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Abstract: - The problem of reliability of new object of distributed hardware software (DHS) multi-agent 
system (MAS) is considered. DHS MAS is determined as a system that is based on agent technologies and 
consists of both agents and hardware components required for execution of agents and for interaction of agents 
with an environment. Reliability improvement, fault-recovery and several reliability assessment approaches for 
DHS MAS are presented. The reliability improvement methodology is built upon replication of unique 
functional components and redundancy of universal components. The fault-recovery methodology defines a set 
of fault-recovery procedures required for restoration of consistent system configuration after failures of its 
components. Methodology for operability function formation was developed to enable utilization of logical-
and-probabilistic methods for reliability assessment. Another approach for reliability assessment is based on 
Markovian model and system state graph and was developed to overcome limitations of logical-and-
probabilistic methods that are suitable only for systems with hot standby. The state graph based approach 
allows reliability assessment for DHS MAS with cold standby and different operating modes of system 
components. The state graph based approach is also applicable for a case when probability of failure of one of 
components depends on states of other components. New failure model for determination of failure rates of 
system components in accordance with system state is introduced. Computing experiments described in the 
article have validated developed methodologies. 
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1 Introduction 
An increasing interest in application of multi-agent 
technologies for development of various industry 
systems is caused by benefits of multi-agent systems 
(MAS) declared by an artificial intelligence theory. 
In [1] MAS is defined as a system in which several 
agents operate and interact with one another. It’s 
worth noting that researches name a problem of 
fault-tolerance as the reason of small amount of 
deployed real world multi-agent systems [2], [3]. 
Thus a contradiction between an interest in 
utilization of agent-oriented technologies and the 
lack of MAS fault-tolerance defines the problem of 
MAS reliability considered in the article. 

We define a distributed hardware-software 
(DHS) multi-agent system as an industry system 
that is based on agent technology. DHS MAS is the 
object of the presented research. Some examples of 
industry systems for hospitals that are based on 
agent technologies are presented in [4], [5]. 
Whereas typical MAS is defined by a set of agents, 

DHS MAS also include hosts required for execution 
of an agent model and actuators required for 
interaction of agents with an environment. MAS is 
typically considered as software system, however 
the necessity of utilization of hardware components 
for MAS execution and for enabling interaction of 
MAS with an environment is highlighted in [5]. 
Thus RFID readers, medical devices and sensors 
mentioned in [5] as system components may be 
considered as actuators and embedded computers 
shall be treated as hosts. 

Existing methods for achieving fault-tolerance in 
MAS such as DarX [6], AAA for broker teams [7], 
Sentinels approach [8], FATMAS [9] improve fault-
tolerance only in cases of occurred faults of 
individual agents or faults of hosts on that an agent 
model is deployed for execution because they 
consider MAS as a set of agents. Failure of each of 
components of DHS MAS may result in failure of 
the whole system. Thus we state that new reliability 
improvement methodology shall be developed 
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taking into account failures of all components of 
DHS MAS. Whereas it is important to improve 
fault-tolerance of DHS MAS it is also required to 
determine a level of this improvement or an assured 
level of reliability. Such theoretical assessments of 
assured reliability level are not provided by existing 
methodologies mentioned above. Moreover 
effectiveness of existence fault-tolerance 
methodologies is proved only via experiments.  

The objective of the research includes both 
reliability improvement for DHS MAS in cases of 
failures of agents, tasks of agents, hosts and 
actuators and theoretical assessment of assured 
reliability level in cases of different standby 
techniques and various operating modes of system 
components. 

 
 

2 Methodology for Reliability 
Improvement 

 
 

2.1 Distributed Hardware-Software Multi-
Agent System Model 
A formal model of DHS MAS is required for 
development of reliability improvement and 
reliability assessment approaches. Our model of 
DHS MAS was developed based on following 
elements of MAS model introduced by FATMAS 
methodology [9]: agents and tasks supposed to be 
executed by agents. We have introduced terms of an 
agent platform (AP) and an actuator (ACT). AP is 
defined as a system component required for both 
execution of agents and provision of services 
required for agent interaction. If MAS is a control 
system then it shall be situated in some environment 
and moreover is intended to operate with the said 
environment. Thus we define an actuator as a 
system component intended for interaction of agents 
with an environment in that DHS MAS is situated. 
Our DHS MAS model is based on theory of sets and 
predicate logic.  

We define DHS MAS as an ordered set MAS = 
<T, A, HWP, HWR>, where T is a set of tasks, A – a 
set of agents, HWP – a set of APs, HWR – a set of 
ACTs. The following set of predicates determines a 
configuration of DHS MAS: 
• confTaskAgent(t, a) is intended for determination 

of deployment of a particular task t in a particular 
agent a; 

• confAgentHwp(a, hwp) is intended for 
determination of deployment of a particular agent 
a in a particular AP hwp; 

• reqHwrTask(hwr, t) is intended for determination 
of necessity of utilization of a particular ACT hwr 
for performing of a task t; 

• confHwrHwp(hwr, hwp) is intended for 
determination of accessibility of a particular ACT 
hwr for a particular AP hwp, i.e. for all tasks of all 
agents deployed in AP hwp. 

Each task of DHS MAS is supposed to 
implement some unique functionality in accordance 
with requirements or specification and is treated as 
a minimal functional instance. Thus an inability to 
perform of at least one of tasks leads whole DHS 
MAS to a failure state. Failures of other system 
components result in an inability to perform one of 
more of system tasks and in turn lead DHS MAS to 
a failure state, e.g.:  
• failure of an agent a leads to an inability to 

perform all tasks deployed in this agents, i.e. each 
task t such that confTaskAgent(t, a) = true; 

• failure of AP hwp results in failure of each agent a 
deployed in this AP (i.e. 
confAgentHwp(a, hwp) = true) that in turn causes 
an inability to perform all agent’s tasks; 

• failure of ACT hwr result in an inability to 
perform all tasks that require utilization of this 
ACT, i.e. each task t such that 
reqHwrTask(hwr, t) = true. 

It’s worth noting that DHS MAS model specifies 
only system structure and components dependencies 
and does not determine particular operating modes 
or standby techniques. 

 
 

2.2 Reorganization Technique 
Incorporating redundant copies of system 
components has been recognized as one of the best 
methods for improvement of fault-tolerance. 
FATMAS methodology [9] has introduced 
duplicating of tasks instead of duplicating of non-
critical agents for the first time in the art. However 
FATMAS also utilizes duplication of critical agents 
and does not consider ACTs and APs as MAS 
components.  

We suggest distinguishing components of DHS 
MAS that are unique in terms of implemented 
functionality such as tasks and ACTs and 
components that act as universal executive 
containers. Although we have defined AP as a 
component responsible for execution of agents we 
shall explicitly state that each AP is supposed to be 
able to execute any of system agents. Thus AP can 
be treated as a universal executive container. 
Similarly each agent is supposed to be able to 
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perform any of system tasks and therefore is also 
considered as a universal executive container. 
Based on these assumptions there longer is no 
reason to replicate existing agents and APs. Instead 
it’s suggested to introduce redundant sets of 
universal executive containers that may be 
considered as a redundant network for deployment 
of system tasks. Thus we define our methodology 
for reliability improvement through a reorganization 
technique that shall be applied to an existing DHS 
MAS. The reorganization technique shall use both 
replication of functional components and 
introduction of redundant sets of universal 
executive containers. It’s assumed that application 
of our reorganization technique turns an existing 
DHS MAS to a redundant one. 

To enable identification of equivalent functional 
system components we have introduced terms of 
task type and actuator type. Let TT be a set of task 
types and THWR be a set of actuator types. These 
sets shall be determined based on the set of tasks T 
and the set of actuator HWR of the existing DHS 
MAS respectively. Moreover the univocal 
correspondence shall exist between the set of task 
types TT and the set of tasks T of the existing 
system so that all redundant DHS MAS tasks of a 
similar type are equal to a particular task of the 
existing DHS MAS and thus can replace each other 
in case of failures. Similarly the one-to-one 
mapping shall exist between the set of actuator 
types THWR and the set of actuator HWR of the 
existing DHS MAS. Two actuators of redundant 
DHS MAS of a similar type are equal in terms of 
their functionality but they may distinguish in terms 
of accessibility for various APs. It’s worth noting 
that due to introduction of terms of task type and 
actuator type the necessity of utilization of a 
particular ACT for performing of a particular task is 
turned into the necessity of utilization of ACT of a 
particular type for performing of a task of a 
particular type. 

The developed reorganization technique that 
defines our reliability improvement methodology 
comprises of following steps: 
• define a set of task types TT and a set of actuator 

types THWR in accordance with respectively the 
set of tasks T and the set of actuator HWR of the 
existing DHS MAS; 

• define necessity of utilization of ACT of a 
particular type for performing of a task of a 
particular type in accordance with reqHwrTask() 
predicate of the existing DHS MAS; 

• introduce replication of tasks and ACTs and 
define a set of tasks and a set of actuators of a 
redundant DHS MAS; 

• define a redundant set of agents and a redundant 
set of agent platforms; 

• determine configuration of redundant DHS MAS, 
i.e. deployment of tasks on the redundant set of 
agents, deployment of agents of the redundant set 
of APs, accessibility of actuators for APs. 

 
 

2.3 Redundant Distributed Hardware-
Software Multi-Agent System Model 
The redundant DHS MAS that is a result of 
application of our reorganization technique to the 
existing DHS MAS is defined by an ordered set 
RMAS = <TT, RT, RA, RHWP, THWR, RHWR>, 
where TT is a set of task types, RT – a set of tasks, 
RA – a set of agents, RHWP – a set of APs, THWR – 
a set of actuator types and RHWR is a set of 
actuators. The following set of predicates 
determines its configuration: 
• confTypeTask(tt, t) is intended for determination 

of a type of a particular task (i.e. the predicate is 
true if a type of a task t is tt); 

• confTypeHwr(thwr, hwr) is intended for 
determination of a type of a particular ACT (i.e. 
the predicate is true if a type of ACT hwr is thwr); 

• confTaskAgent(t, a) is intended for determination 
of deployment of a particular task t in a particular 
agent a; 

• confAgentHwp(a, hwp) is intended for 
determination of deployment of a particular agent 
a in a particular AP hwp; 

• reqTHwrTTask(thwr, tt) is intended for 
determination of necessity of utilization of an 
actuator of a particular type thwr for performing 
of a task of a particular type tt; 

• confHwrHwp(hwr, hwp) is intended for 
determination of accessibility of a particular ACT 
hwr for a particular AP hwp. 

We have introduced a term of active replica. The 
active replica of a particular type is defined as one 
task from a replication group of equivalent tasks of 
the same type that exert an influence on an 
environment. It’s worth noting that for each task 
type one and only one active replica shall exist in a 
particular time instant. Other aspect of the model of 
a redundant DHS MAS is described in [10], [11]. 
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3. Fault-Recovery Methodology 
 
 
3.1 Message-Based Communication and 
Database Schemas 
The message based communication protocol is 
required to ensure that the reorganization technique 
is applied transparently and is intended to enable 
execution of an active replica of a particular type as 
well as utilization of ACT of a particular type 
independently of its deployment in particular 
executive container. We suggest that a receiver of a 
message shall be bounded based on type of 
originator component. Thus an agent is able to send 
a message to AP if and only if the said agent is 
deployed in this AP. Similarly AP is able to send a 
message to the agent if and only if this AP acts as 
an executive container for this agent. Also it’s 
assumed that there is no limitation on message 
based communication between APs. Moreover each 
AP shall be able to interact with all remote agent 
platforms via sending a broadcast message.  

To simplify the system we have limited 
knowledge regarding system configuration that 
agents and APs shall maintain for successful 
operation. Each agent a shall have a database (DB) 
ADB(a) comprised of following tables: deployment 
table ATBT(a), required actuators table ATBR(a) 
and active replicas table ATBAT(a). Each AP hwp 
shall have a database HDB(hwp) comprised of 
following tables: deployment table HTBD(hwp), 
required actuators table HTBR(hwp), available 
actuators table HTBAR(hwp) and active replicas 
table HTBAT(hwp). Formats of DB tables for agents 
and APs are defined as follows: 
• ATBT(a) contains records (t, tt) that links the task t 

deployed in the agent and its type tt;  
• ATBR(a) contains records (tt, {thwri}) that links a 

type of task tt with required types of actuators for 
all task types from ATBT(a); 

• ATBAT(a) contains records (tt, t) that links a type 
of task tt and an active replica t deployed in the 
agent in accordance with ATBT(a); 

• HTBD(hwp) contains records (a, t, tt) that links an 
agent a deployed in AP, a task t deployed in the 
agent a and its type tt; 

• HTBR(hwp) contains records (tt, {thwri}) and acts 
as an aggregator of ATBR(a) tables of all agents 
deployed in AP; 

• HTBAR(hwp) contains records (hwr, thwr) that 
links an available ACT hwr with its type; 

• HTBAT(hwp) contains records (tt, a, 0) that links 
the task type tt with an agent a deployed in this 
AP if an active replica of type tt is deployed in this 
agent; 

• HTBAT(hwp) contains records (tt, 0, rhwp) that 
links the task type tt with a remote agent platform 
rhwp if an active replica of type tt is deployed in 
one of agents of this remote AP 

One of MAS tasks may require execution of 
another system task. As our reliability improvement 
methodology utilizes replication of tasks we have 
replaced a request to execute a particular task with a 
request to execute a task of particular type. Let’s 
consider a task t of the agent a deployed in AP hwp. 
If the task t requires execution of another task of 
type tt it sends the pfm(tt) message to its agent a. An 
active replica of type tt may be deployed in the 
agent a, one of other agents of AP hwp or in one of 
agents of one of other APs. Thus the pfm(tt) request 
shall be handled iteratively by the agent that has 
received it, AP in which the agent is deployed and 
all remote APs in the following manner: 
• if an active replica t’ of type tt is deployed in the 

agent a in accordance with (tt, t’) record in table 
ATBAT(a) then the agent a shall execute it, 
otherwise the agent a shall escalate the processing 
to AP hwp through the pfm(tt) message; 

• if an active replica of type tt is deployed in the 
agent a’ of AP hwp in accordance with (tt, a’, 0) 
record of table HTBAT(hwp) then AP hwp shall 
request the agent a’ to execute an active replica 
through the pfm(tt) message; 

• if an active replica of type tt is deployed in one of 
agents of one of remote APs rhwp in accordance 
with (tt, 0, rhwp)  record of table HTBAT(hwp) 
then AP hwp shall escalate the processing to AP 
rhwp though the pfm(tt) message. 

If a particular task of the redundant DHS MAS 
requires utilization of an actuator of a particular 
type thwr it sends use_hwr(thwr) message to its 
agent which will route the received message to its 
AP hwp without any further processing. On 
reception of the use_hwr(thwr) message AP will 
find an accessible actuator of the thwr type in 
accordance with the available actuators table 
HTBAR(hwp) of its DB and will perform the 
requested action. 

 
 

3.2 Fault-Recovery Procedures 
In section 2.1 we have stated that an inability to 
perform of at least one of tasks leads whole DHS 
MAS to a failure state. In a redundant DHS MAS 
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only active replicas are executed or exert an 
influence on an environment as described in 
sections 2.3 and 3.1.   Thus a redundant DHS MAS 
is in failure if it is not able to perform an active 
replica of at least one type. It’s worth noting that 
this inability may be caused by failures of other 
components of redundant system, e.g. an agent in 
that the active replica is deployed or an actuator that 
is required for performing of the active replica. 
Thus fault-recovery task may be treated as a task of 
search and activation of new replicas of all required 
types. 

To represent an operable state of a redundant 
DHS MAS we have introduced a term of a 
consistent configuration. The consistent 
configuration of a redundant DHS MAS is defined 
by a set of conditions that DBs of each agent and 
AP shall meet for successful operation of whole 
system.  

Conditions for DB ADB(a) of each agent a are as 
follows: 
• deployment table ATBT(a) of each agent a shall 

contain (t, tt) record if and only if the task t is 
deployed in the agent a (i.e. 
confTaskAgent(t, a) = true) and the task t could be 
executed; 

• active replicas table ATBAT(a) of each agent a 
shall contain record (tt, t) if and only if the task t 
is an active replica of type tt and there is a record 
(t, tt) in ATBT(a) (i.e. the task t could be 
executed). 

DB HDB(hwp) of each AP hwp shall meet 
following conditions: 
• deployment table HTBD(hwp) of each AP hwp 

shall contain (a, t, tt) record if and only if the task 
t is deployed in the agent a that is deployed in AP 
hwp (i.e. confAgentHwp(a, hwp) = true & 
confTaskAgent(t, a) = true), the agent a is not in 
failure state and the task t could be executed; 

• available actuators table HTBAR(hwp) of each AP 
hwp shall contain record (hwr, thwr) if and only if 
ACT hwr is not in failure and is accessible (i.e. 
confHwrHwp(hwr, hwp) = true); 

• active replicas table HTBAT(hwp) of each AP hwp 
shall contain record (tt, a, 0) if and only if the 
agent a is deployed in AP hwp (i.e. 
confAgentHwp(a, hwp) = true), the agent a is not 
in failure and there is a record (tt, t) in active 
replicas table ATBAT(a); 

• active replicas table HTBAT(hwp) of each AP hwp 
shall contain record (tt, 0, rhwp) if and only if AP 
rhwp is not in failure and there is a record (tt, a’, 
0) in active replicas table HTBAT(rhwp). 

If conditions mentioned above are met then DBs 
of agents and APs represent the actual configuration 
of a redundant DHS MAS and do not contain 
records related to components that are in failure 
state. However as a consistent configuration shall 
represent an operable state of the system then for 
each task type there shall exist an active replica that 
is not in failure state. Thus DB HDB(hwp) of each 
AP hwp shall meet following additional condition: 
its active replicas table HTBAT(hwp) shall contain 
record (tt, a, rhwp) for each task type tt. 

Fault-recovery procedures shall restore a 
consistent configuration of redundant DHS MAS 
that has been broken by an occurred fault of one of 
system components via excluding records related to 
failed components and updating records related to 
locations of new active replicas in databases of 
agents and agent platforms.  All fault-recovery 
procedures are supposed to be performed iteratively 
in accordance with components hierarchy, i.e. each 
procedure starts from the component responsible for 
failure detection, is escalated though a set of 
executive containers and may finish in one of 
remote APs. 

Let’s consider a failure of a task t of the agent a 
deployed in AP hwp. Each agent is responsible for 
detection of failures of its tasks. Thus the agent a 
has detected a failure of the task t and shall perform 
the a_r_tpfailt(t) procedure comprised of following 
steps: 
• determine a type tt of the task t in accordance with 

the deployment table ATBT(a); 
• remove all records related to failed task t from its 

DB and DB of its AP hwp: 
- remove a record (t, tt) from ATBT(a); 
- remove a record (tt, t) from the active replicas 

table ATBAT(a); 
- send the a_cmd_rm_task(t) message to AP hwp 

that shall process this message by excluding 
(a, t, tt) record from the deployment table 
HTBD(hwp); 

• if the task t is not an active replica of type tt than 
finish processing; 

• initiate search and activation of new replica of 
type tt: 
- if there is a record (t’, tt) in the deployment table 

ATBT(a) then select t’ as new active replica, add 
a record (tt, t’) to the active replicas table 
ATBAT(a) and finish processing; 

- escalate fault-recovery procedure to AP hwp via 
sending the req_atask(tt). 
When AP hwp receives the req_atask(tt) 

message from one of its agents a it shall continue a 
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process of search and activation of new replica of 
type tt started by the agent a via execution of the 
h_r_tfail(tt) procedure comprised of following 
steps: 
• if there is a record (a’, t’, tt) in the deployment 

table HTBD(hwp) then: 
- select the task t’ deployed in the agent a’ as new 

active replica; 
- update the active replicas table HTBAT(hwp) to 

contain a record (tt, a’, 0) for a type of task tt; 
- send the h_cmd_atask(t’) message to the agent a’ 

that shall process this message by adding a  
record (tt, t’) to its active replicas table 
ATBAT(a); 

- finish processing; 
• escalate fault-recovery procedure to all other APs 

of a redundant DHS MAS via sending the 
broadcast req_atask(tt) message. 

When AP rhwp receives the broadcast 
req_atask(tt) message from AP hwp it shall 
continue a process of search and activation of new 
replica of type tt through execution of the 
recv_req_atask(tt) procedure comprised of 
following steps: 
• if there is a record (a’, t’, tt) in the deployment 

table HTBD(rhwp) then: 
- select the task t’ deployed in the agent a’ as new 

active replica; 
- update the active replicas table HTBAT(hwp) to 

contain a record (tt, a’, 0) for a type of task tt; 
- send the h_cmd_atask(t’) message to the agent 

a’; 
- send the broadcast atask_announce(tt, rhwp) 

message to all APs. 
The broadcast atask_announce(tt, rhwp) 

message is required for update of active replicas 
tables of other APs, i.e. each AP hwp shall ensure 
that its active replicas table HTBAT(hwp) contains a 
record (tt, 0, rhwp) for a task type tt. 

Each AP is responsible for detection of failures 
of its agents. If AP hwp detects a failure of its agent 
a then it shall perform the h_r_afailt(a) procedure 
comprised of following steps: 
• determine a set TF of tasks deployed in the agent a 

in accordance with the deployment table 
HTBD(hwp) (i.e. the set TF shall contain each task 
t such that there exists a record (a, t, tt) in 
HTBD(hwp)); 

• determine a set TTF of types of active replicas 
deployed in the the agent a: 
- for each task t of type tt from the set TF: 

 if there is a record (tt, a, 0) in the active 
replicas table HTBAT(hwp) then add the task 
type tt to the set TTF; 

• remove all records related to failed agent a from 
the deployment table HTBD(hwp) (i.e. each record 
that matches a template (a, x, xx)) 

• for each task type tt from the set TTF initiate 
search and activation of new replica of this type 
via performing the h_r_tfail(tt) procedure. 

Each AP is also responsible for detection of 
failures of accessible actuators. When AP hwp 
detects a failure of the accessible actuator hwr it 
shall perform the h_r_hwrfail(hwr) procedure 
comprised of following steps: 
• determine a type thwr of the actuator hwr in 

accordance with the available actuators table 
HTBAR(hwp); 

• remove a record (hwr, thwr) related to the failed 
ACT from HTBAR(hwp); 

• if there is a record (hwr’, thwr) in the available 
actuators table HTBAR(hwp) then finish 
processing because another ACT of the same type 
is available; 

• determine a set TF of tasks that are in failure 
caused by a failure of the actuator hwr (i.e. the set 
TF shall contain each task t of type tt such that 
there is a record (tt, {thwr1, …, thwr, … thwrn}) in 
the required actuators table HTBR(hwp)); 

• determine a set TTF of types of active replicas that 
are in failure caused by a failure of the actuator 
hwr (i.e. the set TTF shall contain each task type tt 
such that there is a task t of this type in a set TF 
and there exists  a record (tt, x, 0) in the active 
replicas table HTBAT(hwp)); 

• remove all records related to tasks that are in 
failure caused by a failure of the actuator hwr 
from the deployment table HTBD(hwp) and DBs 
of corresponding agents, i.e. for each task t from 
the set TF: 
- remove a record (a, t, tt) from HTBD(hwp); 
- send the h_cmd_rm_task(t) message to the agent 

a that shall process this message by excluding of 
(t, tt) record from the deployment table ATBT(a) 
and by excluding of (tt, t) record from the active 
replicas table ATBAT(a)); 

• synchronize all APs; 
• for each task type tt from the set TTF initiate 

search and activation of new replica of this type 
via performing the h_r_tfail(tt) procedure. 

When AP hwp detects a failure of another AP 
rhwp it shall perform the h_r_hwpfail(rhwp) 
procedure comprised of following steps: 
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• determine a set TTF of types of active replicas that 
are located in AP rhwp (i.e. the set TTF shall 
contain each task type tt such that there exists a 
record (tt, 0, rhwp) in the active replicas table 
HTBAT(hwp)); 

• remove all records related to active replicas that 
are in failure caused by a failure of AP rhwp from 
the deployment table HTBAT(hwp) (i.e. each 
record that matches a template (xx, 0, rhwp)); 

• for each task type tt from the set TTF: 
- initiate search and activation of new replica of 

this type via performing the h_r_tfail(tt) 
procedure; 

- if there is a record (tt, a, 0) in the active replicas 
table HTBAT(hwp) (i.e. after execution of the 
h_r_tfail(tt) procedure new active replica is 
located in the agent a of AP hwp) then send the 
broadcast atask_announce(tt, hwp) message to 
all APs. 
It’s worth noting that in case of failure of AP 

rhwp the h_r_hwpfail(rhwp) procedure shall be 
performed only by one of remote APs. 

 
 
4 Validation of Fault-Tolerance 

Property of Redundant Multi-Agent 
System 
To define conditions that are required for the 
success of fault-recovery procedures we have 
introduced following additional functions and 
predicates in accordance with the formal model of a 
redundant DHS MAS: 
• function agentOfT(t) is intended for determination 

of an agent in that a particular task is deployed: 
 

,),()( trueatentconfTaskAgatagentOfT =⇔=  (1) 
 

where t is a task, a – an agent; 
• function hwpOfT(t) is intended for determination 

of AP such that a particular task belongs to one of 
its agents: 
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truehwpawpconfAgentH
trueatentconfTaskAg

RAahwpthwpOfT

=
∧=
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 (2) 

 
where t is a task, hwp is AP, a – an agent, RA – a 
set of agents; 

• function reqTHwr(tt) determines a set of actuator 
types required for performing of a task of a 
particular type: 
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truethwrttskreqTHwrTTa
THWRthwrttreqTHwr
=
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where tt is a task type, thwr – an actuator type, 
THWR – a set of actuator types; 

• function tOfTask(t) is required for determination 
of a type of a particular task: 

 
,),()( truetttskconfTypeTattttOfTask =⇔=  (4) 

 
where t is a task, tt is a task type; 

• function tOfHwr(hwr) is intended for 
determination of a type of a particular actuator: 
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truehwrthwrrconfTypeHw
thwrhwrtOfHwr

=
⇔=  (5) 

 
where hwr is an actuator, thwr is an actuator type; 

• predicates failT(t), failA(a), failP(hwp), failR(hwr) 
determine respectively states of failure of the task 
t, the agent a, AP hwp and ACT hwr; 

• predicate atType(tt, t) determines whether the task 
t is an active replica of type tt. 

In accordance with section 2.1 failure of each of 
system components my lead to an inability to 
perform of one or more of system tasks. Let the 
predicate failTG(t) be true if and only if the task t 
could not be performed. Thus an operable state of 
the task t is defined as follows: 
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 (6) 

 
where t is a task, thwr – an actuator type, hwr – an 
actuator, RHWR – a set of actuators. 

Let’s define conditions that are required for 
success of fault-recovery procedures: 
• in case of failure of an active replica t of type tt 

there shall exist another task t’ of type tt that is in 
an operable state: 
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• in case of failure of an agent a for each active 

replica ti of type tti which is deployed in the agent 
a there shall exist another task ti’ of type tti that is 
in an operable state: 
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• in case of failure of an agent platform hwp for 

each active replica ti of type tti that is deployed in 
one of agents of AP hwp there shall exist another 
task ti’ of type tti that is in an operable state: 
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• in case of failure of an actuator hwr of type thwr 

for each task type tti which requires utilization of 
an actuator of type thwr there shall exists a task ti’ 
of type tti that is in an operable state: 
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Theorem. If the redundant DHS MAS have a 

consistent configuration it will recover: 
• from detected failure of a particular active replica 

if condition (7) is met; 
• from detected failure of a particular agent if 

condition (8) is met; 
• from detected failure of a particular agent platform 

if condition (9) is met; 
• from detected failure of a particular actuator if 

condition (10) is met. 
Proof is presented in [19] and is as follows. Let’s 

consider a processing of a request to execute an 
active replica of a particular type by redundant DHS 
MAS with a consistent configuration. Let the 
pfm(tt) request be received by an agent ar deployed 
in AP hwpr from its task tr. As configuration is 
consistent there is a task ta that is an active replica 
of type tt. If the task ta is located in the agent ar then 
due to consistent configuration there is a record 
(tt, ta) in ATBAT(ar) and processing of the pfm(tt) 
request by the agent ar will result in execution of 
the task ta. Otherwise the agent ar will send the 
pfm(tt) message to AP hwpr. If the task ta is located 
in an agent a1 of the AP hwpr then there is a record 
(tt, a1, 0) in HTBAT(hwpr) and a record (tt, ta) in 
ATBAT(a1). Thus the processing of the pfm(tt) 

message by AP hwpr will result in execution of the 
task ta by the agent a1. Otherwise AP hwpr will send 
a broadcast pfm(tt) message to other APs. If the task 
ta is located in some agent a2 of remote AP hwp2 
then the processing of the pfm(tt) message by AP 
hwp2 will result in execution of task ta by the agent 
a2 similarly to the case of deployment of the task ta 
in the agent a1 of AP hwpr.  

As the requested active replica is executed 
independently of its deployment while DHS MAS 
configuration is consistent and DHS MAS is 
supposed to be in non-failure state if it is able to 
execute an active replica of each type we shall proof 
that fault-recovery procedures restore a consistent 
configuration.  

Let’s consider a failure of the task t of type tt. 
Let a be an agent in that the task t is deployed, hwp 
be AP in that the agent a is deployed. In accordance 
with the conditions of theorem there is a task t’ that 
is not in failure state. In accordance with 
a_r_tpfail(t) procedure records (t, tt) of ATBT(a) 
and (a, t, tt) of HTBD(hwp) will be removed. At this 
step a consistent configuration is partially restored 
in terms of conditions related to deployment tables. 
If the task t is not an active replica then processing 
will be finished, otherwise a record (tt, t) of 
ATBAT(a) will be removed.  

If the task t’ is deployed in the agent a (i.e. a 
record (t’, tt) exists in ATBT(a)) then it will be 
selected as new active replica. In this case a record 
(tt, a, 0) of HTBAT(hwp) remains valid as well as a 
record (tt, 0, hwp) of HTBAT(rhwp) of each remote 
AP rhwp ≠ hwp. Thus including a record (tt, t’) in 
ATBAT(a) will restore a consistent configuration. 

If the task t’ is deployed in the agent a1 ≠ a of 
the same AP hwp then it will be selected as new 
active replica. In accordance with the h_r_fail(tt) 
procedure a record (tt, a, 0) will be changed to a 
record (tt, a1, 0) in HTBAT(hwp) and a record (tt, t’) 
will be added to ATBAT(a1). A record (tt, 0, hwp) of 
HTBAT(rhwp) of each remote AP rhwp ≠ hwp 
remains valid. Thus a consistent configuration is 
restored. 

If the task t’ is deployed in the agent a2 ≠ a of 
the remote AP rhwp ≠ hwp then it will be selected 
as new active replica. In accordance with 
recv_req_atask(tt) procedure a record (tt, a2, 0) will 
be added to HTBAT(rhwp) and a record (tt, t’) will 
be added to ATBAT(a2). A record (tt, 0, hwp) of 
HTBAT(rhwpi) of each remote AP rhwpi ≠ rhwp will 
be changed to a record (tt, 0, rhwp) in accordance 
with processing of the broadcast atask_announce(tt, 
rhwp) message. Thus a consistent configuration is 
restored. Consequently consistent configuration of 
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redundant DHS MAS will be restored 
independently of deployment of the task t’. 

In case of a failure of the agent a deployed in AP 
hwp each record (a, t, tt) will be removed from 
HTBD(hwp) in accordance with the h_r_afail(a) 
procedure and a consistent configuration will be 
partially restored in terms of conditions related to 
deployment tables. As was proved for a case of task 
failure the h_r_tfail(tt) procedure will activate new 
replica of the required type and will restore a 
consistent configuration in terms of conditions 
related to active replicas tables. The h_r_tfail(tt) 
procedure will be performed by AP hwp for each 
task type tt such than an active replica of this type 
were deployed in the agent a. In accordance with 
conditions of the theorem all h_r_tfail(tt) 
procedures will succeed. Thus a consistent 
configuration of DHS MAS will be restored. 

Cases of failures of actuators and APs are 
considered in a similar manner. Simplified proofs 
for these cases were described in [10], [12]. 

 
 

5 Logical-and-Probabilistic Approach 
for Reliability Assessment 
Utilization of multi-agent technologies in industry 
systems requires obtaining of a guaranteed 
reliability level. Thus there is a need for methods 
for theoretical assessment of redundant DHS MAS 
reliability level achieved by application of our 
reorganization technique and fault-recovery 
procedures. Existing approaches described in [13], 
[14] enable calculation of probability of survival 
only in case of failures of hosts of a network on 
which MAS is deployed. Moreover as mentioned in 
[15] generic techniques developed for software 
systems usually are not suitable for agent-based 
systems. In this section the adaptation of logical-
and-probabilistic methods that enable synthesis of a 
reliability function of a system in an analytic form 
[16] for redundant DHS MAS is discussed. 
 
 
5.1 Methodology for Operability Function 
Formation 
Logical-and-probabilistic methods are based on 
transformation of a logical operability function that 
determines a state of the system based on states of 
its components to such form which allows 
replacement of logical operators with arithmetical 
operators and logical variables with corresponding 
probabilities of no-failure [16]. Therefore we shall 

develop a methodology for formation of an 
operability function of redundant DHS MAS. 

In section 3.2 we have argued that a redundant 
DHS MAS is in failure if it is not able to perform an 
active replica of at least one type. Thus in 
accordance with definition of an operable state of a 
particular task (6) the criterion of serviceability of a 
redundant DHS MAS is as follows: 

 
,)(:, falsetfailTGRTtTTtt =∈∃∈∀   (11) 

 
where tt is a task type, t – a task, RT – a set of tasks. 

It’s well known that an operability function may 
be formed as a disjunction of all conjunction 
defined by the shortest ways of successful operation 
[16]. To define our methodology for formation of an 
operability function we have introduced terms of 
minimal functional configuration (MFC) and 
minimal operable configuration (MOC). Each MFC 
shall represent one of the shortest paths of 
successful operation [16] without considering the 
necessity of actuators utilization. Thus MFC shall 
contain a minimal set of tasks required for 
successful operation of the redundant DHS MAS as 
well as sets of agents and APs required for 
execution of these tasks. We define MFC as an 
ordered set <MT, MA, MHWP>, where MT is a set 
of tasks, MA – a set of agents, MHWP – a set of 
APs. Based on each MFC one or more minimal 
operable configurations could be formed. Each 
MOC shall represent the shortest path of successful 
operation in accordance with logical-and-
probabilistic method. We define MOC as an ordered 
set <MFC, MWR>, where MFC is a minimal 
functional configuration, MWR – a set of actuators 
of MOC.  

The operability function of the redundant MAS 
shall be determined in the following form: 
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MWRhwrMHWPhwp

MAaMTtMOC  (12) 

 
In (12) MOC is a minimal operable 

configuration, MT, MA, MHWP are respectively sets 
of tasks, agents and APs of MFC used for 
construction of MOC, MWR is a set of actuators of 
MOC, t, a, hwp, hwr are respectively a task, an 
agent, AP and an actuator, w() is a logical function 
representing a state of particular component. 

Determination of all MOCs is required for 
formation of an operability function in form (12). 
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To define the methodology for formation of a set of 
all MOCs we have introduced a set of additional 
functions: 
• tasksOfTT(tt) determines a set of tasks of a 

particular type: 
 

},),(|{)( truetttskconfTypeTaRTttttasksOfTT =∈=  (13) 
 

where tt is a task type, t – a task, RT – a set of 
tasks; 

• rTHwrOfP(MFC, hwp) determines a set of 
actuator types required for performing tasks of 
MFC that are deployed in agents of AP hwp: 
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 (14) 

 
where hwp is AP, thwr – ACT type, THWR – a set 
of ACT types, t – a task, MT – a set of tasks of 
MFC, a – an agent, MA – a set of agents of MFC; 

• avTHwrOfP(MFC, hwp, thwr) determines a set of 
actuators of a type thwr that are accessible for AP 
hwp: 
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where hwp is AP, thwr – ACT type, hwr – ACT, 
RHWR is a set of ACTs. 

The developed methodology for formation of a 
set of all MOCs comprises of following steps. 

At the first step a set MTA of all sets of tasks MT 
that could act as a base of MFC is formed as 
follows: 
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where tt is a task type, TT is a set of task types, ti is 
a task. 

At the second step a set of all MFCs is formed as 
follows based on a set MTA (16): 
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where a is an agent, RA – a set of agents, t  – a task, 
hwp is AP, RHWP – a set of APs. 

The third step is required to determine a set MRA 
of all sets of ACTs MR that could be used for 
formation of MOC based on each MFC from the set 
MFCA (17). This step for each MFC comprises of 
following sub-steps: 
• determine whether MFC could be used for 

formation of MOC in terms of availability of 
actuators of all required types based on following 
condition: 
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where hwp is AP, MHWP is a set of APs of MFC, 
thwr is ACT type; 

• for each AP of MFC determine a set of all sets of 
ACTs MRH that include one and only one ACT of 
each ACT type required for performing of tasks of 
MFC deployed in agents of this AP: 
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where hwp is AP, hwr is ACT, thwr is ACT type; 

• determine a set MRAP of all sets of ACTs MR that 
could be used to build MOC based on this MFC: 
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where hwp is AP, MHWP is a set of APs of MFC, 
MRHA is determined in accordance with (19); 

• determine a desired set MRA by excluding from a 
set MRAP (20) such sets MRi that do not meet the 
condition required for treatment of MOC as the 
shortest way of successful operation: 
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where hwr, hwr’ are ACTs, hwp is AP, a is an 
agent, t is a task, MHWP, MA, MT are respectively 
sets of APs, agents and tasks of MFC. 

At the final step a set MOCA of all MOCs of 
redundant DHS MAS is determined as follows: 
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where MOC is minimal operable configuration, 
MFCk is minimal functional configuration, MRki is a 
set of ACTs, MFCA is determined in accordance 
with (17), MRA is determined in accordance with 
(21). 

Based on a set of all MOCs (22) the logical 
operability function of a redundant DHS MAS 
could be formed in accordance with (12). In 
accordance with existing logical-and-probabilistic 
methods this logical operability function could be 
transformed to the reliability function.  

 
5.2 Limitation of Logical-and-Probabilistic 
Approach 
Main advantage of logical-and-probabilistic 
approach is synthesis of an operability function in 
an analytic form independently from particular 
reliability indexes and parameters of system 
components. However logical-and-probabilistic 
methods are suitable only for systems with 
persistent connections between all components [17]. 
In other words each component of a redundant 
system may fail independently from states of other 
components.  

In section 2 we have mentioned that our redundant 
DHS MAS model does not specify particular 
operating and standby modes of system 
components. However for utilization of logical-and-
probabilistic approach redundant DHS MAS shall 
meet following conditions: 
• all duplicate components operates in hot standby 

mode; 
• reliability function of each component is 

persistent, i.e. probability of no-failure of a 
particular component does not depend on neither 
state of this component nor states of other system 
components, for example: 
• probability of no-failure of a particular agent 

does not depend on number of deployed tasks 
and number of tasks that act as active replicas; 

• probability of no-failure of a particular AP does 
not depend on number of deployed agents and 
tasks situated in these agents; 

• probability of no-failure of a particular ACT 
does not depend on availability of this ACT for 
an active replica that requires its utilization; 

• probability of no-failure of a particular tasks 
does not depend on state of this task (i.e. 
whether the task is an active replica or not). 
It’s worth noting that if probability of no-failure 

of at least one of system components depends on 
states of other components (e.g. a task that is not an 
active replica could not fail) then logical-and-
probabilistic approach is not suitable for this 
redundant DHS MAS. 

 
 

6 State Graph Based Approach for 
Reliability Assessment 

As was mentioned above logical-and-
probabilistic approach is limited to redundant DHS 
MAS which components operate only in hot 
standby mode and have persistent reliability 
function. However in real redundant system 
probability of no-failure of a particular component 
may depend on either its state of states of other 
system component. To overcome mentioned above 
limitation of logical-and-probabilistic approach we 
have decided to utilize state graph based approach 
[18]. State graph based approach uses Markovian 
model which requires that failure rate of each 
component shall be persistent only while whole 
system is in one of its states. Each system state is 
defined as some aggregate of states of its 
components. Thus state graph based approach 
allows reliability assessment for systems that 
components operate in cold standby mode, reduced 
reserve mode or in combined reserve mode. In 
accordance with [18] generic state graph based 
method comprises of following steps: 
• determine all system states; 
• determine nodes of state graph such that each 

node represent one of system states 
• determine edges of state graph such that each edge 

represents a transition from one state to another 
that is related to failure of one or more system 
components; 

• mark each edge of state graph with transition 
intensity (transition intensity is determined as sum 
of failure rates of system components that shall 
fail to initiate the transition); 

• work out a Kolmogorov system of differential 
equations based on state graph in the following 
form: 
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where Pi(t) is a probability that system is in state i 
at time instant t, λij – a transition intensity from 
state i to state j, L1i – a subset of system states 
such that there is a transition from each state of 
the subset to the state i, L2i – a subset of system 
states such that there exists a transition from the 
state i to each state of the subset, E – a set of 
system states. 

 
 

6.1 State Graph Based Approach Definition 
To enable formation of state graph of a 

particular redundant DHS MAS we assume that 
fault-recovery procedures are deterministic, i.e. for 
each system state and for each system component 
failure of this component will always switch a 
system to one and only one state. In other words for 
a particular system state and a particular failed 
component new system state to which the system 
will transition in accordance with fault-recovery 
procedures shall be determined explicitly. 

As was mentioned in section 2 agents and APs 
are treated as universal executive containers and 
failure of agent of APs leads to inability to perform 
one or more of MAS tasks, i.e. tasks deployed in 
failed agent or tasks deployed in agents of failed 
AP. Thus we suggest that states of agents and APs 
shall be excluded from definition of redundant DHS 
MAS state definition. So redundant DHS MAS state 
is defined as an aggregate of states of all system 
tasks and all system ACTs.  

We suppose that each task and ACT may be in 
one of following states: 
• active state denoted as [a]; 
• standby state denoted as [s]; 
• failure state denoted as [f]. 

It’s supposed that a particular system component 
may fail only while it is in active state (i.e. standby 
state corresponds to cold standby mode).  

We define a state of redundant DHS MAS as a 
following ordered set comprised of states of each 
system task and actuators: 
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where s(ti) is a state of task ti, RT – a set of tasks, 
s(hwrj) is a state of ACT hwrj, RHWR – a set of 
ACTs. 

We consider redundant DHS MAS as a non-
repairable system (i.e. each component that has 
failed could not be repaired). Thus we do not 
distinguish system states in which redundant DHS 
MAS is not operable in accordance with the criteria 
of serviceability (11). So we assume that there 
exists one and only one system state in which the 
system is not operable and this state is denoted as 

}{∅=FSMAS . 
 
 

6.2 State Graph Formation 
To enable formation of state graph of redundant 

DHS MAS we have developed new iterative 
algorithm. To enable algorithm definition we have 
introduced following additional sets and functions: 
• set of already formed system states 

SMASA = {SMASi}, where SMASi is a system 
state; 

• set of already formed graph edges: 
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where SEDGm is an edge that represents transition 
from state SMASi to state SMASj initiated by 
failure of any of system components ck from set 
Fij, RT – a set of tasks, RA – a set of agents, 
RHWR – a set of ACTs, RHWP – a set of APs; 

• function cstate(c, SMAS) is intended for 
determination of a state of a particular ACT or a 
particular task in one of systems states: 

 
]},[],[],{[)(: fsaSMASARHWRRTcstate →×∪  (26) 

 
where RT is a set of tasks, RHWR – a set of ACTs, 
SMASA – a set of system states. 

Our methodology for state graph formation is 
defined by following iterative algorithm: 
• let n be a number of system state under 

consideration; 
• determine a set of tasks FET that may fail in 

system state SMASn: 
 

]},[),(|{ aSMAStcstateRTtFET nii =∈=  (27) 
 
where ti is a task, RT – a set of tasks; 

• determine a set of actuators FEA that may fail in 
system state SMASn: 

 
]},[),(|{ aSMAShwrcstateRHWRhwrFEA nii =∈=  (28) 
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where hwri is ACT, RHWR – a set of ACTs; 

• for each system component cmp that may fail (i.e. 
each task from a set FET, each ACT from a set 
FEA, each agent from a set of agents RA, each AP 
from a set of APs RHWP) new system state SMASq 
is determined in following manner: 
- let new system state SMASq be equal to the 

system state under consideration SMASn; 
- if considered component cmp is a task t: 
 mark the task t as failed, i.e. set a 

corresponding element s(t)  of a set SMASq to 
[f] value; 
 determine a set of unused ACTS FUA such that 

each ACT hwr from the set FUA is not in 
failure state and is not accessible for at least 
one task which is not in failure state and 
requires its utilization: 

 

)},))(,(
))(()(

][),((:(

])[),((|{

falsethwpOfThwrconfHwrHwp
ttOfTaskreqTHwrhwrtOfHwr

fSMAStcstateRTt

fSMAShwrcstateRHWRhwrFUA

q

q

=′
⇒′∈

∧≠′∈′∀

∧≠∈=

(29) 

 
where hwr is ACT, RHWR – a set of ACTs,, t’ 
– a task, RT – a set of tasks.  
 mark each unused ACT hwr from the said set 

FUA as failed, i.e. set a corresponding element 
s(hwr) of a set SMASq to [f] value; 

- if considered component cmp is an actuator hwr: 
 mark the actuator hwr as failed, i.e. set a 

corresponding element s(hwr) of a set SMASq 
to [f] value; 
 determine a set of tasks FETH such that each 

task t from the set FETH is not in failure state, 
requires utilization of ACT of the type 
thwr = tOfHwr(hwr) and has no access to other 
not failed ACTs of the type thwr: 
 

)},))(,(
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 (30) 

 
where t is a task, RT – a set of tasks, hwr’ – an 
actuator, RHWR – a set of ACTs; 
 for each task t from the said set FETH process 

its failure as described in steps for the case of 
failed task, i.e. mark the task and all unused 
actuators as failed; 

- if considered component cmp is an agent a: 
 determine a set of tasks 

FETA = {t | agentOfT(t) = a} such that each 

task t from the said set FETA is deployed in 
agent a; 
 for each task t from the said set FETA process 

its failure as described in steps for the case of 
failed task; 

- if considered component cmp is an agent 
platform hwp: 
 determine a set of tasks 

FETP = {t | hwpOfT(t) = hwp} such that each 
task t from the set FETP is deployed in one of 
agents of AP hwp; 
 for each task t from the said set FETA process 

its failure as described in steps for the case of 
failed task; 

- update system state SMASq in accordance with 
fault-recovery procedures (i.e. some components 
that are in standby state will be switched to an 
active state); 

- if redundant DHS MAS is not operable in state 
SMASq in accordance with the criteria of 
serviceability (11), then set SMASq to empty set; 

- if generated state SMASq to which the system is 
switched from the state SMASn due to a failure of 
component cmp is a new state (i.e. it is not 
included in the set SMASA of already formed 
states), then update the set SMASA to include 
new state SMASq; 

- if graph edge related to transition from the state 
SMASn to the state SMASq already exists in the 
set of graph edges SEDGA, then update the 
element SEDG = (SMASn, SMASq, Fnq = {ck}) of 
the set SEDGA to include the system component 
cmp to the set Fnq of system components that 
failures initiate the transition, otherwise update 
the set SEDGA to include new edge 
SEDG’ = (SMASn, SMASq, {cmp}). 
The iterative algorithm for state graph formation 

stops when all states from the set SMASA of 
generated state are processed, i.e. when after the 
performed iteration the number of system state 
under consideration n is equal to a number of 
elements in the set SMASA. 

 
 

6.3 Extended Redundant Distributed 
Hardware-Software Multi-Agent System 
Model 

As was mentioned above state graph based 
approach allows assessment of reliability for 
systems that components operate in cold standby 
mode. In case of redundant DHS MAS we have 
developed a methodology for state graph formation 
based on the assumption that a particular functional 
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component (i.e. task or ACT) may fail only if it is in 
an active state. State graph based approach is also 
suitable in cases of advanced operating modes of 
system components. For example a task in an active 
state may be executed periodically and may fail 
only during its execution. Similarly an actuator in 
an active state may fail only when it is actually 
utilized by one of tasks. To consider different 
operating modes of MAS components we have 
extended our DHS MAS model.  

We have introduced a term of task class to 
describe operating mode of a particular task. We 
suppose that each MAS task may belong to either 
event-driven or periodical class. A task of periodical 
class is executed periodically while it is in an active 
state with fixed time intervals between executions. 
Moreover duration of single execution of a task of 
periodical class is fixed. Execution of event-driven 
task is initiated by a particular accidental event in 
an environment. Duration of single execution of 
event-driven task is also fixed. 

A term of actuator class was introduced to define 
various operating modes of a particular ACT.  Each 
ACT may belong to either regular service class or 
task-driven class. An actuator of regular service 
class operates continuously while it is in an active 
state. Consequently an actuator of regular service 
class may fail at any time instant while it is active. 
A task-driven actuator operates only during its 
utilization by one or more of system tasks. Thus a 
task-driven actuator could not fail while it is not 
utilized even if it is in an active state.  

Terms of operating modes for agents and agent 
platforms we introduced to deal with different 
failure behaviors of these components. If an agent 
operates in regular service mode then its failure rate 
does not depend on states of tasks deployed in the 
agent. If an agent operates in task service mode then 
its probability of failure increases during execution 
of one or more of its tasks. Similarly probability of 
failure of a particular AP that operates in task 
service mode increases when one of agents situated 
in this AP is executing its tasks.  

To adopt new terms we have extended our 
redundant DHS MAS model with following new 
elements: 
• set of task classes CT = {[ed], [pd]}, where [ed] 

denotes event-driven class, [pd] denotes 
periodical class; 

• set of actuator classes CHWR = {[rs], [td]}, 
where [rs] denotes regular service class, [td] 
denotes task-driven class; 

• set of agent operating modes OA = {[rs], [ts]} and 
set of  AP operating modes OHWP = {[rs], [ts]}, 
where [rs] denotes regular service mode, [ts] 
denotes task service mode; 

• predicate confClTTask(ct, tt) is true if a task of 
type tt belongs to class ct; 

• predicate confClTHwr(chwr, thwr) determines 
whether an actuator of type thwr belongs to class 
chwr; 

• predicate confOmA(oa, a) determines whether an 
agent a operates in mode oa; 

• predicate confOmHwp(ohwp, hwp) determines 
whether AP hwp operates in mode ohwp; 

• function timed(tt) determines a duration of single 
execution of a task of type tt that belongs to event-
driven or periodical class; 

• function time(tt) determines a fixed time interval 
between executions of a task of type tt that 
belongs to periodical class; 

• function stream(tt) determines a rate of occurrence 
of accidental events that initiates execution of a 
task of type tt that belongs to event-driven class.  

 
 

6.4 Failure Model for State Graph Based 
Approach 

Reliability assessment requires information of 
failure behavior of each system component. We 
suppose that failure behaviors of components of 
redundant DHS MAS are defined by following 
functions: 
• function qft(tt) determines a probability of failure 

during single execution for a task of type tt that 
belongs to either event-driven or periodical class; 

• function fra(a) determines a failure rate for an 
agent a that operates in either regular service or 
task service mode; 

• function rda(a) determines a reduction factor for 
an agent a that operates in task service mode; 

• function qfa(a) determines a probability of failure 
during single execution of one of active tasks for 
an agent a that operates in task service mode; 

• function frp(hwp) determines a failure rate for AP 
hwp that operates in either regular service or task 
service mode; 

• function rdp(hwp) determines a reduction factor 
for AP hwp that operates in task service mode; 

• function qfp(hwp) determines a probability of 
failure for AP hwp during single execution of one 
of active tasks via one of agents situated in this 
AP; 
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• function frr(thwr) determines a failure rate for an 
actuator of type thwr. 

Generic state graph based approach is built upon 
Markovian model. Thus it’s assumed that failure 
rate of each system component is persistent while 
the system is in one of its states and time to failure 
of each system component is a random variate of 
exponential distribution [18]. We also assume that 
for each task of type that belongs to event-driven 
class random stream of accidental events that 
initiates execution of this task is a simple or Poisson 
stationary stream with exponentially distributed 
random intervals between events.  

Let’s assume that the state graph of redundant 
DHS MAS is already formed in accordance with 
methodology described in section 6.2. To work out 
a system of differential equations in form (23) it’s 
required to determine transition intensities for each 
graph edge. As was noted above a transition 
intensity for a particular edge is calculated as a sum 
of failure rates of such system components that shall 
fail to initiate a transaction described by this edge. 
Because in accordance with extended redundant 
DHS MAS model failure rate and probability of 
failure of a particular component depends on its 
state as well as on states of other components, we 
shall define techniques for determination of failure 
rates for DHS MAS components in a particular 
system state.  

 Let’s consider a redundant DHS MAS state 
SMAS. A failure rate for a particular task t that is in 
an active state is determined as follows: 
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where tt = tOfTask(t) is a type of task t, [ed] 
denotes event-driven task class, [pd] denotes 
periodical task class. 

As an actuator of task-driven class operates and 
thus may fail only when it’s utilized by a particular 
task that is in an active state, let’s determine a rate 
of failures of a particular actuator that are caused by 
utilization of this actuator by a particular active task 
t as follows: 
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where thwr = tOfHwr(hwr) is a type of an actuator 
hwr, tt = tOfTask(t) – a type of task t that utilize the 
actuator. 

A failure rate for a particular actuator hwr that is 
in an active state is determined as follows: 
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where thwr = tOfHwr(hwr) is a type of an actuator 
hwr, t – a task, RT – set of tasks, SMAS – a system 
state. 

Let’s consider a particular agent that operates in 
a task service mode. Failure of this agent may be 
caused either by agent itself or by execution of one 
of its active tasks. A rate of failures of an agent that 
are caused by execution of a particular task t is 
determined in a following manner: 
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where a is an agent, tt = tOfTask(t) is a type of task 
t. 

Finally a failure rate for a particular agent a in 
DHS MAS state SMAS is determined as follows: 
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where a is an agent, t – a task, RT – set of tasks, 
SMAS – a system state. 
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A rate of failures of an agent platform operating 
in a task service mode that are caused by execution 
of a particular task t situated in one of its agents is 
determined similarly to (34): 
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where hwp is AP, tt = tOfTask(t) is a type of task t. 

A failure rate for a particular AP in DHS MAS 
state SMAS is determined as follows: 
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where hwp is AP, t – a task, RT – set of tasks, SMAS 
– a system state. 

It’s worth noting that for a particular redundant 
DHS MAS state failure rates for tasks and ACTs 
that are not in active state are not determined as 
these components could not fail because of cold 
standby mode. 

 
 

7 Experiments 
The hypothesis to be verified though a set of 
experiments is as follows: the reliability level 
achieved though utilization of the developed 
reorganization technique described in section 2.2 
and fault-recovery methodology described in 
section 3 is equal to the theoretical assessments 

determined via logical-and-probabilistic and state 
graph based approaches. 
 
 
7.1 Examples of Distributed Hardware-
Software Multi-Agent Systems 
The first existing DHS MAS (MAS1) is presented 
on Fig. 1. MAS1 is defined by following sets: a set 
of tasks T = {t1, t2, t3}, a set of agents A = {a1, a2}, a 
set of APs HWP = {h1}, a set of ACTs HWR = {r1, 
r2, r3}. Its configuration is defined as follows:  
• confTaskAgent is true on a set {(t1, a1), (t2, a1), (t3, 

a2)}; 
• confAgentHwp is true on a set {(a1, h1), (a2, h1)}; 
• confHwrHwp is true on a set {(r1, h1), (r2, h1), (r3, 

h1)}; 
• reqHwrTask is true on a set {(r1, t1), (r2, t1), (r2, t2), 

(r3, t3)}. 
Application of our reliability improvement 

methodology has transformed the existing DHS 
MAS MAS1 to a redundant DHS MAS RMAS1 that 
is presented on Fig. 2. RMAS1 is defined by 
following sets: a set of task types TT = {tt1, tt2, tt3}, 
a set of tasks RT = {t11, t12, t21, t22, t31, t32}, a set of 
agents RA = {a1, a2, a3}, a set of APs RHWP = {h1, 
h2}, a set of ACT types THWR = {rt1, rt2, rt3} and a 
set of ACTs RHWR = {r11, r12, r21, r22, r31, r32}. The 
configuration of RMAS1 is as follows: 
• confTypeTask is true on a set {(tt1, t11), (tt1, t12), 

(tt2, t21), (tt2, t22), (tt3, t31), (tt3, t32)}; 
• confTypeHwr is true on a set {(rt1, r11), (rt1, r12), 

(rt2, r21), (rt2, r22), (rt3, r31), (rt3, r32)}; 

 
Fig. 1. Existing DHS MAS (MAS1) 

 

 

 
Fig. 2. Redundant DHS MAS (RMAS1) 
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• confTaskAgent is true on a set {(t11, a1), (t12, a2), 
(t21, a2), (t22, a3), (t31, a3), (t32, a1)}; 

• confAgentHwp is true on a set {(a1, h1), (a2, h2), 
(a3, h2)}; 

• reqTHwrTTask is true on a set {(rt1, tt1), (rt2, tt1), 
(rt2, tt2), (rt3, tt3)}; 

• confHwrHwp is true on a set {(r11, h1), (r12, h2), 
(r21, h1), (r21, h2), (r22, h1), (r22, h2), (r31, h2), (r32, 
h1), (r32, h2)}. 

The second test redundant DHS MAS RMAS2 is 
presented on Fig. 3 and is defined by following sets: 
a set of task types TT = {tt1, tt2, tt3, tt4, tt5, tt6, tt7, tt8, 
tt9}, a set of tasks RT = {t11, t12, t21, t22, t31, t32, t41, t42, 
t51, t52, t61, t62, t71, t72, t81, t82, t91, t92}, a set of agents 
RA = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}, a set of 
APs RHWP = {h1, h2, h3, h4, h5}, a set of ACT types 
THWR = {rt1, rt2, rt3, rt4, rt5, rt6} and a set of ACTs 
RHWR = {r11, r12, r21, r22, r31, r32, r41, r42, r51, r52, r61, 
r62}. The configuration of DHS MAS RMAS2 is as 
follows: 
• confTypeTask is true on a set {(tt1, t11), (tt1, t12), 

(tt2, t21), (tt2, t22), (tt3, t31), (tt3, t32), (tt4, t41), (tt4, 
t42), (tt5, t51), (tt5, t52), (tt6, t61), (tt6, t62), (tt7, t71), 
(tt7, t72), (tt8, t81), (tt8, t82), (tt9, t91), (tt9, t92)}; 

• confTypeHwr is true on a set {(rt1, r11), (rt1, r12), 
(rt2, r21), (rt2, r22), (rt3, r31), (rt3, r32), (rt4, r41), (rt4, 
r42), (rt5, r51), (rt5, r52), (rt6, r61), (rt6, r62) }; 

• confTaskAgent is true on a set {(t11, a1), (t12, a3), 
(t21, a1), (t22, a3), (t31, a4), (t32, a5), (t41, a7), (t42, a9), 
(t51, a8), (t52, a9), (t61, a7), (t62, a2), (t71, a5), (t72, a2), 
(t81, a6), (t82, a8), (t91, a10), (t92, a7) }; 

• confAgentHwp is true on a set {(a1, h1), (a2, h1), 
(a3, h2), (a4, h2), (a5, h3), (a6, h3), (a7, h4), (a8, h4), 
(a9, h5), (a10, h5)}; 

• reqTHwrTTask is true on a set {(rt1, tt1), (rt1, tt3), 
(rt2, tt2), (rt2, tt3), (rt3, tt4), (rt3, tt6), (rt4, tt5), (rt4, 
tt6), (rt5, tt7), (rt5, tt9), (rt6, tt8), (rt6, tt9)}; 

• confHwrHwp is true on a set {(r11, h1), (r11, h2), 
(r12, h2), (r12, h3), (r21, h1), (r21, h2), (r22, h2), (r22, 
h3), (r31, h4), (r31, h5), (r32, h1), (r41, h4), (r41, h5), 
(r42, h1), (r51, h3), (r51, h5), (r52, h1), (r52, h4), (r61, 
h3), (r61, h5), (r62, h4)}. 

Other example of redundant DHS multi-agent 
system is presented in [19]. 

 
 
7.2 Experiments for Logical-and-
Probabilistic Approach 
Experiments for logical-and-probabilistic approach 
are based on statistical modelling of time to failure 
of all components and further processing of the 
obtained sequence of failures on the imitation 
model of test redundant DHS MAS. 

As logical-and-probabilistic approach is utilized 
for formation of analytic reliability function it’s 
assumed that all components of redundant DHS 
MAS operates in hot standby mode. 

All minimal functional configurations of 
redundant DHS MAS RMAS1 determined in 
accordance with methodology described in section 
5.1 are presented in Table 1. Several minimal 
operable configurations of RMAS1 are presented in 
Table 2. Total number of MOCs of RMAS1 is 24. 

Experimental assessments of probability of no-
failure PSR(t) as well as analytic reliability function 
PAR(t) for test redundant DHS MAS RMAS1 and 
reliability function PA(t) for existing DHS MAS 
MAS1 are presented on Fig. 4. 

 
Fig. 3. Redundant DHS MAS (RMAS2) 
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Experimental assessments for other test 
redundant DHS MASs are presented in [19]. 
 
 
7.3 Experiments for State Graph Based 
Approach 
Experiments for state graph based approach are 
distinguished from experiments for logical-and-
probabilistic approach that are described in section 
7.2. It’s worth noting that failure rates determined in 
accordance with (31) – (37) are used only for 
theoretical reliability assessment and are not 
utilized in experiments. Statistical modeling of time 
to failure values is used only for components which 
failure rates do not depends on states of other 
components, e.g. agents, agent platforms and 
actuators of regular service class. For tasks of both 
event-driven and periodical classes simulation of 
system operation is performed. For each single 
execution of a particular task following values are 
determined: 
• next time instant of task execution (statistical 

modelling is used for tasks of event-driven class); 
• state of an agent operating in a task service mode 

in which the task is deployed (i.e. whether the 
agent has failed due to task execution); 

• state of AP operating in a task service mode in 
which an agent of the task is deployed; 

• state of an actuator that is in an active state and is 
utilized during task execution. 

For determination of mentioned above states 
statistical modelling of random variate of uniform 
distribution is utilized. 

Processing of each occurred failure by the 
imitation model of redundant DHS MAS in 
accordance with fault-recovery procedures 
described in section 3.2 results in switching DHS 
MAS to a new state though replacement of some 
system components with duplicates. 

Several states and edges of state graph for 
redundant DHS MAS RMAS1 are presented in 
Table 3 and Table 4 respectively. State graphs for 
RMAS1 and RMAS2 contains 43 and 3131 states. 

Table 2. Minimal operable configurations (RMAS1) 
MOC MFC MWR 
MOC1 MFC1 {r11, r21, r31} 
MOC2 MFC1 {r11, r21, r32} 
MOC3 MFC1 {r11, r22, r31} 
MOC4 MFC1 {r11, r22, r32} 
MOC5 MFC2 {r11, r21, r32} 
MOC6 MFC2 {r11, r22, r32} 
MOC7 MFC6 {r12, r21, r32} 
MOC8 MFC6 {r12, r22, r32} 

 

Table 1. Minimal functional configurations (RMAS1) 
MFC MT MA MHWP 
MFC1 {t11, t21, t31} {a1, a2, a3} {h1, h2} 
MFC2 {t11, t21, t32} {a1, a2} {h1, h2} 
MFC3 {t11, t22, t31} {a1, a3} {h1, h2} 
MFC4 {t11, t22, t32} {a1, a3} {h1, h2} 
MFC5 {t12, t21, t31} {a2, a3} {h2} 
MFC6 {t12, t21, t32} {a1, a2} {h1, h2} 
MFC7 {t12, t22, t31} {a2, a3} {h2} 
MFC8 {t12, t22, t32} {a1, a2, a3} {h1, h2} 

 

 
Fig. 4. Reliability functions and experimental assessments of probability of no-failure (MAS1 and RMAS1, logical-and-

probabilistic approach) 
 

WSEAS TRANSACTIONS on COMPUTERS Alexei V. Igumnov, Sergey E. Saradgishvili

E-ISSN: 2224-2872 687 Volume 13, 2014



 

 

We assume that tasks and actuators that are not 
in an active state do not operate and consequently 
could not fail. State graph based approach allows 
consideration of different operating modes of 

system components. Particular operating modes of 
agents and APs as well as classes of tasks and ACTs 
are defined by following MAS model extensions for 
both RMAS1 and RMAS2 redundant systems: 
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where tti is a task type, thwri – a type of ACT, a – 
an agent, hwp – AP, [ed] denotes event-driven task 
class, [pd] denotes periodical task class, [rs] 
denotes regular service ACT class, [td] denotes 
task-driven ACT class, [ts] denotes a task service 
operating mode. 

On Fig 5, we can see experimental assessments 
of probability of no-failure PSR1(t) and analytic 
reliability function PAR1(t) for test redundant DHS 
MAS RMAS1, reliability function PA1(t) for 

Table 4. Edges of state graph (RMAS1) 
Index of 

initial state 
Index of 

final state Set of failed components 

1 2 {t11, r11} 
1 3 {t21} 
1 4 {t31} 
1 5 {r21} 
1 6 {r31} 
1 7 {a1, h1} 
1 8 {a2} 
1 9 {a3} 
1 10 {h2} 
2 10 {t12, r12, a2, h2} 
3 10 {t22, a3, h2} 
4 10 {t32, r32, a1, h1, h2} 
5 10 {r22, h2} 
6 10 { r32, h2} 
7 10 { t12, t31, r12, a2, a3, h2} 
8 10 { t11, t22, r11, a1, a3, h1, h2} 
9 10 { t21, t32, r32, a1, a2, h1, h2} 

 

 
Table 3. Redundant DHS MAS states (RMAS1) 

State States of MAS components 
t11 t12 t21 t22 t31 t32 r11 r12 r21 r22 r31 r32 

1 [a] [s] [a] [s] [a] [s] [a] [s] [a] [s] [a] [s] 
2 [f] [a] [a] [s] [a] [s] [f] [a] [a] [s] [a] [s] 
3 [a] [s] [f] [a] [a] [s] [a] [s] [a] [s] [a] [s] 
4 [a] [s] [f] [a] [a] [s] [a] [s] [a] [s] [f] [a] 
5 [a] [s] [a] [s] [a] [s] [a] [s] [f] [a] [a] [s] 
6 [a] [s] [a] [s] [a] [s] [a] [s] [a] [s] [f] [a] 
7 [f] [a] [a] [s] [a] [f] [f] [a] [a] [s] [a] [s] 
8 [a] [f] [f] [a] [a] [s] [a] [f] [a] [s] [a] [s] 
9 [a] [s] [a] [f] [f] [a] [a] [s] [a] [s] [f] [a] 

10 Failure state - SMASF 
 

 

 
Fig. 5. Reliability functions and experimental assessments of probability of no-failure (MAS1, RMAS1, RMAS2, state graph 

based approach) 
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existing DHS MAS MAS1, experimental 
assessments of probability of no-failure PSR2(t) and 
analytic reliability function PAR2(t) for test 
redundant DHS MAS RMAS2. 

 
 

8 Conclusion 
A distributed hardware-software multi-agent system 
has been considered as the object of the research. 
Reliability improvement, fault recovery and 
reliability assessment approaches were developed 
for the new object of DHS MAS. 

This paper is an extended version of our 
conference paper [19] and is based on results of our 
previous studies [10], [11], [12]. We have started 
with a problem of reliability assessment for MAS 
that is intended for control of a set of actuators 
combined into executive conveyers and have 
suggested utilization of logical-and-probabilistic 
methods in [11]. The initial version of our fault-
recovery methodology for MAS is presented in [10]. 
In [12] we have proved that our fault-recovery 
procedures ensure a level of fault-tolerance that 
corresponds to a theoretical assessment determined 
in accordance with logical-and-probabilistic 
method.  

In this paper we finalize our research in the 
domain of fault-tolerance in MAS. Results includes 
definition of new object of DHS MAS, reliability 
improvement and fault-recovery techniques, MAS 
failure behavior and operation model, several 
reliability assessment approaches. Our fault-
recovery procedures [10] were extended via strict 
definition of database schemas for MAS 
components that are required for an implementation 
of our fault-recovery methodology. Our previous 
suggestion of utilization of logical-and-probabilistic 
methods [11] was adopted for DHS MAS with 
independent actuators and a full methodology for 
operability function formation is presented. Due to 
highlighted disadvantages of logical-and-
probabilistic methods we have developed a set of 
extensions for DHS MAS model that determines 
various failure behaviors and operating modes of 
redundant system. Moreover a new approach for 
reliability assessment of redundant DHS MAS that 
is based on state graph based method and 
Markovian model is presented. This approach 
includes new iterative methodology for state graph 
formation. 

The methodology for reliability improvement is 
based on new reorganization technique that 
distinguish functional system components such as 

tasks and actuators and components that acts as 
universal executive containers such as agents and 
agent platforms. The reorganization technique 
improves reliability of DHS MAS via replication of 
all functional components and via introduction of a 
redundancy of universal executive containers. 

The presented fault-recovery methodology was 
developed to deal with failures of particular 
components in redundant DHS MAS. The 
methodology consists of database schemas and 
fault-recovery procedures that are required for 
restoration of consistent system configuration after 
detected occurred failures of tasks, agents, agent 
platforms and actuators. The theorem on fault-
tolerance property of redundant DHS MAS defines 
a conditions required for success of fault-recovery 
procedures. 

Two different approaches were suggested for 
assessment of assured reliability level of redundant 
DHS MAS. The developed methodology for 
operability function formation enables utilization of 
known in the art logical-and-probabilistic methods 
for reliability assessment. However as logical-and-
probabilistic approach is limited only for systems 
with hot standby, the second approach for reliability 
assessment was suggested based on state graph 
based method and Markovian model. For formation 
of state graph of redundant DHS MAS new 
methodology defined by an iterative algorithm was 
developed. Existing model of redundant DHS MAS 
was extended to consider different operating modes 
and failure behaviors of system components. New 
failure model for determination of failure rate of a 
particular component in accordance with states of 
other system components was introduced. 

Performed computing experiments have 
validated that a reliability level assured though 
application of the methodology for reliability 
improvement and fault-recovery methodology 
corresponds to theoretical assessments obtained via 
logical-and-probabilistic and state graph based 
approaches. 
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