MT
that could act as a base of MFC is formed as
follows:

)},(),(:,|,|

|),...,({)(1

ji

nk

ttOfTaskttOfTaskijiTTn

ttMTtttasksOfTTMTA
TTtt

≠≠∀∀=

=== ∏
∈∀ (16)

where tt is a task type, TT is a set of task types, ti is
a task.

At the second step a set of all MFCs is formed as
follows based on a set MTA (16):

}},),(
:|{

},),(:|{
,|),,({

truehwpawpconfAgentH
MAaRHWPhwpMHWP

trueatentconfTaskAgMTtRAaMA
MTAMTMHWPMAMTMFCMFCA

kk

kk

kkkkk

=
∈∃∈=

=∈∃∈=
∈==

 (17)

where a is an agent, RA – a set of agents, t – a task,
hwp is AP, RHWP – a set of APs.

The third step is required to determine a set MRA
of all sets of ACTs MR that could be used for
formation of MOC based on each MFC from the set
MFCA (17). This step for each MFC comprises of
following sub-steps:
• determine whether MFC could be used for

formation of MOC in terms of availability of
actuators of all required types based on following
condition:

,),,(
:),(

,

∅≠
∈∀

∈∈∀

thwrhwpMFCavTHwrOfP
hwpMFCrTHwrOfPthwr

MFCMHWPhwp
 (18)

where hwp is AP, MHWP is a set of APs of MFC,
thwr is ACT type;

• for each AP of MFC determine a set of all sets of
ACTs MRH that include one and only one ACT of
each ACT type required for performing of tasks of
MFC deployed in agents of this AP:

∏
∈∀

===

),(
),,,(

}}{{),(

hwpMFCrTHwrOfPthwr
thwrhwpMFCavTHwrOfP

hwrMRHhwpMFCMRHA (19)

where hwp is AP, hwr is ACT, thwr is ACT type;

• determine a set MRAP of all sets of ACTs MR that
could be used to build MOC based on this MFC:

}},{{

),()(

)},(|
{)(

ki

ik

i

MRHMRU

hwpMFCMRHAMFCMRAU

MFCMRAUMRUMRH
MRMFCMRAP

MFCMHWPhwp

iMRUkMRH

==

=

∈∀
==

∏
∈∈∀

∈∀
 (20)

where hwp is AP, MHWP is a set of APs of MFC,
MRHA is determined in accordance with (19);

• determine a desired set MRA by excluding from a
set MRAP (20) such sets MRi that do not meet the
condition required for treatment of MOC as the
shortest way of successful operation:

[

] [

]},)()((
)),((

:)(()(
),(

)(:,
:,
|)({)(

hwrtOfHwrrhwtOfHwr
truehwprhwconfHwrHwphwrrhw

MRrhwttOfTaskreqTHwrhwrtOfHwr
truehwpawpconfAgentH

atagentOfTMTtMAa
MFCMHWPhwpMRhwr

MFCMRAPMRMFCMRA

≠′
⇒=′∧≠′
∈′∀∧∈

∧=
∧=∈∃∈∃

∈∈∃∈∀
∈=

 (21)

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 679 Volume 13, 2014

where hwr, hwr’ are ACTs, hwp is AP, a is an
agent, t is a task, MHWP, MA, MT are respectively
sets of APs, agents and tasks of MFC.

At the final step a set MOCA of all MOCs of
redundant DHS MAS is determined as follows:

),(
,|),({

kki

kkik

MFCMRAMR
MFCAMFCMRMFCMOCMOCA

∈∀
∈∀== (22)

where MOC is minimal operable configuration,
MFCk is minimal functional configuration, MRki is a
set of ACTs, MFCA is determined in accordance
with (17), MRA is determined in accordance with
(21).

Based on a set of all MOCs (22) the logical
operability function of a redundant DHS MAS
could be formed in accordance with (12). In
accordance with existing logical-and-probabilistic
methods this logical operability function could be
transformed to the reliability function.

5.2 Limitation of Logical-and-Probabilistic
Approach
Main advantage of logical-and-probabilistic
approach is synthesis of an operability function in
an analytic form independently from particular
reliability indexes and parameters of system
components. However logical-and-probabilistic
methods are suitable only for systems with
persistent connections between all components [17].
In other words each component of a redundant
system may fail independently from states of other
components.

In section 2 we have mentioned that our redundant
DHS MAS model does not specify particular
operating and standby modes of system
components. However for utilization of logical-and-
probabilistic approach redundant DHS MAS shall
meet following conditions:
• all duplicate components operates in hot standby

mode;
• reliability function of each component is

persistent, i.e. probability of no-failure of a
particular component does not depend on neither
state of this component nor states of other system
components, for example:
• probability of no-failure of a particular agent

does not depend on number of deployed tasks
and number of tasks that act as active replicas;

• probability of no-failure of a particular AP does
not depend on number of deployed agents and
tasks situated in these agents;

• probability of no-failure of a particular ACT
does not depend on availability of this ACT for
an active replica that requires its utilization;

• probability of no-failure of a particular tasks
does not depend on state of this task (i.e.
whether the task is an active replica or not).
It’s worth noting that if probability of no-failure

of at least one of system components depends on
states of other components (e.g. a task that is not an
active replica could not fail) then logical-and-
probabilistic approach is not suitable for this
redundant DHS MAS.

6 State Graph Based Approach for
Reliability Assessment

As was mentioned above logical-and-
probabilistic approach is limited to redundant DHS
MAS which components operate only in hot
standby mode and have persistent reliability
function. However in real redundant system
probability of no-failure of a particular component
may depend on either its state of states of other
system component. To overcome mentioned above
limitation of logical-and-probabilistic approach we
have decided to utilize state graph based approach
[18]. State graph based approach uses Markovian
model which requires that failure rate of each
component shall be persistent only while whole
system is in one of its states. Each system state is
defined as some aggregate of states of its
components. Thus state graph based approach
allows reliability assessment for systems that
components operate in cold standby mode, reduced
reserve mode or in combined reserve mode. In
accordance with [18] generic state graph based
method comprises of following steps:
• determine all system states;
• determine nodes of state graph such that each

node represent one of system states
• determine edges of state graph such that each edge

represents a transition from one state to another
that is related to failure of one or more system
components;

• mark each edge of state graph with transition
intensity (transition intensity is determined as sum
of failure rates of system components that shall
fail to initiate the transition);

• work out a Kolmogorov system of differential
equations based on state graph in the following
form:

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 680 Volume 13, 2014

,),()()(

2 1

∑ ∑
∈ ∈

∈+−=
i iLj Lk

kkiiij
i EitPtP
dt

tdP λλ (23)

where Pi(t) is a probability that system is in state i
at time instant t, λij – a transition intensity from
state i to state j, L1i – a subset of system states
such that there is a transition from each state of
the subset to the state i, L2i – a subset of system
states such that there exists a transition from the
state i to each state of the subset, E – a set of
system states.

6.1 State Graph Based Approach Definition
To enable formation of state graph of a

particular redundant DHS MAS we assume that
fault-recovery procedures are deterministic, i.e. for
each system state and for each system component
failure of this component will always switch a
system to one and only one state. In other words for
a particular system state and a particular failed
component new system state to which the system
will transition in accordance with fault-recovery
procedures shall be determined explicitly.

As was mentioned in section 2 agents and APs
are treated as universal executive containers and
failure of agent of APs leads to inability to perform
one or more of MAS tasks, i.e. tasks deployed in
failed agent or tasks deployed in agents of failed
AP. Thus we suggest that states of agents and APs
shall be excluded from definition of redundant DHS
MAS state definition. So redundant DHS MAS state
is defined as an aggregate of states of all system
tasks and all system ACTs.

We suppose that each task and ACT may be in
one of following states:
• active state denoted as [a];
• standby state denoted as [s];
• failure state denoted as [f].

It’s supposed that a particular system component
may fail only while it is in active state (i.e. standby
state corresponds to cold standby mode).

We define a state of redundant DHS MAS as a
following ordered set comprised of states of each
system task and actuators:

}},|,|...1|)({
},|,|...1|)({{

RHWRhwrRHWRjhwrs
RTtRTitsSMAS

jj

ii

∈∈∀
∈∈∀= (24)

where s(ti) is a state of task ti, RT – a set of tasks,
s(hwrj) is a state of ACT hwrj, RHWR – a set of
ACTs.

We consider redundant DHS MAS as a non-
repairable system (i.e. each component that has
failed could not be repaired). Thus we do not
distinguish system states in which redundant DHS
MAS is not operable in accordance with the criteria
of serviceability (11). So we assume that there
exists one and only one system state in which the
system is not operable and this state is denoted as

}{∅=FSMAS .

6.2 State Graph Formation
To enable formation of state graph of redundant

DHS MAS we have developed new iterative
algorithm. To enable algorithm definition we have
introduced following additional sets and functions:
• set of already formed system states

SMASA = {SMASi}, where SMASi is a system
state;

• set of already formed graph edges:

},

,,

|}){,,({

RHWPRHWRRARTc

SMASASMASSMASASMAS

cFSMASSMASSEDGSEDGA

k

ji

kijjim

∪∪∪∈

∈∈

===
 (25)

where SEDGm is an edge that represents transition
from state SMASi to state SMASj initiated by
failure of any of system components ck from set
Fij, RT – a set of tasks, RA – a set of agents,
RHWR – a set of ACTs, RHWP – a set of APs;

• function cstate(c, SMAS) is intended for
determination of a state of a particular ACT or a
particular task in one of systems states:

]},[],[],{[)(: fsaSMASARHWRRTcstate →×∪ (26)

where RT is a set of tasks, RHWR – a set of ACTs,
SMASA – a set of system states.

Our methodology for state graph formation is
defined by following iterative algorithm:
• let n be a number of system state under

consideration;
• determine a set of tasks FET that may fail in

system state SMASn:

]},[),(|{ aSMAStcstateRTtFET nii =∈= (27)

where ti is a task, RT – a set of tasks;

• determine a set of actuators FEA that may fail in
system state SMASn:

]},[),(|{ aSMAShwrcstateRHWRhwrFEA nii =∈= (28)

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 681 Volume 13, 2014

where hwri is ACT, RHWR – a set of ACTs;

• for each system component cmp that may fail (i.e.
each task from a set FET, each ACT from a set
FEA, each agent from a set of agents RA, each AP
from a set of APs RHWP) new system state SMASq
is determined in following manner:
- let new system state SMASq be equal to the

system state under consideration SMASn;
- if considered component cmp is a task t:
 mark the task t as failed, i.e. set a

corresponding element s(t) of a set SMASq to
[f] value;
 determine a set of unused ACTS FUA such that

each ACT hwr from the set FUA is not in
failure state and is not accessible for at least
one task which is not in failure state and
requires its utilization:

)},))(,(
))(()(

][),((:(

])[),((|{

falsethwpOfThwrconfHwrHwp
ttOfTaskreqTHwrhwrtOfHwr

fSMAStcstateRTt

fSMAShwrcstateRHWRhwrFUA

q

q

=′
⇒′∈

∧≠′∈′∀

∧≠∈=

(29)

where hwr is ACT, RHWR – a set of ACTs,, t’
– a task, RT – a set of tasks.
 mark each unused ACT hwr from the said set

FUA as failed, i.e. set a corresponding element
s(hwr) of a set SMASq to [f] value;

- if considered component cmp is an actuator hwr:
 mark the actuator hwr as failed, i.e. set a

corresponding element s(hwr) of a set SMASq
to [f] value;
 determine a set of tasks FETH such that each

task t from the set FETH is not in failure state,
requires utilization of ACT of the type
thwr = tOfHwr(hwr) and has no access to other
not failed ACTs of the type thwr:

)},))(,(
))()(

][),((:(
))(()((

])[),((|{

falsethwpOfTrhwconfHwrHwp
hwrtOfHwrrhwtOfHwr

fSMASrhwcstateRHWRrhw
ttOfTaskreqTHwrhwrtOfHwr

fSMAStcstateRTtFETH

q

q

=′
⇒=′

∧≠′∈′∀
∧∈

∧≠∈=

 (30)

where t is a task, RT – a set of tasks, hwr’ – an
actuator, RHWR – a set of ACTs;
 for each task t from the said set FETH process

its failure as described in steps for the case of
failed task, i.e. mark the task and all unused
actuators as failed;

- if considered component cmp is an agent a:
 determine a set of tasks

FETA = {t | agentOfT(t) = a} such that each

task t from the said set FETA is deployed in
agent a;
 for each task t from the said set FETA process

its failure as described in steps for the case of
failed task;

- if considered component cmp is an agent
platform hwp:
 determine a set of tasks

FETP = {t | hwpOfT(t) = hwp} such that each
task t from the set FETP is deployed in one of
agents of AP hwp;
 for each task t from the said set FETA process

its failure as described in steps for the case of
failed task;

- update system state SMASq in accordance with
fault-recovery procedures (i.e. some components
that are in standby state will be switched to an
active state);

- if redundant DHS MAS is not operable in state
SMASq in accordance with the criteria of
serviceability (11), then set SMASq to empty set;

- if generated state SMASq to which the system is
switched from the state SMASn due to a failure of
component cmp is a new state (i.e. it is not
included in the set SMASA of already formed
states), then update the set SMASA to include
new state SMASq;

- if graph edge related to transition from the state
SMASn to the state SMASq already exists in the
set of graph edges SEDGA, then update the
element SEDG = (SMASn, SMASq, Fnq = {ck}) of
the set SEDGA to include the system component
cmp to the set Fnq of system components that
failures initiate the transition, otherwise update
the set SEDGA to include new edge
SEDG’ = (SMASn, SMASq, {cmp}).
The iterative algorithm for state graph formation

stops when all states from the set SMASA of
generated state are processed, i.e. when after the
performed iteration the number of system state
under consideration n is equal to a number of
elements in the set SMASA.

6.3 Extended Redundant Distributed
Hardware-Software Multi-Agent System
Model

As was mentioned above state graph based
approach allows assessment of reliability for
systems that components operate in cold standby
mode. In case of redundant DHS MAS we have
developed a methodology for state graph formation
based on the assumption that a particular functional

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 682 Volume 13, 2014

component (i.e. task or ACT) may fail only if it is in
an active state. State graph based approach is also
suitable in cases of advanced operating modes of
system components. For example a task in an active
state may be executed periodically and may fail
only during its execution. Similarly an actuator in
an active state may fail only when it is actually
utilized by one of tasks. To consider different
operating modes of MAS components we have
extended our DHS MAS model.

We have introduced a term of task class to
describe operating mode of a particular task. We
suppose that each MAS task may belong to either
event-driven or periodical class. A task of periodical
class is executed periodically while it is in an active
state with fixed time intervals between executions.
Moreover duration of single execution of a task of
periodical class is fixed. Execution of event-driven
task is initiated by a particular accidental event in
an environment. Duration of single execution of
event-driven task is also fixed.

A term of actuator class was introduced to define
various operating modes of a particular ACT. Each
ACT may belong to either regular service class or
task-driven class. An actuator of regular service
class operates continuously while it is in an active
state. Consequently an actuator of regular service
class may fail at any time instant while it is active.
A task-driven actuator operates only during its
utilization by one or more of system tasks. Thus a
task-driven actuator could not fail while it is not
utilized even if it is in an active state.

Terms of operating modes for agents and agent
platforms we introduced to deal with different
failure behaviors of these components. If an agent
operates in regular service mode then its failure rate
does not depend on states of tasks deployed in the
agent. If an agent operates in task service mode then
its probability of failure increases during execution
of one or more of its tasks. Similarly probability of
failure of a particular AP that operates in task
service mode increases when one of agents situated
in this AP is executing its tasks.

To adopt new terms we have extended our
redundant DHS MAS model with following new
elements:
• set of task classes CT = {[ed], [pd]}, where [ed]

denotes event-driven class, [pd] denotes
periodical class;

• set of actuator classes CHWR = {[rs], [td]},
where [rs] denotes regular service class, [td]
denotes task-driven class;

• set of agent operating modes OA = {[rs], [ts]} and
set of AP operating modes OHWP = {[rs], [ts]},
where [rs] denotes regular service mode, [ts]
denotes task service mode;

• predicate confClTTask(ct, tt) is true if a task of
type tt belongs to class ct;

• predicate confClTHwr(chwr, thwr) determines
whether an actuator of type thwr belongs to class
chwr;

• predicate confOmA(oa, a) determines whether an
agent a operates in mode oa;

• predicate confOmHwp(ohwp, hwp) determines
whether AP hwp operates in mode ohwp;

• function timed(tt) determines a duration of single
execution of a task of type tt that belongs to event-
driven or periodical class;

• function time(tt) determines a fixed time interval
between executions of a task of type tt that
belongs to periodical class;

• function stream(tt) determines a rate of occurrence
of accidental events that initiates execution of a
task of type tt that belongs to event-driven class.

6.4 Failure Model for State Graph Based
Approach

Reliability assessment requires information of
failure behavior of each system component. We
suppose that failure behaviors of components of
redundant DHS MAS are defined by following
functions:
• function qft(tt) determines a probability of failure

during single execution for a task of type tt that
belongs to either event-driven or periodical class;

• function fra(a) determines a failure rate for an
agent a that operates in either regular service or
task service mode;

• function rda(a) determines a reduction factor for
an agent a that operates in task service mode;

• function qfa(a) determines a probability of failure
during single execution of one of active tasks for
an agent a that operates in task service mode;

• function frp(hwp) determines a failure rate for AP
hwp that operates in either regular service or task
service mode;

• function rdp(hwp) determines a reduction factor
for AP hwp that operates in task service mode;

• function qfp(hwp) determines a probability of
failure for AP hwp during single execution of one
of active tasks via one of agents situated in this
AP;

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 683 Volume 13, 2014

• function frr(thwr) determines a failure rate for an
actuator of type thwr.

Generic state graph based approach is built upon
Markovian model. Thus it’s assumed that failure
rate of each system component is persistent while
the system is in one of its states and time to failure
of each system component is a random variate of
exponential distribution [18]. We also assume that
for each task of type that belongs to event-driven
class random stream of accidental events that
initiates execution of this task is a simple or Poisson
stationary stream with exponentially distributed
random intervals between events.

Let’s assume that the state graph of redundant
DHS MAS is already formed in accordance with
methodology described in section 6.2. To work out
a system of differential equations in form (23) it’s
required to determine transition intensities for each
graph edge. As was noted above a transition
intensity for a particular edge is calculated as a sum
of failure rates of such system components that shall
fail to initiate a transaction described by this edge.
Because in accordance with extended redundant
DHS MAS model failure rate and probability of
failure of a particular component depends on its
state as well as on states of other components, we
shall define techniques for determination of failure
rates for DHS MAS components in a particular
system state.

 Let’s consider a redundant DHS MAS state
SMAS. A failure rate for a particular task t that is in
an active state is determined as follows:

,

)],([,
)(

))(1ln(

)],([),()(

)(

=
−

−

=⋅

=

truettpdkconfClTTasif
tttime

ttqft

truettedkconfClTTasifttqftttstream

tfratet

 (31)

where tt = tOfTask(t) is a type of task t, [ed]
denotes event-driven task class, [pd] denotes
periodical task class.

As an actuator of task-driven class operates and
thus may fail only when it’s utilized by a particular
task that is in an active state, let’s determine a rate
of failures of a particular actuator that are caused by
utilization of this actuator by a particular active task
t as follows:

,

)],([

,
)(
)()(

)],([
),1()(

),(
)()(

=

⋅−

=
−⋅

=
⋅

truettpdkconfClTTasif
tttime
tttimedthwrfrr

truettedkconfClTTasif
ettstream

tthwrfratehwrtt
tttimedthwrfrr

 (32)

where thwr = tOfHwr(hwr) is a type of an actuator
hwr, tt = tOfTask(t) – a type of task t that utilize the
actuator.

A failure rate for a particular actuator hwr that is
in an active state is determined as follows:

,

)],([

,))(,(

)],([),(
)(

))((
))(,(

][),(:

=

=

=

∑

∈
∧=

∧=∈∀

truethwrtdconfClThwrif

ttOfTaskhwrfratehwrtt

truethwrrsconfClTHwrifthwrfrr
hwrfratehwr

ttOfTaskreqTHwrthwr
truethwpOfThwrconfHwrHwp

aSMAStcstateRTt

 (33)

where thwr = tOfHwr(hwr) is a type of an actuator
hwr, t – a task, RT – set of tasks, SMAS – a system
state.

Let’s consider a particular agent that operates in
a task service mode. Failure of this agent may be
caused either by agent itself or by execution of one
of its active tasks. A rate of failures of an agent that
are caused by execution of a particular task t is
determined in a following manner:

,

)],([,
)(

))(1ln(

)],([),()(

),(

=
−

−

=⋅

=

truettpdkconfClTTasif
tttime

aqfa

truettedkconfClTTasifaqfattstream

ttafrateatt

 (34)

where a is an agent, tt = tOfTask(t) is a type of task
t.

Finally a failure rate for a particular agent a in
DHS MAS state SMAS is determined as follows:

,

)],([

,))(,(
)()(

)],([
),(

)(

)(
][),(

:

=

+
+⋅

=

=

∑

=
∧=

∈∀

trueatsconfOmAif

ttOfTaskafrateatt
ardaafra

truearsconfOmAif
afra

afratea

atagentOfT
aSMAStcstate

RTt

 (35)

where a is an agent, t – a task, RT – set of tasks,
SMAS – a system state.

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 684 Volume 13, 2014

A rate of failures of an agent platform operating
in a task service mode that are caused by execution
of a particular task t situated in one of its agents is
determined similarly to (34):

,

)],([,
)(

))(1ln(

)],([),()(

),(

=
−

−

=⋅

=

truettpdkconfClTTasif
tttime
hwpqfp

truettedkconfClTTasifhwpqfpttstream

tthwpfratehwptt

 (36)

where hwp is AP, tt = tOfTask(t) is a type of task t.

A failure rate for a particular AP in DHS MAS
state SMAS is determined as follows:

,

)],([

,))(,(

)()(

)],([
),(

)(

)(
][),(

:

=

+

+⋅

=

=

∑
=

∧=
∈∀

truehwptsconfOmHwpif

ttOfTaskhwpfratehwptt

hwprdphwpfrp

truehwprsconfOmHwpif
hwpfrp

hwpfratehwp

hwpthwpOfT
aSMAStcstate

RTt

 (37)

where hwp is AP, t – a task, RT – set of tasks, SMAS
– a system state.

It’s worth noting that for a particular redundant
DHS MAS state failure rates for tasks and ACTs
that are not in active state are not determined as
these components could not fail because of cold
standby mode.

7 Experiments
The hypothesis to be verified though a set of
experiments is as follows: the reliability level
achieved though utilization of the developed
reorganization technique described in section 2.2
and fault-recovery methodology described in
section 3 is equal to the theoretical assessments

determined via logical-and-probabilistic and state
graph based approaches.

7.1 Examples of Distributed Hardware-
Software Multi-Agent Systems
The first existing DHS MAS (MAS1) is presented
on Fig. 1. MAS1 is defined by following sets: a set
of tasks T = {t1, t2, t3}, a set of agents A = {a1, a2}, a
set of APs HWP = {h1}, a set of ACTs HWR = {r1,
r2, r3}. Its configuration is defined as follows:
• confTaskAgent is true on a set {(t1, a1), (t2, a1), (t3,

a2)};
• confAgentHwp is true on a set {(a1, h1), (a2, h1)};
• confHwrHwp is true on a set {(r1, h1), (r2, h1), (r3,

h1)};
• reqHwrTask is true on a set {(r1, t1), (r2, t1), (r2, t2),

(r3, t3)}.
Application of our reliability improvement

methodology has transformed the existing DHS
MAS MAS1 to a redundant DHS MAS RMAS1 that
is presented on Fig. 2. RMAS1 is defined by
following sets: a set of task types TT = {tt1, tt2, tt3},
a set of tasks RT = {t11, t12, t21, t22, t31, t32}, a set of
agents RA = {a1, a2, a3}, a set of APs RHWP = {h1,
h2}, a set of ACT types THWR = {rt1, rt2, rt3} and a
set of ACTs RHWR = {r11, r12, r21, r22, r31, r32}. The
configuration of RMAS1 is as follows:
• confTypeTask is true on a set {(tt1, t11), (tt1, t12),

(tt2, t21), (tt2, t22), (tt3, t31), (tt3, t32)};
• confTypeHwr is true on a set {(rt1, r11), (rt1, r12),

(rt2, r21), (rt2, r22), (rt3, r31), (rt3, r32)};

Fig. 1. Existing DHS MAS (MAS1)

Fig. 2. Redundant DHS MAS (RMAS1)

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 685 Volume 13, 2014

• confTaskAgent is true on a set {(t11, a1), (t12, a2),
(t21, a2), (t22, a3), (t31, a3), (t32, a1)};

• confAgentHwp is true on a set {(a1, h1), (a2, h2),
(a3, h2)};

• reqTHwrTTask is true on a set {(rt1, tt1), (rt2, tt1),
(rt2, tt2), (rt3, tt3)};

• confHwrHwp is true on a set {(r11, h1), (r12, h2),
(r21, h1), (r21, h2), (r22, h1), (r22, h2), (r31, h2), (r32,
h1), (r32, h2)}.

The second test redundant DHS MAS RMAS2 is
presented on Fig. 3 and is defined by following sets:
a set of task types TT = {tt1, tt2, tt3, tt4, tt5, tt6, tt7, tt8,
tt9}, a set of tasks RT = {t11, t12, t21, t22, t31, t32, t41, t42,
t51, t52, t61, t62, t71, t72, t81, t82, t91, t92}, a set of agents
RA = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}, a set of
APs RHWP = {h1, h2, h3, h4, h5}, a set of ACT types
THWR = {rt1, rt2, rt3, rt4, rt5, rt6} and a set of ACTs
RHWR = {r11, r12, r21, r22, r31, r32, r41, r42, r51, r52, r61,
r62}. The configuration of DHS MAS RMAS2 is as
follows:
• confTypeTask is true on a set {(tt1, t11), (tt1, t12),

(tt2, t21), (tt2, t22), (tt3, t31), (tt3, t32), (tt4, t41), (tt4,
t42), (tt5, t51), (tt5, t52), (tt6, t61), (tt6, t62), (tt7, t71),
(tt7, t72), (tt8, t81), (tt8, t82), (tt9, t91), (tt9, t92)};

• confTypeHwr is true on a set {(rt1, r11), (rt1, r12),
(rt2, r21), (rt2, r22), (rt3, r31), (rt3, r32), (rt4, r41), (rt4,
r42), (rt5, r51), (rt5, r52), (rt6, r61), (rt6, r62) };

• confTaskAgent is true on a set {(t11, a1), (t12, a3),
(t21, a1), (t22, a3), (t31, a4), (t32, a5), (t41, a7), (t42, a9),
(t51, a8), (t52, a9), (t61, a7), (t62, a2), (t71, a5), (t72, a2),
(t81, a6), (t82, a8), (t91, a10), (t92, a7) };

• confAgentHwp is true on a set {(a1, h1), (a2, h1),
(a3, h2), (a4, h2), (a5, h3), (a6, h3), (a7, h4), (a8, h4),
(a9, h5), (a10, h5)};

• reqTHwrTTask is true on a set {(rt1, tt1), (rt1, tt3),
(rt2, tt2), (rt2, tt3), (rt3, tt4), (rt3, tt6), (rt4, tt5), (rt4,
tt6), (rt5, tt7), (rt5, tt9), (rt6, tt8), (rt6, tt9)};

• confHwrHwp is true on a set {(r11, h1), (r11, h2),
(r12, h2), (r12, h3), (r21, h1), (r21, h2), (r22, h2), (r22,
h3), (r31, h4), (r31, h5), (r32, h1), (r41, h4), (r41, h5),
(r42, h1), (r51, h3), (r51, h5), (r52, h1), (r52, h4), (r61,
h3), (r61, h5), (r62, h4)}.

Other example of redundant DHS multi-agent
system is presented in [19].

7.2 Experiments for Logical-and-
Probabilistic Approach
Experiments for logical-and-probabilistic approach
are based on statistical modelling of time to failure
of all components and further processing of the
obtained sequence of failures on the imitation
model of test redundant DHS MAS.

As logical-and-probabilistic approach is utilized
for formation of analytic reliability function it’s
assumed that all components of redundant DHS
MAS operates in hot standby mode.

All minimal functional configurations of
redundant DHS MAS RMAS1 determined in
accordance with methodology described in section
5.1 are presented in Table 1. Several minimal
operable configurations of RMAS1 are presented in
Table 2. Total number of MOCs of RMAS1 is 24.

Experimental assessments of probability of no-
failure PSR(t) as well as analytic reliability function
PAR(t) for test redundant DHS MAS RMAS1 and
reliability function PA(t) for existing DHS MAS
MAS1 are presented on Fig. 4.

Fig. 3. Redundant DHS MAS (RMAS2)

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 686 Volume 13, 2014

Experimental assessments for other test
redundant DHS MASs are presented in [19].

7.3 Experiments for State Graph Based
Approach
Experiments for state graph based approach are
distinguished from experiments for logical-and-
probabilistic approach that are described in section
7.2. It’s worth noting that failure rates determined in
accordance with (31) – (37) are used only for
theoretical reliability assessment and are not
utilized in experiments. Statistical modeling of time
to failure values is used only for components which
failure rates do not depends on states of other
components, e.g. agents, agent platforms and
actuators of regular service class. For tasks of both
event-driven and periodical classes simulation of
system operation is performed. For each single
execution of a particular task following values are
determined:
• next time instant of task execution (statistical

modelling is used for tasks of event-driven class);
• state of an agent operating in a task service mode

in which the task is deployed (i.e. whether the
agent has failed due to task execution);

• state of AP operating in a task service mode in
which an agent of the task is deployed;

• state of an actuator that is in an active state and is
utilized during task execution.

For determination of mentioned above states
statistical modelling of random variate of uniform
distribution is utilized.

Processing of each occurred failure by the
imitation model of redundant DHS MAS in
accordance with fault-recovery procedures
described in section 3.2 results in switching DHS
MAS to a new state though replacement of some
system components with duplicates.

Several states and edges of state graph for
redundant DHS MAS RMAS1 are presented in
Table 3 and Table 4 respectively. State graphs for
RMAS1 and RMAS2 contains 43 and 3131 states.

Table 2. Minimal operable configurations (RMAS1)
MOC MFC MWR
MOC1 MFC1 {r11, r21, r31}
MOC2 MFC1 {r11, r21, r32}
MOC3 MFC1 {r11, r22, r31}
MOC4 MFC1 {r11, r22, r32}
MOC5 MFC2 {r11, r21, r32}
MOC6 MFC2 {r11, r22, r32}
MOC7 MFC6 {r12, r21, r32}
MOC8 MFC6 {r12, r22, r32}

Table 1. Minimal functional configurations (RMAS1)
MFC MT MA MHWP
MFC1 {t11, t21, t31} {a1, a2, a3} {h1, h2}
MFC2 {t11, t21, t32} {a1, a2} {h1, h2}
MFC3 {t11, t22, t31} {a1, a3} {h1, h2}
MFC4 {t11, t22, t32} {a1, a3} {h1, h2}
MFC5 {t12, t21, t31} {a2, a3} {h2}
MFC6 {t12, t21, t32} {a1, a2} {h1, h2}
MFC7 {t12, t22, t31} {a2, a3} {h2}
MFC8 {t12, t22, t32} {a1, a2, a3} {h1, h2}

Fig. 4. Reliability functions and experimental assessments of probability of no-failure (MAS1 and RMAS1, logical-and-

probabilistic approach)

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 687 Volume 13, 2014

We assume that tasks and actuators that are not
in an active state do not operate and consequently
could not fail. State graph based approach allows
consideration of different operating modes of

system components. Particular operating modes of
agents and APs as well as classes of tasks and ACTs
are defined by following MAS model extensions for
both RMAS1 and RMAS2 redundant systems:

,)],([:
,)],([:

,12)],([
,2)],([

,12)],([
,2)],([

truehwptsconfOmHwphwp
trueatsconfOmAa

nitruethwrtdconfClThwr
nitruethwrrsconfClThwr

nitruettpdkconfClTTas
nitruettedkconfClTTas

i

i

i

i

=∀
=∀

+=⇔=
=⇔=

+=⇔=
=⇔=

 (38)

where tti is a task type, thwri – a type of ACT, a –
an agent, hwp – AP, [ed] denotes event-driven task
class, [pd] denotes periodical task class, [rs]
denotes regular service ACT class, [td] denotes
task-driven ACT class, [ts] denotes a task service
operating mode.

On Fig 5, we can see experimental assessments
of probability of no-failure PSR1(t) and analytic
reliability function PAR1(t) for test redundant DHS
MAS RMAS1, reliability function PA1(t) for

Table 4. Edges of state graph (RMAS1)
Index of

initial state
Index of

final state Set of failed components

1 2 {t11, r11}
1 3 {t21}
1 4 {t31}
1 5 {r21}
1 6 {r31}
1 7 {a1, h1}
1 8 {a2}
1 9 {a3}
1 10 {h2}
2 10 {t12, r12, a2, h2}
3 10 {t22, a3, h2}
4 10 {t32, r32, a1, h1, h2}
5 10 {r22, h2}
6 10 { r32, h2}
7 10 { t12, t31, r12, a2, a3, h2}
8 10 { t11, t22, r11, a1, a3, h1, h2}
9 10 { t21, t32, r32, a1, a2, h1, h2}

Table 3. Redundant DHS MAS states (RMAS1)

State States of MAS components
t11 t12 t21 t22 t31 t32 r11 r12 r21 r22 r31 r32

1 [a] [s] [a] [s] [a] [s] [a] [s] [a] [s] [a] [s]
2 [f] [a] [a] [s] [a] [s] [f] [a] [a] [s] [a] [s]
3 [a] [s] [f] [a] [a] [s] [a] [s] [a] [s] [a] [s]
4 [a] [s] [f] [a] [a] [s] [a] [s] [a] [s] [f] [a]
5 [a] [s] [a] [s] [a] [s] [a] [s] [f] [a] [a] [s]
6 [a] [s] [a] [s] [a] [s] [a] [s] [a] [s] [f] [a]
7 [f] [a] [a] [s] [a] [f] [f] [a] [a] [s] [a] [s]
8 [a] [f] [f] [a] [a] [s] [a] [f] [a] [s] [a] [s]
9 [a] [s] [a] [f] [f] [a] [a] [s] [a] [s] [f] [a]

10 Failure state - SMASF

Fig. 5. Reliability functions and experimental assessments of probability of no-failure (MAS1, RMAS1, RMAS2, state graph

based approach)

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 688 Volume 13, 2014

existing DHS MAS MAS1, experimental
assessments of probability of no-failure PSR2(t) and
analytic reliability function PAR2(t) for test
redundant DHS MAS RMAS2.

8 Conclusion
A distributed hardware-software multi-agent system
has been considered as the object of the research.
Reliability improvement, fault recovery and
reliability assessment approaches were developed
for the new object of DHS MAS.

This paper is an extended version of our
conference paper [19] and is based on results of our
previous studies [10], [11], [12]. We have started
with a problem of reliability assessment for MAS
that is intended for control of a set of actuators
combined into executive conveyers and have
suggested utilization of logical-and-probabilistic
methods in [11]. The initial version of our fault-
recovery methodology for MAS is presented in [10].
In [12] we have proved that our fault-recovery
procedures ensure a level of fault-tolerance that
corresponds to a theoretical assessment determined
in accordance with logical-and-probabilistic
method.

In this paper we finalize our research in the
domain of fault-tolerance in MAS. Results includes
definition of new object of DHS MAS, reliability
improvement and fault-recovery techniques, MAS
failure behavior and operation model, several
reliability assessment approaches. Our fault-
recovery procedures [10] were extended via strict
definition of database schemas for MAS
components that are required for an implementation
of our fault-recovery methodology. Our previous
suggestion of utilization of logical-and-probabilistic
methods [11] was adopted for DHS MAS with
independent actuators and a full methodology for
operability function formation is presented. Due to
highlighted disadvantages of logical-and-
probabilistic methods we have developed a set of
extensions for DHS MAS model that determines
various failure behaviors and operating modes of
redundant system. Moreover a new approach for
reliability assessment of redundant DHS MAS that
is based on state graph based method and
Markovian model is presented. This approach
includes new iterative methodology for state graph
formation.

The methodology for reliability improvement is
based on new reorganization technique that
distinguish functional system components such as

tasks and actuators and components that acts as
universal executive containers such as agents and
agent platforms. The reorganization technique
improves reliability of DHS MAS via replication of
all functional components and via introduction of a
redundancy of universal executive containers.

The presented fault-recovery methodology was
developed to deal with failures of particular
components in redundant DHS MAS. The
methodology consists of database schemas and
fault-recovery procedures that are required for
restoration of consistent system configuration after
detected occurred failures of tasks, agents, agent
platforms and actuators. The theorem on fault-
tolerance property of redundant DHS MAS defines
a conditions required for success of fault-recovery
procedures.

Two different approaches were suggested for
assessment of assured reliability level of redundant
DHS MAS. The developed methodology for
operability function formation enables utilization of
known in the art logical-and-probabilistic methods
for reliability assessment. However as logical-and-
probabilistic approach is limited only for systems
with hot standby, the second approach for reliability
assessment was suggested based on state graph
based method and Markovian model. For formation
of state graph of redundant DHS MAS new
methodology defined by an iterative algorithm was
developed. Existing model of redundant DHS MAS
was extended to consider different operating modes
and failure behaviors of system components. New
failure model for determination of failure rate of a
particular component in accordance with states of
other system components was introduced.

Performed computing experiments have
validated that a reliability level assured though
application of the methodology for reliability
improvement and fault-recovery methodology
corresponds to theoretical assessments obtained via
logical-and-probabilistic and state graph based
approaches.

References:
[1] L. C. Lee, H. S. Nwana, D. T. Ndumu, P. De

Wilde, The stability, scalability and
performance of multi-agent systems, BT
Technology Journal, vol. 16(3), pp. 94–103,
July 1998.

[2] H. F. Ahmad, A. Ali, Z. A. Khan, S. Shahid, H.
Suguri, Decentralized architecture for fault
tolerant multi agent system, in Proceedings of
the ISADS’2005 Autonomous Decentralized
Systems, pp. 167–174, 2005.

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 689 Volume 13, 2014

[3] R. Deters, A. Fedoruk, Improving fault-
tolerance by replicating agents, in Proceedings
of the first international joint conference on
Autonomous agents and multiagent systems:
part 2, pp. 737–744, 2002.

[4] A. Dakno, H. Zgaya, S. Hammadi, H. Hubert,
Toward a multi-agent model for the care of
patients at the emergency department, in
Proceedings of WSEAS International
Conference on Mathematics and Computers in
Science and Engineering, pp. 264–269, 2008.

[5] Cristina Turcu, T. Cerlinca, Cornel Turcu, M.
Cerlinca, R. Prodan, An RFID and multi-agent
based system for improving efficiency in
patient identification and monitoring, WSEAS
Transactions on Information Science and
Applications, vol. 6(11), 2009, pp. 1792–1801.

[6] M. Bertier, O. Marin, P. Sens, DARX – a
framework for the fault-tolerant support of
agent software, in ISSRE’03 Proceedings of the
14th International Symposium on Software
Reliability Engineering, pp. 406–416, 2003.

[7] P. R. Cohen, S. Kumar, H. J. Levesque, The
adaptive agent architecture: achieving fault-
tolerance using persistent broker teams, in
Proceedings of Fourth International
Conference on MultiAgent Systems, pp. 159–
166, 2000.

[8] S. Haegg, A sentinel approach to fault handling
in multi-agent systems, Multi-Agent Systems
Methodologies and Applications, pp. 181–195,
1997.

[9] S. Mellouli, A reorganization strategy to build
fault-tolerant multi-agent systems, Advances in
Artificial Intelligence : Lecture Notes in
Computer Science, vol. 4509, pp. 61–72, 2007.

[10] A. V. Igumnov, S. E. Saradgishvili, Fault
recovery in redundant multiagent systems, St.
Petersburg State Polytechnical University
Journal. Computer Science.
Telecommunication and Control Systems, vol.
193(2), 2014, pp. 99–109.

[11] A. V. Igumnov, S. E. Saradgishvili, Reliability
assessment for redundant multi-agent systems,
Electronic Journal "Science and Education:

Electronic Scientific and Technical
Periodical", vol. 1, 2014. Available:
http://dx.doi.org/10.7463/0114.0696290).

[12] A. V. Igumnov, Fault-tolerance in redundant
distributed hardware-software multi-agent
systems, in Proceedings of COMOD-2014
International Conference on Computer
Modeling and Simulation, pp. 155–161, 2014.

[13] S. Kraus, V. S. Subrahmanian, N. C. Tas,
Probabilistically survivable mass, in
Proceedings of IJCAI’2003 International Joint
Conference on Artificial Intelligence, vol. 3,
pp. 789–795, 2003.

[14] S. Kraus, E. Neisterski, V. S. Subrahmanian, D.
Peleg, Y. Zhang, Computing the fault tolerance
of multi-agent deployment, Artificial
Intelligence, vol. 173(3), pp. 437–465, 2009.

[15] A. Chella, M. Cossentino, L. Sabatucci, Tools
and patterns in designing multi-agent systems
with PASSI, WSEAS Transactions on
Communications, vol. 3(1), 2004, pp. 352–358.

[16] I. A. Ryabinin, G. N. Cherkesov, Logiko-
veroyatnostnye metody issledovaniya
nadezhnosti strukturno-slozhnykh system [The
logic-probabilistic research methods of
structure-complex systems reliability],
Moscow: Radio i svyaz' Publ., 1981, 264 p. (in
Russian).

[17] A. M. Polovko, S. V. Gurov, Osnovy teorii
nadezhnosti [Reliability theory fundamentals],
St.Petersburg: BHV-Piter, 2006, 703 p. (in
Russian)

[18] G. N. Cherkesov, Nadezhnost apparatno-
programmnykh kompleksov [Reliability of
hardware-software systems], St.Petersburg:
Piter, 2005, 479 p. (in Russian)

[19] A. V. Igumnov, S. E. Saradgishvili On
improvement of fault-tolerance in distributed
hardware-software multi-agent systems and
assessment of assured reliability, in Recent
Advances in Mathematical Methods in Applied
Science, Proceedings of the 2014 International
Conference on Mathematical Models and
Methods in Applied Sciences (MMAS’14), pp.
295–302, 2014.

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 690 Volume 13, 2014

