
Developing Scalable Applications with Actors

AGOSTINO POGGI

Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma

Viale G.P. Usberti 181A, Parma, 43124

ITALY

agostino.poggi@unipr.it http://www.ce.unipr.it/people/poggi

Abstract: - This paper presents a software framework aimed at both simplifying the development of large and

distributed complex systems and guarantying an efficient execution of applications. This software framework

takes advantage of a concise actor model that makes easy the development of the actor code by delegating the

management of events (i.e., the reception of messages) to the execution environment. Moreover, it allows the

development of scalable and efficient applications through the possibility of using different implementations of

the components that drive the execution of actors. In particular, the paper introduces the software framework

and presents the first results of its experimentation.

Key-Words: - Actor model, software framework, concurrent systems, distributed systems, Java

1 Introduction
Distributed and concurrent programming have lately

received enormous interest because multi-core

processors make concurrency an essential ingredient

of efficient program execution and because

distributed architectures are inherently concurrent.

However, distributed and concurrent programming

is hard and largely different from sequential

programming. Programmers have more concerns

when it comes to taming parallelism. In fact,

distributed and concurrent programs are usually

bigger than equivalent sequential ones and models

of distributed and concurrent programming

languages are different from familiar and popular

sequential languages [1][2].

 Message passing is the most attractive solution

because it is a concurrent model that is not based on

the sharing of data and so its techniques can be used

in distributed computation too.

One of the well-known theoretical and practical

models of message passing is the actor model [3].

Using such a model, programs become collections

of independent active objects (actors) that exchange

messages and have no mutable shared state. Actors

can help developers to avoid issues such as

deadlock, live-lock and starvation, which are

common problems for shared memory based

approaches.

There are a multitude of actor oriented libraries

and languages, and each of them implements some

variants of actor semantics. However, such libraries

and languages use either thread-based programming,

which makes easy the development of programs, or

event-based programming, which is far more

practical to develop large and efficient concurrent

systems, but also is more difficult to use.

This paper presents an actor based software

framework, called CoDE (Concurrent Development

Environment), that has the suitable features for both

simplifying the development of large and distributed

complex systems and guarantying scalable and

efficient applications. The next section presents

relate work. Section 3 introduces the software

framework. Section 4 details its implementation.

Sections 5 shows how to write the code of an

application and how to configure it. Section 6

presents an analysis of the performances varying

both the type of application and the type of

configuration. Section 7 presents the results of the

initial experimentation of the software framework.

Finally, section 8 concludes the paper by discussing

its main features and the directions for future work.

2 Related Work
Several actor-oriented libraries and languages have

been proposed in last decades and a large part of

them uses Java as implementation language [4]. The

rest of the section presents some of the most

interesting works.

Salsa [5] is an actor-based language for mobile

and Internet computing that provides three

significant mechanisms based on the actor model:

token-passing continuations, join continuations, and

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 660 Volume 13, 2014

first-class continuations. In Salsa each actor has its

own thread, and so scalability is limited. Moreover,

message-passing performance suffers from the

overhead of reflective method calls.

Kilim [6] is a framework used to create robust

and massively concurrent actor systems in Java. It

takes advantage of code annotations and of a

bytecode post-processor to simplify the writing of

the code. However, it provides only a very

simplified implementation of the actor model where

each actor (called task in Kilim) has a mailbox and a

method defining its behavior. Moreover, it does not

provide remote messaging capabilities.

Scala [7] is an object-oriented and functional

programming language that provides an

implementation of the actor model unifying thread

based and event based programming models. In fact,

in Scala an actor can suspend with a full thread

stack (receive) or can suspend with just a

continuation closure (react). Therefore, scalability

can be obtained by sacrificing program simplicity.

Akka [8] is an alternative toolkit and runtime

system for developing event-based actors in Scala,

but also providing APIs for developing actor-based

systems in Java. One of its distinguishing features is

the hierarchical organization of actors, so that a

parent actor that creates some children actors is

responsible for handling their failures.

Jetlang [9] provides a high performance Java

threading library that should be used for message

based concurrency. The library is designed

specifically for high performance in-memory

messaging and does not provide remote messaging

capabilities.

AmbientTalk [10] is a distributed object-oriented

programming language that is implemented on an

actor-based and event driven concurrency model,

which makes it highly suitable for composing

service objects across a mobile network. It provides

an actor implementation based on communicating

event loops [11]. However, each actor is always

associated with its own JVM thread and so it limits

the scalability of applications on the number of

actors for JVM.

3 Framework Overview
CoDE (Concurrent Development Environment), is

an actor based software framework that has the goal

of both simplifying the development of large and

distributed complex systems and guarantying an

efficient execution of applications.

In CoDE an application is based on a set of

interacting actors that perform tasks concurrently.

An actor is an autonomous concurrent object, which

interacts with other actors by exchanging

asynchronous messages. Moreover, it can create

new actors, update its local state, change its

behavior and kill itself.

Communication between actors is buffered:

incoming messages are stored in a mailbox until the

actor is ready to process them; moreover, an actor

can set a timeout for waiting for a new message and

then can execute some actions if the timeout fires.

Each actor has a system-wide unique identifier

called reference that allows it to be reached in a

location transparent way. An actor can send

messages only to the actors of which it knows the

reference, that is, the actors it created and of which

it received the references from other actors. After its

creation, an actor can change several times its

behavior until it kills itself. Each behavior has the

main duty of processing a set of specific messages

through a set of message handlers called cases.

Therefore, if an unexpected message arrives, then

the actor mailbox maintains it until a next behavior

will be able to process it.

Fig. 1. Architecture of a CoDE application.

Depending on the complexity of the application

and on the availability of computing and

communication resources, one or more actor spaces

can manage the actors of the application. An actor

space acts as “container” for a set of actors and

provides them the services necessary for their

execution. In particular, an actor space takes

advantage of two special actors: the scheduler and

the service provider. The scheduler manages the

concurrent execution of the actors of the actor

space. The service provider enables the actors of an

application to perform new kinds of action (e.g., to

broadcast a message or to move from an actor space

to another one). Fig. 1 shows a graphical

representation of the architecture of a CoDE

distributed application.

4 Implementation
CoDE is implemented by using the Java language

and takes advantage of preexistent Java software

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 661 Volume 13, 2014

libraries and solutions for supporting concurrency

and distribution. CoDE has a layered architecture

composed of an application and a runtime layer. The

application layer provides the software components

that an application developer needs to extend or

directly use for implementing the specific actors of

an application. The runtime layer provides the

software components that implement the CoDE

middleware infrastructures to support the

development of standalone and distributed

applications.

4.1 Actor
An actor can be viewed as a logical thread that

implements an event loop [10][11]. This event loop

perpetually processes events that represent: the

reception of messages, the behavior exchanges and

the firing of timeouts. The life of an actor starts

from the initialization of its behaviors that then

processes the received messages and the firing of

message reception timeouts. During its life, an actor

can move from a behavior to another one more

times and its life ends when it kills itself.

CoDE provides different actor implementations

and the use of one or of another implementation

represents one of the factors that mainly influence

the performance of an application. In particular,

actor implementations can be divided in two classes

that allow to an actor either to have its own thread

of execution (from here named active actors) or to

share a single thread of execution with other actors

of the actor space (from here named passive actors).

In this last case, the scheduler has the duty of

guaranteeing a fair execution of the actors of the

actor space.

Fig. 2. Architecture of an actor.

In particular, the implementation of an actor is

based on four main components: a reference, a

mailer, a behavior and a state. Fig. 2 shows a

graphical representation of the architecture of an

actor.

A reference supports the sending of messages to

the actor it represents. Therefore, an actor needs to

have the reference of another actor for sending it a

message. In particular, an actor has the reference of

another actor if either it created such an actor (in

fact, the creation method returns the reference of the

new actor) or it received a message that either has

been sent by such an actor (in fact, each message

contains the reference of the sender) or whose

content enclosed its reference.

References act as identifiers of the actors of an

application. To guarantee it and to simplify the

implementation, an actor space acts as “container”

for the actors running in the same Java Virtual

Machine (JVM) and the string representation of a

reference is composed of an actor identifier, an

actor space identifier and the IP address of the

computing node. In particular, the actor identifier is

different for all the actors of the same actor space,

and the actor space identifier is different for all the

actor spaces of the same computing node.

A mailer provides a mailbox for the messages

sent to its actor until it processes them, and delivers

the output messages of its actor to the other actors of

the application.

As introduced above, a behavior can process a

set of specific messages leaving in the mailbox the

messages that is not able to process. Such messages

remain into the mailbox until a new behavior is able

to process them and if there is not such a behavior

they remain into the queue for all the life of the

actor. A mailbox has not an explicit limit on the

number of messages that can maintain. However, it

is clear that the (permanent) deposit of large

numbers of messages in the mailboxes of the actors

may reduce the performances of applications and

may cause in some circumstances their failure.

As in the original actor model, in CoDE, a

behavior had the main duty of processing the

incoming messages. It does not directly process

messages, but it delegates the task to some case

objects, that have the goal of processing the

messages that match a specific (and unreplaceable)

message pattern.

Often the behaviors that drive the life of an actor

need to share some information (e.g., a behavior

may work on the results of the previous behaviors).

It is possible thank to a state object. Of course, the

kind of information that the behaviors of an actor

need to share depends on the type of tasks they must

perform in an application. Therefore, the state of an

actor must be specialized for the tasks it will

perform (i.e., different behaviors can have different

state representations).

A message is an object that contains a set of

fields maintaining the typical header information

and the message content. Moreover, each message is

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 662 Volume 13, 2014

different from any other one. In fact, messages of

the same sender have a different identifier and

messages of different senders have a different

sender reference.

A message pattern is an object that can apply a

combination of constraint objects on the value of all

the fields of a message. CoDE provides a set of

predefines constraints, but new ones can be easily

added. In particular, one of such constraints allows

the application of a pattern to the value of a message

field. Therefore, the addition of field patterns (the

current implementation offer only a regular

expression pattern) will allow the definition of

sophisticated filters on the values of all the message

fields and in particular on the content of the

message.

An actor has not direct access to the local state of

the other actors and can share data with them only

through the exchange of messages and through the

creation of actors. Therefore, to avoid the problems

due to the concurrent access to mutable data, both

message passing and actor creation should have

call-by-value semantics. This may require making a

copy of the data even on shared memory platforms,

but, as it is done by the large part of the actors

libraries implemented in Java, CoDE does not make

data copies because such operations would be the

source of an important overhead. However, it

encourages the programmers to use immutable

objects (by implementing as immutable all the

predefined message content objects) and delegates

the appropriate use of mutable object to them.

4.2 Actor space
An actor space has the duty of supporting the

execution of the actions of its actors and of

enhancing them with new kinds of action. To do it,

an actor space takes advantage of two main runtime

components (i.e., the dispatcher and the registry)

and of two special actors (the scheduler and the

service provider).

The dispatcher has the duty of supporting the

communication with the actors of the other actor

spaces of the application. In particular, it creates

connections to/from the other actor spaces, manages

the reception of messages from the input

connections, maps remote references to the

appropriate output connections, and delivers

messages through the output connections.

The registry supports the creation of actors and

the reception of the messages coming from remote

actors. In particular, it has the duties of creating new

references and of providing the reference of a local

actor to the dispatcher when it is managing a

message coming from a remote actor. In fact, while

the reference of a local actor allows the direct

delivery of messages, the reference of a remote

actor delegates the delivery of messages to the

dispatcher of the actor space. Such a dispatcher

delivers the message to the dispatcher of the actor

space where the remote actor lives and the latter

dispatcher takes advantage of the registry for

mapping the remote reference to the local reference

of the actor.

The scheduler is a special actor that manages the

execution of the “normal” actors of an actor space.

Of course, the duties of a scheduler depend on the

implementation of the actors of the actor space and,

in particular, on the type of threading solutions

associated with them. In fact, while the Java runtime

environment mainly manages the execution of

active actors, CoDE schedulers completely manage

the execution of passive actors.

The service provider is a special actor that offers

a set of services for enabling the “normal” actors of

an application to perform new kinds of actions. Of

course, the actors of the application can require the

execution of such services by sending a message to

the service provider. In particular, the current

implementation of the software framework provides

services for supporting the broadcast of messages,

the exchange of messages through the “publish and

subscribe” pattern, the mobility of actors, the

interaction with users through emails and the

creation of actors (useful for creating actors in other

actor spaces).

Moreover, an actor space can enable the

execution of an additional runtime component called

logger. The logger has the possibility to store (or to

send to another application) the relevant information

about the execution of the actors of the actor space

(e.g., creation and deletion of actors, exchange and

processing of messages, and behavior

replacements). The logger can provides both textual

and binary information that can be useful for

understanding the activities of the application and

for identifying the causes and of possible execution

problems. In particular, the binary information

contains real copies of the objects of the application

(e.g., messages and actor state). Therefore, such an

information can be used to feed other applications

(e.g., monitoring and simulation tools).

Finally, the actor space provides a runtime

component, called configurator, whose duty is to

simplify the configuration of an application by

allowing the use of either a declarative or a

procedural method (i.e., the writing of either a

properties file or a code that calls an API provided

by the configurator).

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 663 Volume 13, 2014

4.3 Configuration Profiles
The quality of the execution of a CoDE application

mainly depends on the implementation of the actors

and of the schedulers of its actor spaces. Another

important factor that influences its execution is the

implementation of the runtime components that

support the exchange of messages between both

local and remote actors.

However, a combination of such

implementations, that maximizes the quality of

execution of an application, could be a bad

configuration for another type of application.

Moreover, different instances of the same

application can work in different conditions (e.g.,

different number of users to serve, different amount

of data to process) and so they may require different

configurations.

As introduced in a previous section, actor

implementations can be divided in two classes that

allow to an actor either to have its own thread

(active actor) or to share a single thread with the

other actors of the actor space (passive actor).

The use of active actors has the advantage of

delegating the scheduling to the JVM with the

advantage of guaranteeing actors to have a fair

access to the computational resources of the actor

space.

However, this solution suffers from high

memory consumption and context-switching

overhead and so it can be used in actor spaces with a

limited number of actors. Therefore, when the

number of actors in an actor space is high, the best

solution is the use of passive actors whose execution

is managed by a scheduler provided by the CoDE

framework. Such a scheduler uses a simple not

preemptive round-robin scheduling algorithm and so

the implementation of the passive actor has the duty

of guaranteeing a fair access to the computational

resources of the actor space, for example, by

limiting the number of messages that an actor can

process in a single execution cycle.

Moreover, is some particular applications is not

possible to distribute in equal parts the tasks among

the actors of an actor space and so there are some

actors that should have a priority on the access to

the computational resources of the actor space.

Often in this situation, a good solution is the

combination of active and passive actors.

In an actor-based system where the computation

is mainly based on the exchange and processing of

messages, the efficiency of the communication

supports are a key parameter for the quality of

applications. In CoDE both local and remote

communication can be provided by replaceable

components. In particular, the current

implementation of the software framework supports

the communication among the actor spaces through

four kinds of connector that respectively use

ActiveMQ [12], Java RMI [13], MINA [14] and

ZeroMQ [15]. Moreover, when in an application the

large part of communication is based on broadcast

and multicast messages, the traditional individual

mailbox can be replaced by a mailbox that

transparent extracts the messages for its actor from a

single queue shared with all the other actors of the

actor space.

5 Application Development
The development of an application involves the

design and the coding of the Java classes defining

the different behaviors of the actors involved in the

application and the configuration of its actor spaces.

Fig. 3. “EmptyBuffer” behavior.

For example, the modelling of the classical

bounded buffer problem involves the definition of

the behaviors that drive the actors representing the

bounded buffer and the producers and consumers

acting on it. In particular, the “EmptyBuffer”,

“PartialBuffer” and “FullBuffer” behaviors can

drive the execution of the bounded buffer, and the

“Producer” and Consumer” behaviors can

respectively drive the execution of the producers

and of the consumers. Each behavior has some cases

for processing the input messages, and each

behavior of the bounded buffer can move to one of

the other two when its state (empty, partial and full)

changes. Moreover, is necessary an additional actor

whose behavior has only the goal of creating all the

other actors of the application. Fig. 3 and Fig. 4

show the code of the “EmptyBuffer” behavior and

of the “GetItem” case.

public final class EmptyBuffer extends Behavior {

 public List<Case> initialize(final Object[] v) {

 BufferState s = new BufferState();

 s.setCapacity((Integer) v[0]);

 setState(s);

 return initialize();

 }

 public List<Case> initialize() {

 ArrayList<Case> l = new ArrayList<>();

 l.add(new PutItem());

 l.add(new Killer());

 return l;

 }

}

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 664 Volume 13, 2014

Fig. 4. “GetItem” case.

Fig. 5. Application starting code.

After the writing of the code of the behaviors

used by the actors of the application, the final step is

the writing of the code that configures and starts the

application. This code must configure the actor

scheduler and call the runtime method that starts the

application. Moreover, it may configure: i) the

dispatcher for allowing the communication with the

actors of other actor spaces, ii) the additional

services that the service provider actor should offer

to the “normal” actors of the application, and, iii)

the logger. Fig. 5 shows the code that starts the

application modelling the bounded buffer problem.

6 Performance Analysis
The performances of the different implementations

of actors and scheduling actors can be analyzed by

comparing the execution times of three simple

applications on a laptop with an Intel Core 2 -

2.90GHz processor, 16 GB RAM, Windows 8 OS

and Java 7 with 4 GB heap size. These examples

involves four kinds of configuration: active (i.e., the

actor space contains active actors), passive (i.e., the

actor space contains passive actors), shared (i.e., the

actor space contains passive actors whose mailboxes

get messages from a unique message queue), and

hybrid, (i.e., the actor space contains both active and

passive actors).

The first application is based on the point-to-

point exchange of messages between the actors of

an actor space. The application starts an actor that

creates a certain number of actors, sends 1000

messages to each of them and then waits for their

answers. Fig 6 shows the execution time of the

application from 5 to 1.000 actors and the best

performances are obtained with the passive

configuration when the number of actors increases.

Fig. 6. Point-to-point example performance.

Fig. 7. Broadcasting example performance.

The second application is based on the

broadcasting of messages to the actors of an actor

space. The application starts an actor that creates a

certain number of actors and then sends a broadcast

message. Each actor receives the broadcast message,

then, in its response, sends another broadcast

message, and finally waits for all the broadcast

messages. Fig. 7 shows the execution time of the

application from 5 to 1.000 actors and the best

public final class GetIten extends Case {

 GetItem() {

 super(new MessagePattern(

 MessagePattern.CONTENT,

 new IsInstance(Get.class)));

 }

public void process(final Message m) {

 BufferState s = (BufferState) getState();

 send(m, s.remove());

 if (s.size() == 0) {

 become(EmptyBuffer.class);

 }

 else if (getBehavior().equals(

 FullBuffer.class.getName())) {

 become(PartialBuffer.class);

 }

 }

}

public static void main(final String[] v) {

 final long time = 1000;

 final int size = 10;

 final int producers = 10;

 final int consumers = 10;

 Configuration c =

 Controller.INSTANCE.getConfiguration();

 c.setScheduler(ThreadScheduler.class.getName());

 c.setArguments(

 Initiator.class.getName(),

 new Object[] {time, size, producers, consumers});

 Controller.INSTANCE.run();

}

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 665 Volume 13, 2014

performances are obtained with the shared

configuration.

Fig. 8. Publish-subscribe example performance.

Finally, the third is a typical publish – subscribe

application. In particular, there is a set of

subscribers, which register their interest on the

messages sent by a set of publishers. Each publisher

cyclically sends a message until it reach a

predefined number of messages. Each subscriber

processes all the messages sent by the publishers

and then kills itself. Fig. 8 shows the execution time

of the application from 5 subscribers to 100

subscribers and with 1000 publishers that send 1000

messages. The hybrid configuration runs the

subscribers as active actors and the publishers as

passive actors. As in the other cases, passive actors

offer better performances than active actors do.

However, if some of the actors perform a lot of

work respect to the other, then the use of an active

implementation for such actors can increase the

performance for a subset of the possible

configurations. In particular, the performances of

passive and hybrid configurations are similar up to

50 subscribers, and then the best solution is the use

of the hybrid configuration.

7 Experimentation
We experimented and are experimenting CoDE in

different application domains and, in particular, in

the analysis of social networks [16][17] and in the

agent-based modelling and simulation (ABMS)

[18][19].

The features of the actor model and the

flexibility of its implementation make CoDE

suitable for building ABMS applications.

In fact, the use of actors may simplify the

development of ABMS applications because of the

use of direct communication and the possibility to

use actors as middle agents. In fact, actors interact

only through messages and there is not a shared

state among them (e.g., it is not necessary to

maintain an additional copy of the environment to

guarantee that agents decide their actions with the

same information).

Moreover, conflicts among agents (e.g.,

movement conflicts among agents in a spatial

domain) can be solved using additional actors

(acting as middle agents) that inform the other

agents about the effect of their actions both on the

other agents and on the environment. Moreover,

agents do not access directly to the code of the other

agents, and so the modification of the code of a type

of agent should cause lesser modifications in the

code of the other types of agent. Finally, the use of

actors simplifies the development of agents in

domain where they need to coordinate themselves

through direct interactions.

The use of CoDE simplify the development of

flexible and scalable ABMS applications. In fact,

the use of active and passive actors allows the

development of applications involving large number

of actors, and the availability of different schedulers

and the possibility of their specialization allow a

correct and efficient scheduling of the agents in

application domains that require different

scheduling algorithms [20]. Moreover, the efficient

implementation of broadcasting and multicast allow

the reduction of the overhead given to the need that

agents must often diffuse the information about their

state to the other agents of the application (e.g., their

location in a spatial domain).

In particular, we are using CoDE for the

simulation of some of the most known spatial

models: the game of life [21], prey–predator [22],

boids [23] and crowd evacuation [24].

The definition of the previous four spatial

models is very simple because each agent needs

only to get information about its surround (i.e.,

about a subset of the other agents) and then to use

such information for deciding its actions.

Therefore, the simulation algorithm is also very

simple if the agents have direct access to the

information about the world. It might not happen in

an actor-based implementation where the agents can

share information only by exchanging messages.

Such agents can be implemented taking

advantage of the passive actor implementations

provided by the CoDE software that maintains

messages in a shared queue, but it is necessary to

develop a specific scheduler. The scheduler

executes repeatedly all the individuals and after

each execution step broadcasts them a “cycle”

message.

The agents are modeled by actor behaviors that

provides two cases. The first case processes the

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 666 Volume 13, 2014

messages informing it about the state of the other

agents. The second case processes the “clock”

messages coming from the scheduler that inform the

agent that it owns all the information for deciding

the next actions and, of course, provides the code

that performs the agent actions.

Moreover, we are using CoDE for simulating and

analyzing social networks. The definition of a model

for studying social networks is based on an agent

that can interact with the agents representing its

friends and that can perform actions either in

response to messages from other agents or on its

own initiative.

Such an agent can be modeled by an actor

behavior that provides two cases. The first case

processes the messages coming from other agents

and executes the actions in their response. The

second case is fired by a timeout message, decides

the actions that the agent must perform on its own

initiative, and then executes them.

Of course, the code of this agent can be very

simple, if the decision about both reactive and

proactive actions to perform is only based on non-

deterministic rules. However, it may become very

complex if the agent uses a trust model and/or a user

model (up to now, we simulated the propagation of

friendship by using both simple non-deterministic

rules and trust models).

From an implementation point of view, a

massive number of agents are necessary to model a

real social network; however, only a part of them

are simultaneously active and their actions do not

need a synchronization. Therefore, it is necessary a

scheduler that can manage a massive number of

agents, but that try to optimize the execution by

scheduling only the active agents.

The solution we implemented derives from the

virtual memory techniques used by operating

systems: the scheduler associates with each agent a

value that indicates the number of its last inactive

cycles and fixes a maximum number of inactive

cycles for which an inactive agent can be

maintained in the scheduler. When an agent reaches

such a number of inactivity cycles, then it is moved

in a persistent store and it is reloaded in the

scheduler when it receives a new message from

another agent.

Of course, the number of active agents can vary

over the simulation, but the quality of the simulation

can be guarantee if the number of the agents

maintained by the scheduler remain in a range that

depends on the available computational resources.

The solution adopted to limit to the number of

active actors and to guarantee good performances is

the use of a variable maximum number of inactive

cycles. In fact, this number is high when the number

of active agents is low (i.e., the scheduler does not

spend time for storing agents in the persistence

storage and reloading them) and becomes more and

more low with the increasing of the number of

active agents.

Two important features that an ABMS

framework should provide are the availability of

graphical tools for the visualization of the evolution

of simulations and the possibility of analyzing the

data obtained from simulations.

Fig. 9. Initial and final view of the simulation of a

crowd evacuation.

CoDE does not provide any specific tool for

ABMS, but provides a logging service that allows to

record in textual or binary (i.e., Java objects) forms

the relevant actions of an actor (i.e., its initialization,

reception, sending and processing of messages,

creation of actors, change of behavior, and its

shutdown).

Therefore, we developed two graphical tools, for

visualizing the evolution of simulations based on

continuous and discrete representations of a 2D

space, and another tool able to extract statistical

information from the data obtained from the

simulations. Of course, all the three tools get all the

information they need from the records coming

from the logging service. Fig. 9 shows two views of

the GUI that supports 2D spatial simulations. In

particular, it presents the initial and final views of

the evacuation of a large number of pedestrians

from a building.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 667 Volume 13, 2014

8 Conclusion
This paper presented a software framework, called

CoDE, which allows the development of efficient

large actor based systems by combining the

possibility to use different implementations of the

components driving the execution of actors with the

delegation of the management of the reception of

messages to the execution environment.

CoDE is implemented by using the Java

language and is an evolution of HDS [25] and

ASIDE [26] from which it derives the concise actor

model, and takes advantages of some

implementation solutions used in JADE [27].

CoDE shares with Kilim [6], Scala [7] and

Jetlang [9] the possibility to build applications that

scale to a massive number of actors, but without the

need of introducing new constructs that make

complex the writing of actor based programs.

Moreover, CoDE has been designed for the

development of distributed applications while the

previous three actor based software were designed

for applications running inside multi-core

computers.

In fact, the use of structured messages and

message patterns makes possible the

implementation of complex interactions in a

distributed application because a message contains

all the information for delivery it to the destination

and then for building and sending a reply.

Moreover, a message pattern filters the input

messages on all the information contained in the

message and not only on its content.

Current research activities are dedicated to

extend the software framework. In particular, they

have the goal of: i) providing a passive threading

solution that fully takes advantage of the features of

multi-core processors, ii) supporting the creation of

distributed computation infrastructures [28], and iii)

enhancing the definition of the content exchanged

by actors with semantic Web technologies [29][30].

Future research activities will be oriented to the

extension of the functionalities provided by the

software framework. In particular, they will be

dedicated to the provision of a trust management

infrastructure to support the interaction between

actor spaces of different organizations [31] and to

development of an “intelligent protocols” library for

making easy the use of CoDE for multi-agent

application.

Current experimentation of the software

framework is performed in the field of the modeling

and simulation of social networks [32], but in the

next future will be extended to the collaborative

work services [33] and to the agent-based systems

for the management of information in peer-to-peer

[34] and pervasive environments [35].

References:

[1] C. Leopold, Parallel and Distributed

Computing: A Survey of Models, Paradigms

and Approaches, New York, NY, USA, John

Wiley & Sons, 2001.

[2] M. Philippsen, A survey of concurrent object-

oriented languages, Concurrency: Practice and

Experience, Vol. 12, No. 10, 2000, pp. 917-

980.

[3] G.A. Agha, Actors: A Model of Concurrent

Computation in Distributed Systems,

Cambridge, MA, USA, MIT Press, 1986.

[4] R.K. Karmani, A. Shali and G.A. Agha, Actor

frameworks for the JVM platform: a

comparative analysis, in Proceedings of the 7th

International Conference on Principles and

Practice of Programming in Java, Calgary,

Alberta, Canada, 2009, pp. 11-20.

[5] C. Varela, and G.A. Agha, Programming

dynamically reconfigurable open systems with

SALSA, SIGPLAN Notices, Vol. 36, No 12,

2001, pp. 20-34.

[6] S. Srinivasan, and A. Mycroft, Kilim: Isolation-

typed actors for Java, in Proceedings of the

ECOOP 2008 – Object-Oriented Programming

Conference, Berlin, Germany, Springer, 2008,

pp. 104-128.

[7] P. Haller, and M. Odersky, Scala Actors:

unifying thread-based and event-based

programming, Theoretical Computer Science,

Vol. 410, No. 2-3, pp. 202–220, 2009.

[8] Typesafe, Akka software, 2014. Available

from: http://akka.io.

[9] M. Rettig, Jetlang software, 2014. Available

from: http://code.google.com/p/jetlang/.

[10] J. Dedecker, T. Van Cutsem, S. Mostinckx, T.

D’Hondt and W. De Meuter, Ambient-oriented

programming in ambienttalk, in Proceedings

of the ECOOP 2006 – Object-Oriented

Programming Conference, Berlin, Germany,

Springer, 2006, pp. 230-254.

[11] M.S. Miller, E.D. Tribble, and J. Shapiro,

Concurrency among strangers, in Trustworthy

Global Computing, Berlin, Germany, Springer,

2005, pp. 195-229.

[12] B. Snyder, D. Bosnanac and R. Davies,

ActiveMQ in action, Westampton, NJ, USA,

Manning, 2001.

[13] E. Pitt and K. McNiff, Java.rmi: the Remote

Method Invocation Guide, Boston, MA, USA,

Addison-Wesley, 2001.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 668 Volume 13, 2014

http://akka.io/
http://code.google.com/p/jetlang/

[14] Apache Software Foundation, Apache Mina

Framework, 2014. Available from:

http://mina.apache.org.

[15] P. Hintjens, ZeroMQ: Messaging for Many

Applications, Sebastopol, CA, USA, O'Reilly,

2013.

[16] F. Bergenti, E. Franchi and A. Poggi, Agent-

based interpretations of classic network

models. Computational and Mathematical

Organization Theory, Vol. 19, No. 2, 2013, pp.

105-127.

[17] E. Franchi, A. Poggi and M. Tomaiuolo, Open

social networking for online collaboration.

International Journal of e-Collaboration, Vol.

9, No. 3, 2013, pp. 50-68.

[18] K. Altenburg, j. Schlecht and K.E. Nygard, An

agent-based simulation for modeling intelligent

munitions, in Proceedings of the 2nd WSEAS

International Conference on Simulation,

Modeling and Optimization, Skiathos, Greece,

2002.

[19] A. Poggi, Replaceable Implementations for

agent-based Simulation, SCS M&S Magazine,

2014.

[20] P. Mathieu and Y Secq, Environment Updating

and Agent Scheduling Policies in Agent-based

Simulators, in Proceeding of the 4th

International Conference on Agents and

Artificial Intelligence (ICAART), Algarve,

Portugal, 2012, pp. 170-175.

[21] M. Gardner, The fantastic combinations of

John Conway's new solitaire game Life,

Scientific American, Vol. 223, 1970, pp. 120-

123.

[22] M. Mimura and J.D. Murray, On a diffusive

prey-predator model which exhibits patchiness,

Journal of Theoretical Biology, Vol. 75, No. 3,

1978, pp. 249-262.

[23] C.W. Reynolds, Flocks, herds and schools: A

distributed behavioral model, ACM SIGGRAPH

Computer Graphics, Vol. 21, No. 4, 1987, pp.

25-34.

[24] M.H. Zaharia, F. Leon, F. C. Pal, and G. Pagu,

Agent-based simulation of crowd evacuation

behavior, in Proceedings of the 11th WSEAS

international conference on Automatic control,

modelling and simulation (ACMOS'09),

Istanbul, Turkey, 2009, pp. 529-533.

[25] A. Poggi, HDS: a Software Framework for the

Realization of Pervasive Applications, WSEAS

Transactions on Computers, Vol. 10, No. 9,

2010, pp. 1149-1159.

[26] A. Poggi, ASiDE - A Software Framework for

Complex and Distributed Systems, in

Proceeding of the 16th WSEAS International

Conference on Computers, Kos, Greece, 2012,

pp. 353-358.

[27] A. Poggi, M. Tomaiuolo and P. Turci,

Extending JADE for agent grid applications, in

Proceeding of the 13th IEEE Int. Workshops on

Enabling Technologies: Infrastructure for

Collaborative Enterprises (WET ICE 2004),

Modena, Italy, 2004, pp. 352-357.

[28] A. Negri, A. Poggi, M. Tomaiuolo, P. Turci.

Dynamic Grid Tasks Composition and

Distribution through Agents. Concurrency and

Computation: Practice and Experience, Vol.

18, No. 8, 2006, pp. 875-885.

[29] M. Tomaiuolo, P. Turci, F. Bergenti, and A.

Poggi, An ontology support for semantic aware

agents, in Agent-Oriented Information Systems

III, LNCS, Vol. 3529, Berlin, Germany,

Springer-Verlag, 2006, pp. 140-153.

[30] A. Poggi, Developing ontology based

applications with O3L, WSEAS Transactions

on Computers, Vol. 8 No. 8, 2009, pp. 1286-

1295.

[31] A. Poggi, M. Tomaiuolo and G. Vitaglione, A

Security Infrastructure for Trust Management

in Multi-agent Systems, in Trusting Agents for

Trusting Electronic Societies, Theory and

Applications in HCI and E-Commerce, LNCS,

Vol. 3577, Berlin, Germany, Springer, 2005,

pp. 162-179.

[32] F. Bergenti, E. Franchi and A. Poggi, Selected

models for agent-based simulation of social

networks, in Proceeding of the 3rd Symposium

on Social Networks and Multiagent Systems

(SNAMAS'11), York, UK, Society for the Study

of Artificial Intelligence and the Simulation of

Behaviour, 2011, pp. 27-32.

[33] F. Bergenti, A., Poggi and M. Somacher, A

collaborative platform for fixed and mobile

networks, Communications of the ACM, Vol.

45, No. 11, 2002, pp. 39-44.

[34] A. Poggi and M. Tomaiuolo, Integrating Peer-

to-Peer and Multi-agent Technologies for the

Realization of Content Sharing Applications, in

Information Retrieval and Mining in

Distributed Environments, SCS, Vol. 324,

Springer, Berlin, Germany, 2011, pp. 93-107.

[35] F. Bergenti and A. Poggi, Ubiquitous

Information Agents, International Journal on

Cooperative Information Systems, Vol. 11, no.

3-4, 2002, pp. 231-244.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

E-ISSN: 2224-2872 669 Volume 13, 2014

http://mina.apache.org/

