
An Integrated Multi-Agent Testing Tool for Security Checking of
Agent-Based Web Applications

Fathy E.Eassa, M.Zaki, Ahmed M. Eassa and Tahani Aljehani

Software Engineering and Distributed Systems Research Group members
King Abdul-Aziz University

KSA
fathy55@yahoo.com azhar@eun.eg em_eassa@hotmail.com h-hanoo@hotmail.com

Abstract: - In this paper, an integrated multiagent testing tool, is presented. Such tool comprises static analyzer,
dynamic tester and an integrator of the two components for detecting security vulnerabilities and errors in agent
based web applications written in Java. The static analysis component analyzes the source code of the web
application to identify the locations of security vulnerabilities and displays them to the programmer.
Consequently, dynamic testing of the web application is carried out. Here, a temporal-based assertion language
is introduced to help in detecting security violations (errors) in the underlying application. The proposed
language has operators for detecting SQL injection and cross-site scripting, XSS, security errors.
The dynamic tester consists of two components: instrumentor (preprocessor) and run-time-agent. The
instrumentor has many modules that have been implemented as software agents using Java language under the
control of a multi agent framework. The agents of the instrumentor are: static analyzer agent, parser agent, and
code converter agent. Moreover, an integrator for integrating both static and dynamic analyses is employed.
Eventually the implementation details of IMATT are reported.

Key-Words: - web applications security testing, static testing, dynamic testing, temporal logic, assertion
languages.

1 Introduction
In fact web applications represent a considerable
share of software products. Such applications are
continuously promoted using various software
technologies. The promotion, as such, has led to
web applications that are based on multiagent
systems to provide: 1) user friendliness, 2)
intelligent search and 3) better communications.
Unfortunately, those web applications are subject to
different attacks. This paper presents an integrated
MultiAgent Testing Tool, IMATT, to facilitate static
and dynamic testing procedures for finding out the
security flaws, if any. In fact, the majority of the
software testing tools are generic [2,23,25] in the
sense that they are working independent of the style
of the program under test. However, recently
Centonze et al [2] have presented a tool named AEC
for testing component based programs where the
peculiarities of the program components are
considered. Here we went a step further in this
direction, where IMATT extends AEC and
introduces, an agent based tool for testing large
agent based Web applications (which are beyond
component based programs) against security flaws.
IMATT could be used with the following pragmatic
advantages:

1. IMATT is homogeneous in the sense that

both static and dynamic components are
model based where the static analysis model
is based on a set of grammar rules while the
dynamic analysis model is based on temporal
logic assertions in addition to a set of
behavioral dynamic responses.

2. Integration of static and dynamic analysis, via
path concatenation, enables the discovery of
both intra and inter vulnerabilities.

3. Web applications allow intervention;
consequently different scenarios for the same
application can be generated. It is essential to
check out the liveness of each scenario in
order to guarantee the application ability to
reach its goal. This is carried out by making
use of temporal logic formalism.

Agent based web applications, Fig. 1, can be
attacked (consequently protected at various
levels). To be specific and to clarify the scope
of IMATT, the MultiAgent, MAS, web
application levels are pointed out as follows.

Web Application
GADE-Based Agent(s)

Network Node

Fig. 1: Agent-based web application

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 9 Volume 13, 2014

1. Network node (site) level: where both
attacks and protection mechanisms are
network oriented and they are out of scope
of this paper.

2. MAS environment (GADE) level: where
malicious agent(s) could be introduced to
attack the web application. At that level, the
agent security is the responsibility of
GADE-S that can allow authentication,
authorization and integrity. Accordingly,
IMATT is not involved.

3. Web application level: where IMATT is
utilized to check out the underlying
application.

Thus IMATT is a special purpose security
testing tool that satisfies:

• The close fitting testing approach [1].
• Soundness (from static analysis),

precision (from dynamic analysis) and
flexibility by making use of a group of
GADE agents for building up the
instrumentor.

• IMATT can be easily involved in a
continuous testing integration process
[2, 3, 4, 5, 6], where iterating first one
analysis, then the other is more
powerful than performing either one in
isolation [7].

There is a common agreement that attacks aimed
at web applications represent most of today attacks
[8], therefore the major types of such attacks are
considered here. Namely, SQL injection [9, 10, 11]
and cross site scripting, XSS [12, 13, 14], are
adopted for their popularity, however, many other
attacks could be illustrated in the same manner.

The rest of the paper is organized as follows.
Section two is concerned with the related work
while section three is concerned with the proposed
architecture of IMATT. The implementation and
testing of the tool are discussed in section four.
Section five is concerned with the conclusion.

2 Related Work

Currently, there are several generic tools such as
NuSVM, FDR2, ITS4, CHESS and NESSUS that
could be exploited for program (code) analysis.
Although they are widely used, such tools will not
be considered here because they lack integration and
their application domain is different. To be specific,
IMATT will be only related to the class of tools
that:

• Combines both static and dynamic code
analyzes.

• Can be applied for Web application
written in Java or an equivalent
language.

• Can be devoted basically for detecting
security vulnerabilities.

• Performs either model checking or any
other sound approach to get decision.

The work of Centonze et al [2] has presented a
proposal for combing static and dynamic analysis
for automatic determination of database access
control polices. Their tool could be applied on
programs that are executed on stake-based access
control systems such as Java. In their proposal the
static analysis models the execution of the program
taken into account native methods, reflection and
multi-threading. In addition, the dynamic analysis
can refine the potentially conservative results of the
static analysis. The authors have implemented their
analysis framework in a tool called Access Content
Explorer, ACE. Such tool allows for automatic and
precise identification of access-right requirements
and library code location that should be made
privilege-asserting to prevent any client code from
requiring extra-access-rights.

An extension to the well-known tainted-mode
model has been presented to afford inter-module
vulnerabilities detection by Petukhov et al [8]. The
authors have applied their proposal on web
applications using dynamic analysis with
penetration testing. Their automatic analyzer avoids
the drawbacks of the manual-based code review
recommended by OWASP (Open Web Application
Security Project).The main contributions of that
analyzer are:

• Improvement of classical tainted mode
model so that inter-module data flows could be
checked.

• Automatic penetration testing by leveraging
it with information from dynamic testing output.

Livshits et al [15] have exploited a Program
Query Language to build up a static analyzer for
finding out security flaws in Java application.
Moreover the authors have extended their work to
include both static and dynamic techniques to check
out the underlying queries. The static analyzer,
given by livshits et al [15] finds the potential
matches conservatively using a context-sensitive,
flow-insensitive, inclusion-based pointer alias
analysis. In addition their dynamic analyzer
instruments the sources program to catch the

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 10 Volume 13, 2014

security violations when the program runs to
perform user specified actions. By making use of
these techniques, an analyzer has been designed and
implemented to detect security flaws, resource leaks
and violations of the predefined rules.

In their recent work Keromytis et al[6] have
presented MINESTRONE as an architecture that
integrates static analysis, dynamic confinement and
code diversification techniques to enable the
identification of vulnerabilities in a third party
software. In its present from MINESTRONE in
written in C/C++ and it seeks to:

• Enable the immediate deployment of new
software, and,

• Enable the protection of legacy software.
The authors approach is to insert extensive

security instrumentation, while leverage program
analysis that is aided by runtime data.
Diversification techniques are used as confinement
mechanisms that may achieve software fault
isolation.

The fundamental problem being addressed by
MINESTRONE is finding vulnerabilities in the
underlying software. Its key idea to realize this goal
is to make use of the static analysis to allow reliable
instrumentation, while runtime data provides a focus
on portions of the code that are heavily exercised or
otherwise considered security critical.

The tool Apollo has been discussed by Artzi et al
in [16]. It aims at finding bugs in Web applications
using dynamic testing and explicit state model
checking. The proposed technique generates tests
automatically, runs the tests capturing logical
constraints on input and reduces the condition on the
inputs to failing tests [16]. Thus Apollo provides
test inputs for underlying application and validates
that the output conforms to the predefined
specification.

In all of the above mentioned tools no agents are
considered or involved in either the Web application
or the error-checker. In addition the integration
process is always implicit.

3 Proposed Architecture of IMATT

This tool aims at finding both static and dynamic
vulnerabilities in Web applications. Static
vulnerabilities [9, 12] include SQL injection, cross-
site scripting, XSS, while dynamic vulnerabilities
are checked via the code coverage analysis using
various metrics. The two approaches are similar in
that they are model-based i.e. in both of them,

vulnerability conditions are formally specified by
the static tool. The dynamic tool takes the locations
of the vulnerabilities and monitors if there are
security violation during the web execution, Fig.2.

Fig. 2: IMATT architecture.

3.1. Static Vulnerabilities

Once malicious data has entered a Web
application an attacker can use one of the following
techniques (among others) to accomplish the
expected breach.

3.1.1. SQL Injection

It is one of the well known security
Vulnerabilities found in Web application. It is
caused by unchecked user input being passed to
aback-end database. The hacker may embed SQL
commands into his data sent to the application.

Many SQL injections can be practically avoided
with the use of better API’s. Also, J2EE provides
the prepare statement class, that allows specifying
an SQL statements template capable for indicating
statement parameters.

3.1.2. Cross-Site Scripting, XSS

It occurs when dynamically generated Web pages

Source code

Static analyzer

 Rule base Rules

Vulnerable

Dynamic analyzer

 Instrument

Run-time agent

 Run-time errors

Continuous

 Security violation

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 11 Volume 13, 2014

display input that has not been properly validated
[12]. An attacker may hide a malicious JavaScript
code into such pages. When executed on the user
machine, these scripts can breach the user account
credentials. At the application level, echoing the
application input back to the browser enables cross-
site scripting.

3.2. Static Analysis

In its general form the static analysis problem
should include object propagation problem [18, 19,
20, 21] with three types of description source
descriptors, destination descriptors and derivation
descriptors.

Source descriptors of the form <m,n,p> to specify
ways in which user data can enter the program,
where , m is a source method , n is parameter
number and p is an access path to be applied to
argument n to obtain the user-provided input.
Destination descriptors have the same from with, m
is a destination method, n is argument number and p
is an access path to be applied to that argument.

Derivation descriptors have the form
<m,ns,ps,nd,pd> to specify how data probates
between the program objects. In this case, m
represents a derivation method; a source object is
given by argument number ns and access path ps. A
destination object is given by argument number nd

and access path pd. Such descriptor specifies that at a
call to method m, the object obtained by applying ps

to argument nd is derived from the object obtained
by applying ps to argument ns. Actually, in the
absence of derived objects, to detect potential
vulnerabilities, it is needed only to known if a
source object is used at the destination.

In fact, derivation descriptors are used to handle
the semantics of Java strings. Because Strings are
immutable Java objects, string manipulation
routines (concatenation in the underlying case)
create new string objects, where contents are based
on the original string objects. Actually, most Java
programs use built-in string libraries and
consequently share the same set of derivation
descriptors [18].

The needed generalization may be achieved by
making use of a simple syntax analyzer (parser) for
data log queries to allow users to express
vulnerability patterns in a friendly manner.
Therefore, that approach will be relied upon in
IMATT as it is explained in the following.

It should be noticed that the proposed approach

does not replace the possibility of using the
available Java security, API's and J2EE, instead it
provides an affective extension for them to handle
uncovered cases.

3.3. Dynamic Analysis

In order to detect the security violations during
Web applications execution, an assertion language
has been proposed. It is based on temporal logic to
help in detecting security errors in a scope of the
Web application. In addition, we have built a
dynamic testing tool to instrument assert statements
and detect security violations. In what follows the
temporal assertion language is discussed.

3.3.1. Temporal Assertion Language

In order to detect the run time security
vulnerabilities and error that occurs in Web
applications, we introduce special language based
on the temporal logic. We describe this language
using Backus Naur Form (BNF). In this language
we use the temporal logic operators (Always, Next,
Eventually, Until). Also, the language has another
two operators for detecting the security
vulnerabilities (SQL, XSS).
As shown in the following Fig. 3, our assertion
language has six temporal assert statements
[Always, Eventually, Next, Until, XSS, SQL]. All
of these assert statements (except next) are coupled
with end-assert statements, thus enabling the tester
to control the scope of the assert statement. Fig.3
shows the Java-based temporal assert statements.

Fig. 3: Java Temporal Assertion Language

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 12 Volume 13, 2014

The semantic of the temporal assertion language
is determined according to choosing one of the
temporal operators (Always, Next, Eventually,
Until, SQL or XSS). Choosing those operators
depends on the type of error that we want to detect.
Suppose it is required to ensure that some variables
never equal zero along the scope of certain code,
then we use always operator, but if we want to
check whether the input field contains SQL
injection or not so we will use SQL operator. Such
operators semantics are pointed out in the following.

1) Always (safety) properties: A temporal
expression of this form // 1.1.A Assert []
(W) , specifies that W is always true, during
the scope of the always assert statement.
Note that the assert statement starts with
double slash followed by label followed by
Assert keyword and finally the condition
(W).

2) Eventually (liveness) properties: The
eventually operator (~) of this form // 1.1.A
Assert ~ (W) is used to test that a specific
condition (W) is satisfied at least once
during the scope of the eventually assert
statement.

3) Precedence properties: The until (U)
temporal operators of this form // 1.1.A
Assert T1 U T2. Can be used to assert that
Task T1 will start when Task (T2) finishes.
We can use this property to check race
condition.

4) SQL properties: The SQL temporal operator
of this form // 1.2.A Assert SQL (variables).
We use this property to insure that the
variables in the form are not injected with
SQL attack.

5) XSS properties: The XSS temporal operator
of this form // 1.2.A Assert XSS (variables).
We use this property to insure that the
variables in the form are not injected with
XSS attack.

3.3.2. The Architecture of the dynamic testing
tool
This section introduces the architecture of the
dynamic tool. The programmer adds temporal assert
statements to the source code of the agent-based
web application in the position that he expects
errors. The agent based instrumntor consists of set
of agents. Agents detect the assert statements in the
web application under testing and convert each one
to the corresponding Java statements. The basic

components in our dynamic testing tool are
presented in Fig. 4.

Fig. 4: Agent Based Dynamic Testing Tool Architecture

3.3.2.1 Agent Based Lexical Analyzer: The agent-
based lexical analyzer reads the (java source file
which has the temporal assert statements within the
source code). Then this agent tokenizes the file to
set of tokens which will be sent to the agent-based
parser. The pseudo code of the lexical analyzer
agent is shown in Fig. 5.
Show_Gui()
Choose_Folder()
foreach SourceFile in Folder

Create DestinationFile
 WHILE (Line =SourceFile.ReadLine() !=null)
 IF Line has Assert
 IF Line has Temporal Operator
 Send SourceFile to Parser
 Send DestinationFile To Parser

Send Line To Parser
 END IF
 Block ()
 END IF
 ELSE
 Write Line in DestinationFile

END WHILE
 Receive GeneratedcodeFile
 Copy GeneratedcodeFile To SourceFile
 END Foreach

 Fig. 5: The pseudo code of the lexical analyzer agent

3.3.2.2 Agent Based Parser: The parser reads the
tokens and then decides whether the tokens are Java
statements or assert statements. If they are Java
statements, it will write it to the destination file
which contains only the Java source code without
the temporal assertion, otherwise if the statements
start with double slash followed by the assert
keywords and one of the temporal logic operators,
then source code will be generated based on the
kind of the temporal operators. The pseudo code of
the parser agent is shown in Fig. 6.

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 13 Volume 13, 2014

 Receive SourceFile
Receive DestinationFile
Receive Line
StrLine=Line
Declare Label
Declare Temporal
Declare Condition
Declare Agent
Array=StrLine.toCharArray
FOR char in Array
IF char '('
WHILE char ')'

 move char to condition
END WHILE
END IF

END FOR
Array = StrLine.split ([" "]+)
Label=Array[1]
Temporal =Array[2]
IF Temporal =[]
Agent=Alwyas_CodeGeneration

ELSE IF Temporal=U
Agent=Until_CodeGeneration

ELSE IF Temporal=@
Agent=Next_CodeGeneration

ELSE IF Temporal ~
Agent=Eventually_CodeGeneration

ELSE IF Temporal=SQL
Agent=SQL_CodeGeneration
ELSE
Agent=XSS_CodeGeneration

Send SourceFile To Agent
Send DestinationFile To Agent
Send Label To Agent
Send Condition to Agent

Fig. 6: The pseudo code of the parser agent.

3.3.2.3. Agent Based Code Generator: Depending
on the temporal logic operators, this agent will
generate the code for each temporal assert
statement. The pseudo code of the code generation
agent is shown in Fig. 7.
Receive SourceFile
Receive DestinationFile
Receive Label
Receive Condition
WHILE (Line = SourceFile.readLine()!=null)
IF Line==Assert
Continue

IF Line ==Label
Break

Array1=GetVaribles(Condition
Array2= Tokonize(Line
FOR i=0 to Array1.lenghth
FOR j=0 to Array2.lenghth

IF Array1[i]==Array2[j]
Write Line to DestinationFile
Write the corresponding java code To DestinationFile

END IF
ELSE
Write Line to DestinationFile

END FOR
END FOR

END WHILE
Send GeneratedJavaCode to MainAgent

Fig. 7: Code generation agent pseudo code.

3.4. Integration of Static and Dynamic
Analyzers
Given a large program, it may be impractical to
identify, manually, security failures. However, by
integrating static and dynamic analyses [25],
IMATT can soundly model the program behavior to

identify the security vulnerabilities. Consequently,
using the dynamic analysis would handle second
order (indirect) run-time attacks.
While theoretically sound, in practice the static
analysis may be unsound for the following reasons:

1) Multi-language code: A Java program may
trigger the execution of methods written in C
and executed directly on the operating system.
A static analyzer for Java will not be able to
model C functions. As a result the analysis will
fail.

2) Reflection: which is a mechanism that enables
code to dynamically manipulates fields and
methods of loaded classes. Modeling reflection
through static analysis is unsound since the
type of object obtained through reflection is
only available at runtime.

In fact neither static nor dynamic analysis can
independently guarantee the identification of all
security vulnerabilities. Actually, dynamic analysis
suffers from the fact that:

• It needs a set of functional or security rules
that may be practically unavailable [22].

• It needs a set of attacks like those used in the
real world. In addition it needs a collection of
temporal information.

• It is destructive since it may perform attack
execution

IMATT integration, Fig. 8,consists of two
analyzing modules: static and dynamic, where each
analyzer is designed as a multi-agent subsystem.
The static analyzer agents read the Java-based web
application, and analyze it to identify a list of
security vulnerabilities. Based on the list of
identified vulnerabilities,the user (programmer)
inserts some assert statements in the web application
and creates new web application file that contains
java statements and assert statements. The dynamic
testing agent reads the new file and instrument it, so
that it can cover all security violation at various
levels. Eventually it displays the violations,if any of
them is reveald during Web application execution.

In IMATT, the need to integrating static and
dynamic analyses is a must. This is because the fact
that agents, specially mobile ones use extensively
‘reflection’ in their programing pardigm. Actually,
modelling reflection by making use of static
analysis is unsound since the type of underlying
objects that are obtained through the reflection is
identified only at run time.However, the dynamic
analyzer uses reflection to load classes , create
objects and invoke the required methods.

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 14 Volume 13, 2014

Accordingly, the process of creating a testcase is
automated (but not eliminated).

On the other hand , relying on pure dynamic
analysis is not sufficient because of its dependency
on the test cases. In practice it is usual that some
execution paths, along with the previledged rights to
execute those paths may remain undiscovered until
the code deployment phase. This yields an
incomplete cover for the program under test,
consequently unsoundness is arised due to the
absence of a formal cover that should be generated
by the selected test cases.

IMATT integrator, Fig.8, has several essential
features that can be pointed out in the following:

• It tackles the reflection problem(s) by
conservatively locating the suspected agent
using the static analyzer, and then the
dynamic analyzer is employed to refine the
obtained conservative results, i.e. to extract
the runtime rule(s) violation.

• A Java temporal assertion language is
implemented with well defined semantics.
Such language combines on a formal basis,
temporal logic and application oriented
operators.

• One of the roles of the proposed integrator is
to eliminate false alarms, i.e. when the static
analyzer might report a false alarm (due to
security sensitive action) the dynamic
analyzer that utilizes the coverage of the
underlying program methods can eliminate
the statically detected false alarms.

For IMATT each solution is executed in three
steps.
1) The static analyzer discovers the call that

may cause security vulnerability and
determines its location (agent)

2) At run-time the dynamic analyzer checks
out the vulnerability locations of the
underlying agent to discover the method
that can yield a breach. In addition it logs
the underlying operation in a special file
that might be parsed for security holes.

3) From steps 1 and 2 the integrator, Fig.8,
exploits continuous integration agent which
is coupled with both static and dynamic
analyzers in order to find out the corrupted
class which is responsible for the security
violation problem.

Also, the security side effects can be discovered
and detected. For convenience such details are
moved to Sec.4 , where illustration of IMATT

implementation, using several experimenal
examples, is given.

Fig. 8: The Integration of static and dynamic tools.

4 Tool Implementation and Testing

All agents of the testing tools are written in Java
programming language. In addition JADE [24] as a
middleware that facilitates the development of
multi-agent systems is used to manage and run the
agents of IMATT

4.1 Code Generation for SQL Injection and
XSS

SQL Code Generation Agent: When the agent
receives the source file , destination file , and the
pointer to both files with the condition and label , it
starts to extract the variables from the conditions
and then starts reading the source file from the
pointer until it finds the label followed by word
"END". When the agent reads the source file each
line has any one of those variables, the agent will
insert run time method called hasSQL() in the
destination file after the java statement which has
one of those variables the method which will take
variables as the arguments analyzes the variables to
ensure no SQL injections , otherwise the agent will

Input / Web application
written in Java

Static Analyzer
agents

List of
vulnerable

agent

Dynamic
testing agents

Output / List of
security violations

Assert
statements

of TL
+

Web
application
and assert
statements

Integrator

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 15 Volume 13, 2014

write the java statement in the destination file .After
reaching the end of the assert statement, the control
flow will return back to the lexical analyzer which
will continue reading the source file from where the
code generation ended reading and the procedure
will be repeated again when the lexical analyzer
agent catches any temporal assert statements . We
use the SQL temporal operator when we want to
detect SQL attack.

A similar XSS code generation agent can be
obtained by replacing SQL by XSS.

4.2. Testing of Web Applications

For testing Web applications, the Web
application under testing is inserted by temporal
assert statements. After that the instrumentor part of
IMATT instruments the Web application, where
translates each temporal assert statement based on
the semantic of the temporal operator to Java
statments. The instrumented Web application is
compiled and executed for detecting any security
attack. To clarify the nature of IMATT more
examples that are concerened with the
implementation details are given in what follows.

Example 1: Detection of SQL Injection using the SQL
Operator:

•The problem:
Suppose we have Web application of a company,
where there is a service that allows us to retrieve
information of an employee from the database by
giving his first name . Suppose "John" is entered
and "submit" button is pressed, information of the
employee "John" is retrieved and displayed as
shown in Fig. 9. Asumme an attacker would like to
get information of all employees in the company, he
will insert John ' OR '1'='1 in the field of
employee's name, so the query will be select * from
employees where firstname='" + John ' OR '1'='1 +
"'"; due to this SQL injection and because the 'OR'
expression is always true, information of all
employees are retrieved and displayed as shown in
Fig. 10. This allows an attacker to take information
of all employees. Using the same technique
attackers can inject other SQL commands which
could extract, modify or delete data within the
database.

• Solution of the problem
In order to detect the SQL injection , a temporal

assert statement is inserted in the agent-based Web
application to check the fields of the form. In the
code of Fig. 11, the inserted temporal assert

statement is // 1.2.A Assert SQL (user), where the
(user) in this statement will be the data entered by
the client or attacker.

Fig. 9: The record of John

Fig. 10: Information of all employees due to SQL Injection

The code of Fig. 11 is instrumented by agents of

the dynamic analyzer to generate a pure Java code
as shown in Fig. 12. The generated Java code
contains a method called hasSQL() that takes the
fields of the form as an argument and checks if the
field has SQL attack characters or not.

Fig. 11: Shows SQL injection and inserted assert statement

in Web Application

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 16 Volume 13, 2014

Fig. 12: Output of Temporal Assert Statements

Instrumentation.

• Executing the Web Application after
instrumentation:

After executing the program in Fig. 12, and
entering (John ' OR '1'='1) in the field of employee,
we see in Fig. 13, the assertion exception arises
after the detection of SQL injections.

Fig. 13: SQL Injection violation that is detected by the

dynamic analyzer

Example 2: Detecting XSS Attack by using XSS operator:
• The problem:
Suppose Myspace Web site of a Web application

has been singed up by a malicious user and in his
profile page the following script has been added. So,
every time a visitor visits the profile the script is
gotten and annoyed.
<script>alert('Hello World');</script>

Now suppose that the problem get bigger where a
code has been added in the comments of the site as
shown in the following statement.
A webpage about

cats

So, every time the users click on this link they
will visit web site about cats, but they will be logged
out of the web site and that's so annoying.

The problem will be worst if the attacker has
injected script which steals user cookies. So, every
one visit the guess book, he will be redirected to a
page at attacker’s site. The cookies from MySpace's
browser session have been transmitted to attacker's
web server as part of the URL. This will allow the
attacker to steal the pass word and the username of
the administrator of the web site, and the attacker
gives himself administrator access, or start deleting
content.

 And now come to the most dangerous problem
if the attacker could have used a JavaScript link to
trick users into sending sensitive information to his
server
 <a href= " javascript:location.replace ('

http://rickspage.com/?secret='+document.cookie) "> A

Webpage about dogs

If users clicked that link, as they probably do
often, their session ID would be transmitted to
attacker’s server. Fig. 14 and explains the problem.

Fig. 14: The script to steal user session has been added

• Solution of the problem:
In order to detect the XSS attack, a temporal

assert statement // 1.2.R Assert SQL (name,
email, comm) has been inserted to check the fields
of that form as shown in Fig. 15; the name , email
and comm are the form fields.

The code in Fig. 15 is instrumented by the agents
of the dynamic analyzer to generate a pure Java
code that contains a method called hasXSS() as
shown in Fig. 16. The data of the fields of the form
are received and checked by the hasXSS() method
during the Web application execution.

• Testing the Web Application after
instrumentation:

The code in Fig. 16 has been compiled and
executed. The input that contains XSS attack has
been entered. The XSS attack has been detected by
the tool Fig. 17.

In order to emphasize the relative merits of
IMATT, its performance upon compacting versus
should be compared practically with similar

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 17 Volume 13, 2014

analyzers.
However, such task could not be accomplished

due to Lack of published quantitative information of
the performance of such similar products

 Fig. 15: Inserting temporal assert statement in the Web
application.

Fig. 16: The generated code after the instrumentation.

Fig 17: Assertion Exception after detecting the XSS attack

5 Conclusion
This paper presents IMATT as a special purpose

integrated multiagent tester that integrates both
static and dynamic testing components to check out
the security of agent based Web applications.
IMATT has been built up using software agents.

The static component consists of a rule-base and
a code checker while the dynamic component
consists of instrumentor and a run-time analyzer. In
order that such analyzer can handle different
scenarios of the Web application it makes use of
temporal logic to examine the application under test.
The integrator integrates the results of both
components to get a decision for either intra or inter
attacks. In the present state, the temporal assert
statements are inserted manually in the Web
application, however, in future, it is planned to
assign an intelligent agent that can be able to insert
such statements automatically.

References:
[1] Baca D, Peterson K, Carlsson B and Lundberg

L, Static Code Analysis to Detect Software
Security Vulnerabilities-Does Experience
Matter?, Availability, Reliability and Security
International Conference, Blekinge, March
2009.

[2] Centonze P, Flynn R. Pistoia M, Combining
Static and Dynamic Analysis for Automatic
Identification of Precise Access-Control
Policies, Proceedings of the 23rd Annul
Computer Security Applications Conference,
2007.

[3] Tzermias Z, Sykiotakis G, Polychronakis M
and Markatos E, Combining Static and
Dynamic Analysis for the Detection of
Malicious Documents, , available at

[4] http://dcs.ics.forth.gr/activites/papers/mdscan.e
urosec

[5] Lam M S, Martin M, Livshits VB and Whaley
J. Securing Web Applications with Static and
Dynamic Information Flaw Tracking, Available
at http://suif.stanford.edu/papers/pepm08.pdf.

[6] Blazarot D, Marco C, Felmetsger V, Javanovic
N, Kird E, Kruegel C and Vigna G, Saner:
Composing Static and Dynamic Analysis to
Validate Sanitization in Web Applications, SP
'08 Proceedings of the 2008 IEEE Symposium
on Security and Privacy, 2008,pp 387-401.

[7] Keromytis A, Stolfo S, Yang J, Stavrou A,
Ghosh A, Angler D, Dacier M, Elder M and
Kienzle D, The MINESTRONE Architecture:
Combining Static and Dynamic Analysis

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 18 Volume 13, 2014

Techniques for Software Security, Available at
http://www.cs.columbia.edu/~angelos/Papers/2
011/minestrone-syssec.pdf

[8] Johnson M, Ho C-W, Maximilen M and
Willlams L, Incorporating Performance Testing
in Test Driven Development ,IEEE Software,
May/June 2007,pp 67-73.

[9] Petukhov A and Kozlov D, Detecting Security
Vulnerabilities in Web Applications Using
Dynamic Analysis with Penetration Testing,
Application Security Conference, Ghent-
Belgium, May 2008, pp 1-16.

[10] Khochare N, Chalurkar S, Kakade S and
Meshramm B, Servey on SQL Injection
Attacks and their Countermeasures,
International Journal of Computational
Engineering and Management, October 2011,
pp 111-114.

[11] Muthuprasanna M, Wiek and Kothari S,
Eliminating SQL Injection Attacks - A
Transparent Defense Mechanism, available at
http://home.engineering.iastate.edu/~muthu/pap
ers/cnf08.pdf

[12] Balasundaram I and Ramaraj E, An Approval
to Detect and Prevent sql Injection Attacks in
Database Using Web Service, International
Journal of Computer and Network Security,
Vol. 11,No. 1, January 2011,pp 197-205.

[13] Bisht P and VenkatataKrishnan, XSS-GUARD:
Precise Dynamic Prevention of Cross Site
Scripting Attacks, Available at
http://www.cs.uic.edu/~Pbisht/XSSGuard_DIM
VA2008_bisht-pdf.

[14] Di_Lucca G. A., Fasalino A. R., Mastoinni M.
and Tramontana P., Identifying Cross Site
Scripting Vulnerabilities in Web Applications,
Proceedings of 6th IEEE International
Workshop on Web Site Evolution, September
2004, pp 71-80.

[15] Shanmugam J, Ponnavaikko M, Cross Site
Scripting: Latest Developments and Solution,
International Journal of Open Problems in
Computer and Mathematics, Vol.1, No.2,
Sepetmper 2008, pp 101-121.

[16] Livshits VB and Lam MS, Finding Security
Vulnerabilities in Java Applications with Static
Analysis, Available at
http://Usenix.Com/events/sec05/tech/full_paper
s/Livshits.

[17] Artzi S,Kiezun A,Dolby J, Tip F, Dig D,
Paradkar A and Ernst M, Finding Bugs in Web
Applications Using Dynamic Test Generation
and Explicit State Model Checking, IEEE
Transaction on Software Engineering, Vol. 36,
No. 4, July/Aug 2010,pp 474-494.

[18] Huang Y, Yu F, Hang C, Tsai C, Lee D and
Kuo S, Securing Web Application Code by
Static Analysis and Runtime Protection,
Proceedings of the 13th International
Conference on World Wide Web, ACM, New
York, 2004 pp 40-52.

[19] Jovanovic N, Kruegel C, Kirda E, Static
analysis for detecting taint-style vulnerabilities
in web applications, Journal of Computer
Security, Vol 18,2010,pp 861-907.

[20] Guizani W, Marion J and Reynaud-Plantey D,
Server-Side Dynamic Code Analysis, 4th
International Conference on Malicious and
Unwanted Software (MALWARE), October
2009, pp 55 - 62.

[21] M 86th Security Paper, Real-time Code
Analysis: Proactive Protection Against New
and Dynamic Malware Threats, available at
http://www.m86security.com/documents/pdfs/
white_paper

[22] Fu X, Lu X, Peltsverger B, Chen S, Qian K,
Tao L,A static analysis framework for detecting
injection vulnerabilities, Proceedings of the
31st Annual International Computer Software
and Applications Beijing, July 2007, pp 87–96.

[23] Bessey A, Block K, Chelf B, Chou A, Fulton
B, Hallem S, Henri-Gros C, Kamsky A,
Mcpeak S and Egler D, A Few Billion Lines of
Code Later : Using Static Analysis to Find
Bugs in The Real World,
CACM,Vol.53,No.2,2010,pp 66-75.

[24] Halfond, W and Orso A, WASP: Protecting
Web Applications Using Positive Tainting and
Syntax-Aware Evaluation, IEEE Transaction
on Software Engineering, Vol. 34, No. 1,
January/ February 2010,pp 65 - 81.

[25] Giovanni C, JADE Tutorial , Available at
[26] http://jade.tilab.com/doc/tutorials/JADEProgra

mming-Tutorial-for-beginners.pdf
[27] Ernst M, Static and Dynamic Analysis:

Synergy and Duality, Available at
http://www.cs.nmsu.edu/~jcook/woda2003/pap
ers/Ernst.pdf.

WSEAS TRANSACTIONS on COMPUTERS Fathy E.Eassa, M.Zaki, Ahmed M. Eassa, Tahani Aljehani

E-ISSN: 2224-2872 19 Volume 13, 2014

