
Change Theory: Towards a Better Understanding of Software
Maintenance

AMAL ABDEL-RAOUF and MAEDA HANAFI

Computer Science Department
Southern Connecticut State University

501 Crescent Street, New Haven
UNITED STATES

abdelraoufa1@southernct.edu, hanafim1@owls.southernct.edu

Abstract: - A successful Software maintenance process depends on three factors: the maintenance goals, the
technical properties of the system and the people performing the software maintenance. Most of the current
work to investigate software maintenance only considers the first two factors, ignoring the third factor, which
limits the scope and accuracy of these approaches. In this paper, we use change theory to introduce a deeper
understanding of the software maintenance process. We utilize three change theories: Lewin’s, Prochaska and
DiClemente’s, and Lippit’s theories to introduce three different software maintenance models. These models
consider the three success factors and incorporate contextual information to help maintainers better understand
the software maintenance task to bring about an effective change.

Key-Words: - Software Engineering, Software Maintenance, Software Quality, Software Properties, Change
Theory, Change Stages.

1 Introduction
A software program that is used in a real-world
environment inevitably must change; otherwise it
becomes gradually less useful in that environment.
Traditionally, software maintenance is defined as
“the modification of a software product after
delivery to correct faults, to improve performance or
other attributes or to adapt the product to a modified
environment” [1].

Software maintenance is a very important phase
in the software development process, as it is a
critical factor in determining software cost. Statistics
show that it represents almost 60% of the total cost
of any software product [2]. Moreover, software
maintainability, the ease with which a software
system can be modified, is considered one of the
attributes to assess software product quality. Other
software quality attributes include portability,
usability and reliability [3].

It is very challenging to study software
maintenance because it deals with many factors
ranging from software features to human dynamics.
Software features include correctness, modularity,
coupling, code size, and complexity. On the other
hand, human dynamics include team activity rate,
communication structure, familiarity with the
system, and skills level. As a result, the variety of
factors affecting the maintenance process limits the
generalization of research findings.

Yet most of the research studies have paid little
attention to how software engineers understand the
system and the information needed to perform a
maintenance task. Pizka et al [4] showed that
maintainability is dependent on more than just the
technical properties of the system; it depends on
three different dimensions:

1) The maintenance goals and tasks
2) The technical properties of the system under

consideration
3) The people performing software

maintenance (team members and a project
manager)

Most of the work to investigate software
maintenance considers the maintenance goals and
the technical properties of the system, thus ignoring
the third dimension and limiting the scope and
accuracy of these approaches. One major problem is
that the effect of the third dimension on software
maintenance depends on a deeper understanding of
the context of the system, human dynamics and
social awareness. This dimension should be
considered not only in the software maintenance
phase but also in the software development life
cycle. Recent research has started to include the
social and human dynamic behavior in the software
engineering field. In [5], the authors consider both
personal and social values as dimensions in the
value elicitation techniques during the requirement
phase. In [6], the main focus of the study is the

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 421 Volume 13, 2014

mailto:abdelraoufa1@southernct.edu
mailto:hanafim1@owls.southernct.edu

social awareness and how it plays an important role
of achieving effective digital communication.

In this paper, we propose the use of change theory
to model the software maintenance process in order
to incorporate contextual information and help
maintainers to better understand the software
maintenance task.

The remainder of this paper is organized as
follows: the literature related to software
maintenance is reviewed in Section 2. Section 3
summarizes three change theories and assumptions
about the nature of change. Section 4 presents our
models to represent software maintenance in terms
of change theory principles. Section 5 then provides
a generalization of the three models together with a
brief comparison. A case study that shows the
effectiveness of our models is presented in Section
6. Finally, Section 7 draws our conclusions.

2 Related Work
In the literature, the term “Software Maintenance”
started back in 1960s and was widely accepted after
the publication of Cannie’s work [7] in 1972. The
next significant work was Swanson’s [8] that was
published in 1976 and included taxonomy of the
software maintenance that is still in use. It classifies
software maintenance as follows: corrective,
adaptive, perfective and preventive maintenance.

Other research has presented alternative
taxonomies of software maintenance. Chapin et al.
in [9] presented taxonomy of 12 categories based on
the nature of changes of the software system’s
activities. Mens et al. in [10] proposed maintenance
taxonomy based on characterizing the factors that
influence the software changes.

The distinguished work by Lehman et al. [11],
[12] in 1997-98 is still considered for software
evolution/maintenance and included in all software
engineering textbooks. Lehman et al. carried out
several empirical studies of very large-scale
industrial systems. From these studies they proposed
Lehman’s Laws concerning system change.

In recent years, with the emerging use of open
source, software services, components, and
frameworks some research has challenged Lehman’s
laws [13], [14] resulting in the need for new models
to update them.

In 2011, Kumar did a comprehensive review on
the major studies regarding maintainability models
for object-oriented software systems [15. Kumar
compiled literature in this particular field along with
the variables, methods, and datasets used. For
instance, Oman and Hagemeister’s [16] research

was on constructing and testing software
maintainability assessment models. The variables
employed in this research are as follows: aveLOC
(Average Line of Code), ES (Executable Statement),
CM (Line of Comment), and NES (Number of
executable Statement). Kumar has compiled other
works, which also employed similar variables. Such
variables clearly describe software’s factors and
features.

Moreover, Kumar identified that the methods
used in Oman and Hagemeister’s research are as
follows: MAT (Maintainability Analysis Tool),
Regression, Halsted metrics, Cyclomatic
Complexity, Assessment Model, and Entropy. The
other publications Kumar compiled mostly employ
regression models as a method to evaluate software
maintenance of object oriented system. Based on
Kumar’s comprehensive literature review, most of
the literature considers software maintenance in
terms of the software’s factors and features. There
is a need for a context model to describe the
software maintenance process. In this work, we
model software maintenance using change theories
principles introduced in the next section.

3 Change Theories
Change theories attempt to describe and organize the
process in which human behavior changes. In this
work, we have extrapolated the use of change theory
to the field of software maintenance.

The most basic of change theories is Kurt
Lewin’s theory of change [17], used to describe
human behaviors, and defined in three stages as
follows:

1) Unfreezing: Stage in which change is needed
2) Moving: The change is initiated
3) Refreezing: Equilibrium is reached

Lewin’s theory emphasizes the analysis of driving
forces and restraining forces before a change is
implemented. A change will occur when forces that
promote change combined are greater than the forces
that resist change combined. In the unfreezing stage,
the aim is to unfreeze the current situation, also
known as the equilibrium state. During the moving
phase, the equilibrium state is in alteration in order to
move to a different level of equilibrium. In this phase
the driving forces establish a newer equilibrium state
that is better than the current one. The last step is
refreezing, in which the goal is to make the new
equilibrium state continuous and to prevent reverting
to the previous equilibrium state. Policies,
procedures, and community actions can help uphold
a new equilibrium [17].

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 422 Volume 13, 2014

A more extended and detailed change theory is
defined by Ronald Lippit, Watson, and Westley [17].
Lippit’s theory includes seven steps to implement a
change, as follows:

1) Diagnosing the problem
2) Assess motivation and capacity for change
3) Assess change agent’s motivation and

resource. A change agent is the person who
implements the change (examples of change
agents: cheerleader, facilitator, expert)

4) Select progressive change objective; Develop
action plans and establish strategies

5) Choose appropriate role of the change agent
6) Maintain change through strong group

dynamics
7) Terminate the helping relationship.

Lippit’s theory of change consists first of scrutiny of
the problem, and thereupon moving on to evaluating
the ability to change and the change agent’s ability to
change. It is important that the change agents clearly
understand their roles in order for them to carry out
their duty in facilitating change. Lippit, Watson, and
Westley pointed out that a change is more likely to
be adopted if the neighboring system adapts to it.
Once a change is widespread, the behavior would be
observed as the norm. An example of applying
Lippit’s theory of change is given from the research
of Gary Mitchell [18] that analyzes planned change
in nursing management. However, much of Lippit’s
theory focuses on the change agents rather than on
the change itself.

The third theory of change is Prochaska and
DiClemente’s cyclical model of change [17], which
defines a more general process of change. It was
originally developed for the purposes of explaining
the patterns of staged behavior change. The defined
stages are as follows:

1) Pre-contemplation
2) Contemplation
3) Preparation
4) Action
5) Maintenance

In the pre-contemplation stage, the problem is

denied by the individual, and there is absolutely no
will to change. The awareness of the problem will
occur in the contemplation stage, where change is
being thought about. In the preparation stage, the
individual is prepared to change their behavior, and
consequently the action stage occurs. The action
stage is where the individual actually changes their
behavior. Finally, the maintenance stage attempts to
sustain the change. This process is a spiral since
individuals can exit any stage and return to the
previous stages. However, it is also possible for the
individual to return to the contemplation stage at any
time in order to prepare for future action. This model

pushes the idea that an individual will not always
circle the spiral forever.

The three theories presented so far relate to social
and management fields. However, there has been
similar research on change in software-related fields.
For instance, Lassila proposed the adoption and
utilization of new software through the punctuated
equilibrium model [19]. The punctuated equilibrium
model utilizes incremental adaptations with
organizational changes in long periods of stable
infrastructures. During these adaptations the
equilibrium is disrupted but returns back to stability.

In the following section, we present how these
change theories can be applied to model software
maintenance.

4 Software Maintenance Model
Based on Change Theories

Our research surrounds the question, “How is
software maintenance can be modeled in terms of
change theories instead of its features and factors?”
We gathered and scrutinize the techniques of other
researchers in the field of change theory and
compared it to the software maintenance process. In
the following subsection, we introduce software
maintenance based on the three change theories
described in section 3.

4.1 Software Maintenance Model using

Kurt Lewin’s Theory
In Table 1, we show the stages of software
maintenance process based on Lewin’s theory.

Table 1. Software Maintenance Model using Lewin’s Theory

of Change

Stage Lewin Description Maintenance
Stage

1. Unfreezing

Stage in
which
change is
needed.

Prepare and plan
for software
maintenance.
Perform force-field
analysis.

2. Moving The change
is initiated.

Maintenance
occurs.

3. Refreezing
Equilibrium
is reached.

Software must pass
all tests, be stable,
and serve users.

In Lewin’s theory, there are only three stages,

which place much focus on the idea of equilibrium
and moving from one state of equilibrium to another.
In terms of software maintenance, such equilibrium
can be translated to any running software that is
servicing the user and running on a stable system.
The system’s stability can be quantified with the
stability condition from queuing theories, which state

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 423 Volume 13, 2014

that the servicing rate must be greater than the
customer’s incoming rate [20].

In the unfreezing stage, much of the aim is to plan
and prepare for the change. Maintainers at this stage
prepare for a maintenance project. Lewin suggested
force-field analysis, where positive and negative
factors are compared. Mitchell’s research in change
management for the nursing field [18] also employs
force-field analysis to address resistance and induce
stress. The same can be applied to software
maintenance. According to Dehaghani et al [21], the
factors to be considered are the tools used in
maintenance, current practice of proper software
development techniques, team stability and skillset,
contractual responsibilities, software age and
architecture. Once force-field analysis is performed
and a plan is finalized, the preparation for change is
complete. The benefit of force-field analysis is
that it ensures that a change in the software
maintenance successfully occurs, while overcoming
obstacles.

In the moving stage, the maintenance project
begins and the system is analyzed and undergoes
change. The change made to the system may be as
simple as correcting code or more extensive change
to correct design errors or accommodate new system
requirements.

Finally, the refreezing stage aims to re-stabilize
the system. In this stage, all tests must be passed and
the system must be able to serve its users while
incorporating the new changes.

4.2 Software Maintenance Model using
Lippit’s Theory

Lippit’s theory consists of more stages, but targets
the change agent’s ability. In software maintenance,
the change agent is the maintainer, since change
mostly occurs within the software and only a
maintainer is able to do it. Lippit’s theory
emphasizes the maintainer’s skillset and knowledge
in order to accomplish the change.

The first three steps of Lippit’s theory revolve
around analyzing the current status. Diagnosing the
problem requires the maintainer’s being able to give
a brief description of the problem, and perhaps a
speculation of its source. Then, the assessment of
motivation and capacity of change evaluates the
priority, ability, and profit of the proposed
maintenance project. If the need for the proposed
change is high, then the priority should be high as
well. However, assessment of the change agent
mainly deals with the team’s ability to continue on
with the proposed project. For instance, if the
proposed maintenance project depends on another
project, then the team wouldn’t be able to continue
the first project without the other being completed.

Once assessment is completed, an action plan
must be developed. If there are dependent projects,
then those projects must be completed. This stage
stresses the importance of an action plan. This action
plan can be greatly guided with a maintenance
methodology. A maintenance methodology, whether
standard or individually defined, can be any process
that is defined within a set of tasks and timeline that
is feasible and agreed upon by the stakeholders [22].
The maintainers must reassess if the methodology
used is consistent with their aims. Factors to consider
when choosing a maintenance methodology include
project factors (frequency of change or immediate
change), developer factors (skill set, enjoyment for
collaboration, or desire to be “in fashion”), and
organizational factors (organization structure and
cultural issues).

Afterwards, the roles of the team members must
be determined. Then, the change is put in action.
Lippit’s theory emphasizes the group dynamics. This
is especially important for teams that have scattered
members, where each member must be constantly
communicating with the rest of the team.

Table 2. Softwae Maintenance Model using Lippit’s Theory of

Change

Stage Lippit
Software

Maintenance
Tasks

1. Diagnosing the problem

Give a brief
description of the
problem.
Recommended to
speculate on its
source.

2. Assess motivation and
capacity for change

Evaluate ability,
priority, and profit.

3. Assess change agent’s
motivation and resource

Evaluate team’s
ability.

4.
Select progressive change
objective; Develop action
plans and establish strategies

Reassess
maintenance
methodology and
develop action plans.

5.
Choose appropriate role of the
change agent i.e. cheerleader,
facilitator, expert

Pick appropriate
maintainers, and set
roles for each one.

6. Maintain change through
strong group dynamics

Make necessary
changes
while upholding
team
communication.

7. Terminate the helping
relationship.

End the project.
Return the system to
running and stable.

During this stage, a maintainer constantly faces

unfamiliar code. In this case, the maintainer would
search and pick a relevant node to begin
comprehending the structure and program flow. The
maintainer would decide if the current node is
relevant to the change. This process of searching for
relevant nodes would continue until there is enough
information to implement a solution and create
changes in code. Searching and comprehending is

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 424 Volume 13, 2014

easier on the maintainer when the environment
provides ease for judging a node’s relevancy.
Another factor that provides further
straightforwardness is the environment’s reliability
to provide relevant information for a given node
[23]. If these two factors are not considered, this
stage will take longer time.

When a solution is implemented and the tests are
passed, then the maintenance project ends. If needed,
tests can be recreated to cover new cases, and the
system can be retested. However, if a need for
change i.e. bug, fault, new feature, or adaption
change, appears due to the new change, then the
team must aim to continue to maintain the change.
Once those needs are addressed, the project may be
terminated. The system must be running and stable
as well. The tabular form of software maintenance
tasks based on Lippit’s theory is shown in Table 2.

4.3 Software Maintenance Model using
Prochaska and DiClemente’s Theory

In Prochaska and DiClemente’s theory, there is a
pre-contemplation stage that doesn’t exist in the
other theories we have described. This stage
considers the situation where a need for change is
required but is not yet noticed by the maintenance
team. The users may perceive it, but it requires the
maintenance team to notice it before a maintenance
project is initiated, moving to the contemplation
stage. The software is similar to a patient at this
stage; others perceive his/her abnormal behavior, but
the patient has no intention of changing.

But even in this stage, it is advised that the
possibilities of future requirements are analyzed. The
aim of this is to ensure that all architectural changes
are explored and thoroughly defined [24]. In fact, the
pre-contemplation stage defines a stage for the team
to have special attention to the architecture’s
changeability. A coherent architecture allows
flexibility to meet the constant altering of user’s
requirements. In order to have extensive architecture
coherence, the team must gain enough knowledge
about it so that the software can evolve. If the
architectural knowledge is lost, then the software
goes through coherent architectural loss known as
code decay [24]. In other words, the team may make
changes that do not take advantage of the software’s
architecture, thus losing its coherency.

Moreover, Prochaska and DiClemente’s spiral
model allows for flexibility that is not offered by
Lippit’s and Lewin’s. At any stage, the team can
suspend a maintenance project and exit a stage.
Anytime the team decides to return to the
maintenance project, the project’s stage winds back
to the contemplation stage. This is a convenience for

the team especially when an emergency maintenance
happens or a need for another change appears.

The contemplation stage occurs when the team
considers the change, but is not yet ready to analyze
and implement it. At this point, the team is conscious
of the need for change and a maintenance project
must be formulated. The priority, profit, and ability
of the proposed change are decided before it is
moved to the preparation stage.

The preparation stage is when the team decides
that it is ready to undertake the change. This is when
a definite action plan is set and the re-analysis of
current methodology is done and revised as needed.
Consequently, the team re-analyzes the code and
changes as needed, which is the action stage. In
Prochaska and DiClemente’s patient model, the
patient is supported with counseling, social support,
and assistance. In software maintenance, the tools
and environment assist the maintainers in searching
for relevant nodes to form a solution [25]. The
pressure from users provides motivation, and the
maintenance team members provide further
assistance in the process.
 Once the changes are done and the tests are
passed, the changes are integrated into the running
system. A change in software can be maintained if
all the tests are successful, the users are updated
about it, and the system is stable. If the system is not
stable, then another maintenance project is initiated
and repeats throughout all the defined steps.
Moreover, it is recommended that a change be
evaluated by surveying the users. A tabular form of
software maintenance tasks based on Prochaska and
DiClemente’s theory is shown in Table 3.

Table 3. Softwae Maintenance Model using Prochaska and
DiClemente’s Theory of Change

Stage Prochaska and
DiClemente’s

Maintenance Stage
and Tasks

1. Pre-contemplation

The need for change is
not yet perceived by
maintainers. Speculate
about future changes
especially architectural
changes.

2. Contemplation

The problem is
detected by the team,
and priority, ability,
and profit are decided.

3. Preparation
Reassess maintenance
methodology and
develop action plans.

4. Action Analyze, search, and
change code.

5. Maintenance

Rerun tests to ensure
the new change is
passed, and the users
are updated about it.
Evaluation of the
changes is
recommended.

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 425 Volume 13, 2014

5 Generalization and Comparison

Table 4. General Maintenance Tasks in Terms of Change Theories

Lewin
Prochaska

and
DiClemente’s

Lippit Maintenance Stage and Tasks

 Pre-
contemplation

The need for change is not yet perceived by
maintainers. Speculate about future changes
especially architectural changes.

Unfreezing Contemplation

Diagnosing the problem

The problem is detected by the team, and
priority, ability, and profit are decided. Give a
brief description of the problem.
Recommended to speculate on its source.

Assess motivation and
capacity for change

Perform force-field analysis. Evaluate ability,
priority, and profit.

Assess change agent’s
motivation and resource

Perform force-field analysis. Evaluate team’s
ability.

Moving

Preparation

Select progressive change
objective; Develop action
plans and establish
strategies

Reassess maintenance methodology and
develop action plans.

Choose appropriate role of
the change agent i.e.
cheerleader, facilitator,
expert

Pick appropriate maintainers, and set roles for
each one.

Action Maintain change through
strong group dynamics

Maintenance occurs. Analyze, search, and
change code. Make necessary changes while
upholding team communication.

Refreezing Maintenance Terminate the helping
relationship.

End the project. Ensure passing of tests.
Return the system to running and stable. The
users must be updated about it. Evaluation of
the changes is recommended.

Lewin’s theory is the most basic with only three
stages, with a focus on analyzing negative and
positive factors through force-field analysis. Lippit’s
theory is more detailed, helping to define more
specific tasks in the software maintenance process.
Lippit’s theory also emphasizes the importance of
assessing the specific team’s abilities, since a stress
is placed on the change agent. Furthermore, the
team’s dynamics, including communication, are
emphasized. On the other hand, Prochaska and
DiClemente’s theory is a more evolved theory,
allowing flexibility for the maintenance team to
spiral around the stages. Moreover, their theory has
a pre-contemplation stage, which propels the team to
constantly think of the future changing requirements
and needs.
 In Table 4, we provide a comparison of the three
change theories together with the corresponding
software maintenance tasks in each stage.

5.1 Assessing the Current Situation
Prochaska and DiClemente’s pre-contemplation
stage does not correspond to any stages from the
other theories. However, the next stage of

contemplation corresponds to Lewin’s unfreezing
stage and encompasses Lippit’s first three stages.
These stages all share the characteristics of
reviewing and reassessing the current situation. The
highlighted task is force-field analysis of driving
forces and negating forces. Lippit’s theory splits the
tasks into 1) the analysis of the problem itself, where
a maintenance request is sent in and a maintenance
project is initiated, 2) analyzing ability to change,
and 3) analyzing the change agent’s ability, i.e.
team’s ability.

5.2 Developing an Action Plan
 Lewin’s moving stage corresponds to Prochaska
and DiClemente’s preparation and action stages.
Lewin’s moving stage also corresponds to the next
three stages of Lippit’s theory. These stages are
specific to developing an action plan and acting upon
it. Lippit’s theory divides Prochaska and
DiClemente’s preparation stage into two stages: 1)
developing action plans and 2) choosing team
member roles.
 Finally, change takes place in Lippit’s last stage
in this category, which corresponds to Prochaska and
DiClemente’s action stage.

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 426 Volume 13, 2014

5.3 Maintenance
 The final stage in all theories depicts a
maintenance stage. Lewin’s refreezing stage aims to
incorporate the new changes into the operational
system successfully. Lippit’s theory explains that the
team terminates the maintenance project and return
the system to the running state. Prochaska and
DiClemente’s last stage includes passing all tests,
addressing all other needed changes, and ensuring
the stability of the system.

6 Case Study: Website Logo
The application chosen to conduct this case study is
a web-based application for a company that has the
logo on the top right side of a page. After using the
website, the manger realized that most
advertisement appear on top of the logo and most
customers can’t see it. The solution is to move the
logo to the left side of the page. The change theory
models for this case study are shown in Table 6.

6.1 Assessing the current situation for the

Website Logo Case Study
Once the problem is detected, this phase starts with
analyzing the problem. A change is needed, is it
fixing a bug or adding a new feature to the software.
From the customer point of view, this is fixing a bug
while from the maintainer’s point of view this could
be a completely new feature to add. Unfortunately
contracts have different consideration and cost for
the different types of change. A negotiation should
start till both customer and developers agree on the
change definition and the cost (force-field analysis).

Technically, there is a big difference between
adding a new behavior to the software and changing
old behavior. Users like it when we add new
behavior but stop trusting us if we change or remove
old behavior they depend on. In this case study, we
are doing both, adding a new behavior (logo on the
left side) and removing old behavior (logo on the
right side)

6.2 Developping Action Plan for the

Website Logo
In this phase, we start to decide about the parts that
will change in the system. During software
maintenance, three parts could change in the system:
structure, functionality and resource usage [26].
Special care should be given to changing
functionality, if we add a new function we don’t
need to change the existing functionality. On the
other hand fixing bugs may result in both adding a

new function and changing the existing
functionality. Table 5 shows the changing software
in each case.

Table 5. Changing Software
 Adding a

Feature
Fixing a Bug

Structure Changes Changes
New

Functionality Changes N/A

Functionality N/A Changes
Resource

Usage N/A N/A

Once the parts that need to be changed are
recognized, appropriate team members are picked to
perform the change. An action plan is defined with a
set of tasks and timeline that is feasible and agreed
upon by both customer and maintainers. Then
change takes place. At this stage, the maintainer
tries to locate the code related to adding the logo on
the right side and delete it. Then the new function is
added by including code to add the logo on the left
side of the web page. All maintainers uphold team
communication to implement the change.

6.3 Maintenance of the Website Logo
First, run tests to make sure that changes have taken
place. Then, ensure that the website page has been
updated, and that the logo no longer appears on the
right side. Instead, the logo appears on the left side.
Use different web-browsers to make sure that the
change is stable and users using any web browser
can see the change.

Finally, it is recommended to evaluate the
change in software by surveying the website users to
know if they better recognize the page logo after the
change.

7 Conclusion
Most of the current research views software
maintenance in terms of technical factors and
ignores human dynamics. Our research proposes the
use of change theories to model software
maintenance. We utilize three change theories:
Lewin’s, Prochaska and DiClemente’s, and Lippit’s
theories to introduce three different software
maintenance models.

Lewin’s model is the most basic with only three
stages, with a focus on analyzing negative and
positive factors through force-field analysis. Lippit’s
model is more detailed, emphasizing the
maintainer’s skillset and knowledge in order to

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 427 Volume 13, 2014

accomplish the change. Lastly, Prochaska and
DiClemente’s model is a more evolved model,
allowing flexibility for the maintenance team to
spiral around the stages.

Our findings suggest that considering software
maintenance from a different perspective will further
benefit the software maintenance process, help
developers to better understand their role and
increase the possibility of success.

Table 6. Change Theory Models for Website logo Case study

Lewin Prochaska and
DiClemente’s Lippit Website Logo Maintenance Tasks

 Pre-
contemplation Users don’t see Logo as advertisements hide it.

Logo Problem is not yet detected.

Unfreezing Contemplation

Diagnosing the problem
The problem is detected by the customer and
conveyed to the maintenance team.
Maintainers give a brief description of the problem.

Assess motivation and
capacity for change

Fixing bug or adding a new feature. Cost
negotiation.

Assess change agent’s
motivation and resource

Perform force-field analysis. Evaluate team’s
ability.

Moving

Preparation

Select progressive change
objective; Develop action
plans and establish
strategies

Changes are recognized to be at: the structure of the
Software, adding new functionality and minimum
change of existing functionality

Choose appropriate role of
the change agent i.e.
cheerleader, facilitator,
expert

Pick appropriate maintainers, and set roles for each
one.

Action Maintain change through
strong group dynamics

The code for adding the logo on the right side is
deleted and a new code is added to include the logo
on the left side.
Website page has been updated, logo no longer
appears on the right side. Instead the logo appears
on the left side.

Refreezing Maintenance Terminate the helping
relationship.

End the project. Ensure passing of tests using
different web browsers..
Evaluate the change in software. Survey on the
website users to know if they better recognize the
page logo after the change.

References:
[1] K. Denis, J. Koskinen, and M. Sakkinen,

“Fault-Proneness Of Open Source Software:
Exploring Its Relations To Internal Software
Quality And Maintenance Process,” Open
Software Engineering Journal , vol. 7, pp. 1-
23, 2013.

[2] P. Bhatt, K. Williams, G. Shroff, and K.
Misra, “Influencing Factors on Outsources
Software Maintenance,” ACM SIGSOFT
Software Engineering Notes, 31, 3, pp. 44-49,
May 2006.

[3] Kirti Tyagi and Arun Sharma, “Reliability of
Component Based Systems – A Critical
Survey,” WSEAS Transaction on Computers,
Issue 2, Volume 11, February 2012.

[4] M. Pizka, and F. Deissenboeck, “How to
effectively define and measure
maintainability,” Software Measurement
European Forum, Rome, Italy, 2007.

[5] Ghulam Murtaza, Naveed Ikramand Abdul

Basit, “A Framework for Eliciting Value
Proposition from Stakeholders,” WSEAS
Transaction on Computers, Issue 6, Volume 9,
June 2010

[6] Zainura Idrus, Siti Z. Z. Abidin, R. Hashim,
N. Omar, “Social Awareness: The Power of
Digital Elements in Collaborative
Environment,” WSEAS Transaction on
Computers, Issue 6, Volume 9, June 2010

[7] R. Canning, “That maintenance iceberg,”
EDP Analyzer, 10(10), 1972.

[8] E. B. Swanson, “The dimensions of
maintenance,” Proceedings of the 2nd Intl.
Conference on Software Engineering, San
Francisco, CA, October 1976.

[9] N. Chapin, J. Hale, K. Khan, J. Ramil, and W.
Tan, “Types of software evolution and
software maintenance,” Journal of Software
Maintenance and Evolution: Research and
Practice, 13(1), January/February 2001.

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 428 Volume 13, 2014

[10] T. Mens, J. Buckley, M. Zenger, A. Rashid,
and G. Kniesel, “Towards a taxonomy of
software change,” Journal of Software
Maintenance and Evolution: Research and
Practice,17(5), September 2005.

[11] M. M. Lehman, D. E. Perry, and J. F. Ramil,
“Implications of evolution metrics on software
maintenance,” Proceedings Of the IEEE Intl.
Conference on Software Maintenance,
Bethesda, Maryland, November 1998.

[12] M. M. Lehman, J. F. Ramil, P. D. Wernick, D.
E. Perry, and W. M. Turski, “Metrics and laws
of software evolution,” The nineties view. In
Proceedings of the Fourth Intl. Software
Metrics Symposium, Albuquerque, NM,
November 1997.

[13] M. W. Godfrey and Q. Tu., “Evolution in
open source software: A case study. In
Proceedings of 2000 IEEE Intl. Conference on
Software Maintenance, October 2000.

[14] G. Robles, J. M. Gonzalez-Barahona, M.
Michlmayr, J. J. Amor, and D. M. German,
“Macro-level software evolution: A case study
of a large software compilation,” Empirical
Software Engineering, vol. 14, pp. 262–285,
2009.

[15] D. Kumar, Sanjay, A. Sharma, and A. Rana,
“Analysis Of Maintainability Models For
Object Oriented System,” International
Journal On Computer Science &
Engineering 3.12 , pp. 3837-3844, 2011.

[16] F. Zhuo, B. Lowther, P. Oman and J.
Hagemeister, “Constructing and testing
software maintainability assesement models,”
IEEE Computer Society pp. 61-70, 1993.

[17] A. Kritsonis, “Comparison of Change
Theories,” International Journal of Scholarly
Academic Intellectual Diversity vol. 8.1 pp. 1-
7, 2004- 2005.

[18] G. Mitchell, “Selecting The Best Theory To
Implement Planned Change,” Nursing
Management - UK 20.1, pp. 32-37, 2013.

[19] Lassila, Kathy S., and James C. Brancheau,
“Adoption And Utilization Of Commercial
Software Packages: Exploring Utilization
Equilibria, Transitions, Triggers, And
Tracks,” Journal Of Management Information
Systems, vol. 16.2 , pp. 63-90, 1999.

[20] J. Virtamo, “Queueing Theory / Priority
Queues.” Web. 10 Feb., 2014.
<http://www.netlab.tkk.fi/opetus/s383143/kalv
ot/E_priority.pdf>.

[21] Dehaghani, S. M. Hejazi, and N. Hajrahimi,
“Which Factors Affect Software Projects
Maintenance Cost More?,” Acta Informatica
Medica , vol. 21.1, pp. 63-66, 2013.

[22] D. Edberg, P. Ivanova, and W. Kuechler,
“Methodology Mashups: An Exploration of
Processes Used to Maintain Software,” Journal
of Management Information Systems, vol. 28.4,
pp. 271-303, 2012.

[23] Ko. J. Andrew, B. Myers, M. Coblenz, and H.
Aung, “An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance
Tasks,” IEEE Computer Society , vol. 32.12 ,
pp. 971-987, 2006.

[24] K. Bennet, and V. Rajlich, “Software
Maintenance and Evolution: A Roadmap.”
ACM , pp.73-87, 2000.

[25] Ian Sommerville, Software Engineering, 9th
Edition, Addison-Wesley Publishers Ltd, New
York, 2011.

[26] Michael Feathers, Working Effictively with
Legacy Code, Prentice Hall PTR, 2005.

WSEAS TRANSACTIONS on COMPUTERS Amal Abdel-Raouf, Maeda Hanafi

E-ISSN: 2224-2872 429 Volume 13, 2014

http://www.netlab.tkk.fi/opetus/s383143/kalvot/E_priority.pdf
http://www.netlab.tkk.fi/opetus/s383143/kalvot/E_priority.pdf
http://www.netlab.tkk.fi/opetus/s383143/kalvot/E_priority.pdf

