
Control Network Programming Development Environments

KOSTADIN KRATCHANOV1, TZANKO GOLEMANOV2+, BUKET YÜKSEL3, and EMILIA
GOLEMANOVA2*

1Department of Software Engineering

Yaşar University
Universite Cad. No. 35-37, Bornova/Izmir 35100

TURKEY
kostadin.kratchanov@yasar.edu.tr

2Department of Computing

University of Ruse
Ul. Studentska No. 8, Ruse 7013

BULGARIA
+TGolemanov@ecs.uni-ruse.bg, *EGolemanova@ecs.uni-ruse.bg

1Department of Computer Science and Engineering

Koç University
Sariyer, Istanbul

TURKEY
byuksel13@ku.edu.tr

Abstract: - In this paper we discuss the unusual distinctive features of Control Network Programming as a
hybrid programming paradigm. We postulate the maxim “Primitives + Control Network = Control Network
Program”, and use this observation in the design of programming environments for developing Control
Network Programming projects. The various possible approaches to building such environments are the main
focus of the paper, together with a relatively detailed presentation of the currently most powerful locally run
SpiderCNP environment with graphical editing and tracing, as well as two light-weight and ready-to-use cloud-
based environments. An extended survey of cloud compilers and IDEs is also included.

Key-Words: - Control Network Programming, CNP, programming environments, cloud IDEs, cloud compilers,
online compilers, programming paradigms, learning systems.

1 Introduction
Control Network Programming (CNP) is an unusual
programming style. To mention just a few of its
most important pronounced features one can point
out that it is genuine visual programming, search is
performed automatically due to the built-in
inference engine on which the computation
mechanism is based, it combines elements of
declarative and procedural programming paradigms.
CNP is especially advantageous for solving
problems which exhibit one or more of the
following traits: the problem specification or its
procedural solution have a natural graph-like
representation, involve nondeterminism or
randomness, or are based on search. Distinguishing
features of CNP are discussed in Section 2 below.

We need a CNP programming environment in
order to create, modify, compile, and run CNP
applications. The ultimate goal of this paper is the
study of the possible approaches to building such
environments, the components they must include,
and the current state-of-the art in the area of CNP
environments. In particular, we will discuss the
structure and some implementation details of the
best currently used environments, such as the
powerful, fully fledged SpiderCNP with an
embedded advanced graphic editor, and much
simpler cloud-based light-weight ready-to-use
versions. The cloud-based approach is not only
‘trendy’ but in fact frees a user from the burden
related to installation, maintenance and updating the
tool.

However, our route to the final goals is not strait.
We address a number of related objectives and use

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 645 Volume 13, 2014

the corresponding conclusions. We discuss the
recognizable characteristics of CNP and deduct the
summarizing maxim “Primitives + Control

Network = Control Network Program”. We pay
proper attention to the fundamental SpiderCNP
environment. We address the reasons for devising a
cloud compiler, and acknowledging the fact that the
advances in cloud-based compiling are a very recent
development include an extended review of cloud
IDEs and their advantages. Finally, we are at a
position to explain the principles and some design
and implementation details of our two cloud-based
CNP environments.

A particular focus of our paper is our noticeable
interest in teaching and learning – teaching major
concepts of computer science and mathematics with
the help of CNP tools, and learning CNP by
students, programmers, and researchers.

We have been successfully using CNP as a tool
for simulating various computational models and
algorithms in our Computer/Software Engineering
curricula at undergraduate and graduate levels.
Other areas where concepts such as computation,
search, inference, nondeterminism and randomness
are fundamental, and where CNP could be a great
teaching tool, are Computer Science, Mathematics,
Industrial Engineering, Robotics, and others. A
short summary of our teaching experience with CNP
is given in Section 2.4.

This publication is a substantially extended
version of [1].

2 Control Network Programming

Unlocked

2.1 What is CNP?
The name Control Network Programming or
CNP can be deciphered as ‘programming through
control networks’.

In CNP, a ‘program’ consists of two fundamental
parts. The first one is called a Control Network

(CN). It is an explicit system of graphs called
subnets. One of the subnets is identified as a main

subnet. Each subnet consists of nodes (states) and
arrows. The node of the main subnet which is first
in the description of the main subnet is called its
initial state. When calling a subnet, by default its
first node is treated as its initial state; however,
which node is initial may be specified in the subnet
call itself. There are a few special types of nodes;
one such type is the final state. The arrows of the
subnets are labeled with sequences of simple
actions, called primitives. The primitives (specified
by the user imperative functions) are defined

separately in the second major part of the program
(or may be imported from existing libraries). A
subnet can call other subnets or itself. Both
primitives and subnets can have parameters.

In general, the CN might be of “nondeterministic
nature”. An interpreter (inference engine) must
implement a strategy for search (inference /
computation) in a recursive network. The system
attempts to find a path from the initial node of the
CN to a final node, executing the primitives along
the way. This process may include invoking
subnets. The execution of a primitive might result in
failure in which case the system starts executing the
(passed already) primitives of the arrow backwards,
restoring the state of the data, and attempts another
path. If no more arrows outgoing from the current
state exist then the system executes backwards the
whole arrow through which control was passed to
this state. We call this strategy extended
backtracking; it can involve entering a subnet
backwards. The passing of the control through the
CN is thus highly intuitive and easily
understandable. It is practically graphically ‘visible’
on the CN. As a matter of fact, it can be traced on
the graphical representation of the CN.

As a matter of fact, no interpreter actually exists.
The Spider compiler uses an approach similar to
the recursive decent technique well known in
compilation. The resulting “intermediate program”
(file SpiderUnit.SPI) corresponds to the CN, at the
same time also embodying the algorithm for
interpreting it.

Figure 1 Exemplary NFA

Some major resources describing the technical
details of CNP are [2]-[6]. How CNP can be applied
for solving different types of problems is
demonstrated in [7]. The computation/inference in a
CN program is based on search. Therefore, the built-
in powerful tools for user control of the computation
can be used to implement heuristic search strategies
in an unusual, non-procedural manner [8]-[10].

2.2 An exemplary CNP application
As an illustration, we show here the CNP simulation
of a nondeterministic finite automaton (NFA). The

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 646 Volume 13, 2014

graph of the NFA is shown in Fig. 1 (screenshot
from JFLAP). This NFA example was used in the
PhD course Theory of Computation and the
undergraduate course Discrete Computational
Structures II at Yaşar University in the current
academic year.

The CN of the CNP implementation consists of
two subnets. The main subnet called NFA is shown
in Fig. 2a, and the subnet Graph - in Fig. 2b. The
screenshots are from the SpiderCNP programming

environment discussed below. There are two
equivalent representations of the CN – a graphical
representation and a textual representation. Either
can be used for viewing and editing the CN. Figures
2a and 2b show the graphical representations of the
corresponding subnets. To view the graphical
representation, the user must press the “Graph View
and Edit” button (which is circled in Fig. 2a). To
switch to the textual view, the button “Text View”
must be pressed. The textual view of the CN (both
subnets) is illustrated in Fig. 3. To describe textually

the CN we use a special simple language for
specifying graphs which we call Spider.

The primitives in a CN program are of two types.
Action primitives are elementary actions. Condition
primitives perform condition checks. The following
primitives are used in the CN of our example.

Action primitive Init performs
some initialization and prompts the
user to enter the initial state and the
input string. Primitive Test(c) is a
typical example of a condition
primitive – it completes
successfully if the current input
character equals c. Primitive
Add(n) is an action primitive that
concatenates the string n as the
name of the current node into the

solution path. Condition primitive
Complete checks if there are
additional symbols in the input

string that have not been read and used. Using this
primitive in the main subnet ensures that no unused
symbols have remained in the input string. Finally,
action primitive Print displays the solution path.

The primitives defined by the
user (together with constants,
helping functions, etc. if
necessary) are included in the file
SpiderUnit. It can also be
displayed and modified. Fig. 4
shows this file for our example.
The user may also import external
modules thus using, in particular,
pre-existing libraries of primitives.

Exemplary dialogues with the
user are shown in Fig. 5. Note that
in this CNP model of the NFA
during the dialogue the user can
choose different initial states. In
Fig. 3, in the first three runs the
selected initial state is q0, while in
the fourth execution it is q1. In the

third run an empty input string was chosen – the
screenshot demonstrates that, because of the
existing λ-transition, initially the nondeterministic
automaton can actually be in either of the states q0
and q2.

The discussed NFA example is an eloquent
demonstration of the descriptive (declarative) nature
of CNP that will be commented on in Section 2.4.
Namely, the CNP solution the major part of which is
the CN, simply specifies the NFA and includes no
hint at all about how the functioning of the

Figure 2a The NFA main subnet

Figure 2b The Graph subnet

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 647 Volume 13, 2014

automaton must be simulated – there is no
procedure (algorithm) at all that specifies how a
solution path should be searched for. The search
mechanism is actually built-in into the system; the
CN program is purely declarative. The CN
duplicates almost exactly the graph of the NFA.

Figure 3 Textual view of the CN

2.3 “Primitives + Control Network = Control

Network Program”
Back in 1975, Niklaus Wirth proclaimed:
“Algorithms + Data Structures = Programs” [11].
First of all, this applies to structured, imperative
programs. In 1979, sighting logic programs Robert
Kowalski responded: “Algorithms = Logic +
Control” [12]. Modifying the famous Wirth’s
statement, Zbigniew Michalewicz added in 1992:
“Generic Algorithms + Data Structures = Evolution
Programs” [13].

In [1] we notice and proclaim: “Primitives +

Control Network = Control Network Program”.
Our statement has a very direct and literal

meaning: a Control Network (CN) program consists
of two parts: definitions of primitives, and a CN
using these primitives. Physically, a CN

programming (CNP) project includes two main files
– one that contains the primitive definitions, and a
second one with a textual representation of the CN.
In more detail this will be discussed in the following
sections.

Figure 4 SpiderUnit

A note is needed. We “apologize” to the data for
somehow neglecting its importance. The data does
exist and is important. We refer to the first major
component of a CN program as “Primitives”. To be
maximally precise, we should’ve called it “Data and
Primitives”. The primitives act on data. The data is
usually declared in the same file where the
primitives are (or in other project modules used).
However, for simplicity, we’ll keep the shorter
name “Primitives”. It is understood by default that
there is data processed by these primitives.
Generally, in CNP one focuses more on the CN
(which specifies the problem) rather than on data.

2.4 CNP distinguishing features
We describe CNP as a new programming paradigm
extending and integrating declarative programming,

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 648 Volume 13, 2014

imperative programming, and programming rule-
based systems. As all other programming paradigms
CNP is universal – that is, it can be used for
implementing any algorithm. However, it is
especially effective when solving problems which
can be naturally represented in a graph-like manner,
and/or whose descriptions exhibit nondeterminism
and declarativeness.

Figure 5 Console

Often the CN can be looked at as a declarative

(descriptive, nonprocedural) description of the

problem to be solved. This was already discussed in
the case of our CNP simulation of a NFA. Other
typical illustrations of this viewpoint are the CNP
solutions to the Animals classification problem in
[7], the Map traversal problem in [4], the non-
recursive heuristic solutions to the same problem in
[9] as well as its iterative and recursive solutions in
[4] and [9], the iterative and recursive solutions to
the Wolves and sheep problem in [7], expression
grammar in [4] and [14], the algorithms for solving
constraint satisfaction problems in [10], etc.

CNP can be successfully used for typical
procedural solutions as well. Such an example is
the SelectionSort algorithm in [7]. Procedural
solutions to search problems are described in [9].
Here, the CN is an explicit graphical representation
of the program control (as understood in imperative
programming and depicted, for example, by an
activity diagram or a flowchart). In other words, in
CNP the program control is extracted from the
imperative program and made explicit. The actions
on data are defined in the simple and well-
understood primitives. This helps for easier
understanding, creating, modifying, or verifying the
algorithm.

In both cases of considering a CN as a declarative
problem description or as an explicit description of
the control in a procedural solution, CNP can be
also described as a type of graphical

programming. Indeed, the CN (being the leading
principal part of the CN program) is a recursive set
of graphs. Depending on the development
environment used this net (the CN) may be actually
seen and edited in a graphical editor, or may be
coded textually using our simple language for
describing graphs, Spider. Especially in the case of
using a graphical editor of CNs, it would be fair to
say that CNP is a genuine graphical programming.

‘Executing’ the CN is a kind of search. CNP has
been equipped with powerful means to control this
search – namely numerous system options and
control states [4], [5], [14]. Some of the latter can
also introduce randomness. This makes CNP a very
powerful tool for realizing a great number of search
approaches. Especially interesting and unusual are
implementations of algorithms based on local

search, as the execution of the CN is in fact a
particular type of local search itself. This approach
is called non-procedural implementation [8], [10],
[14]. It does not involve writing any search
algorithm in the usual sense – a behavior equivalent
to the corresponding search algorithm is achieved
“automatically” trough the appropriate usage of the

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 649 Volume 13, 2014

built-in search control tools.

2.4 CNP in education

 At Yaşar University, we have been systematically
using CNP for three years in teaching the courses of
Artificial Intelligence (4th year undergraduate) and
Theory of Computation (PhD.) in
our Computer/Software Engineering
curricula, and we have found it to
be a very useful tool in simulating
various models and algorithms.
Other possible areas include Formal
languages and automata, Compilers,
Algorithm analysis and design,
Concepts of programming
languages, Discrete mathematics,
Logic, Digital design, Algorithms
and data structures, and more.

 In general, it is the prevailing
view of the educators in areas such
as computer science and
mathematics that students tend to
have substantial difficulties in
apprehending the ideas behind
nondeterministic and randomized
(also referred to as stochastic)
computation models and algorithms.
CNP can be a great instrument to
help understanding and getting
confident with these concepts [14],
[15]. In fact, our experience and
surveying results strongly suggest
that understanding and using CNP
for our students (who have already
developed a strong procedural way
of thinking) is substantially easier
than Prolog.

3 Programming environments for

CNP

3.1 SpiderCNP – a CNP IDE for visual

programming
To practice CNP, i.e., to create, edit, compile, and
run CNP applications one needs an appropriate
development environment. A number of such
environments have been created.

The most powerful one is SpiderCNP [16]. It has
two versions. They are integrated as a tool in the
Delphi and Lazarus IDEs, respectively. A
fundamental advantage of the chosen approach is
the possibility to use all the features and tools of the
larger encompassing environment and the latest

versions of the programming language around
which the IDE is built. This programming language
is also used to program the primitives. The
installation process consists of three steps: install
the Delphi or Lazarus IDE, then run a simple
installation program that installs SpiderCNP as a

tool of the IDE, and finally fix some settings.
Delphi [17] is a sophisticated, ambitious,

advanced professional environment which, of
course, is an important advantage of this approach.
However, this is also its main disadvantage,
especially when using it in teaching. The IDE is
rather expensive, free academic versions are very
difficult or impossible to obtain, updates in the IDE
are difficult for the same reason. The second
disadvantage is the size of the software product and
correspondingly the difficulties in its installation.
Difficult installation was the single most important
drawback of the CNP approach identified by the
students in their surveys and comments during the
first year of using CNP in teaching.

In our opinion the switch to the SpiderCNP

Figure 6 Structure of a CNP application

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 650 Volume 13, 2014

version based on Lazarus [18] (called also
LazarusCNP) brought essential advantages. Lazarus
is a free product; it is pretty easy to download the
latest version of the product, and much easier to
install it. The IDE is also quite advanced and stable.
We have been using LazarusCNP for two years and
it is our most advanced and well-tested CNP
development environment.

Although the installation still requires the same
three steps, it now takes less than 5 minutes, and all
the components to install are free. The
corresponding installation instructions and
download files are available at [19].

Before discussing the CNP IDE further we need
to understand the architecture of a CNP application.

3.2 Architecture of a CNP application
There are two types of applications in Free Pascal
(also known as OO Pascal) which is the core of
Lazarus: console applications and window
applications. Correspondingly, we have the same
two types of CNP applications. Console applications
are simpler; the I/O is realized through a DOS-type
console. Such an I/O console is shown in Fig. 5. The
I/O of a window application is performed through
various built-in or user-defined windows. This
allows the creation of applications with more
attractively looking and modern I/O. In practically
all cases of teaching applications the console I/O is
enough and easier to follow. The online CNP
compiler that we will be describing further in this
report allows console applications only. Therefore,
we will introduce the structure of a CNP application
for the case of console applications only (although
the differences are minimal). It is shown in Fig. 6.

 A CNP application is created as a Lazarus
project. All the files of the project (i.e., the CNP
application) are placed in a folder. As we know, a
CN program consists of two fundamental parts:
primitives and CN. The file with the primitives is
SpiderUnit.pas. Technically, it is an OO Pascal file
in which the primitives are defined as procedures.
The file may contain also definitions of global data.
The CN is specified in the text file SpiderNet.txt

using the Spider language – see [2], [6], [7] for a
description of this language.

The CNP compiler (called SpiderCompiler.exe)
uses the above two files (the CN and the Primitives)
to produce a Pascal program as its object file
SpiderUnit.spi. This program includes directly a
copy of the definitions of the primitives and the
global data. The behavior of the program
corresponds to that of an interpreter that would
execute the CN according to its semantics. The CNP

compiler has been developed using ideas similar to
the well-known recursive decent parsing strategy.

As any Lazarus project, the project folder
contains some other files. The only one important
for our description here is Project1.lpr. A CNP user
may well survive without knowing about it, but if
(s)he wants to change the initial and concluding text
in the output, the user may do corresponding
modifications there.

All Lazarus files included in the project, as well
as the SpiderUnit.spi file, are used by the
lazbuild.exe file (which is part of the Lazarus IDE)
to create the file project1.exe. This executable file is
the CNP application. It can be called (executed)
from inside the IDE, or directly as a stand-alone
executable file.

The general view of the SpiderCNP IDE can be
seen in Fig. 2. In the main window, the user may
switch between displaying the CN (graphical view
or textual view; the latter is the file SpiderNet.txt),
primitives (file SpiderUnit.pas), or console (file
Project1.lpr). Normally, the CN is studied and
edited in the graphical view. However, if preferred,
the textual file may be modified (currently, for a
given project, only one of these options is possible).
The textual view of the CN shown graphically in
Fig. 2, is given in Fig. 3.

Clearly, the most distinguishing feature of
LazarusCNP is the existence of graphical editor of
CNs. The CNP IDE has many other features,
including tracing the execution within the graphical
editor on the graphical view of the CN.

Working with a CNP project means creating and
modifying as needed the three components (files)
described: CN, primitives and project1.lpr.

3.3 Possible principles for designing a CNP

development environment
Historically, the first CNP were run using
interpreters which interpreted the CN. However,
for over fifteen years all CNP environments use a
compiler (e.g., [2]) – an approach which we found
to have substantial advantages.

As we emphasizes earlier, a CN program consists
of primitive definitions and a CN. For representing
the CN we have always used the simple Spider
language mentioned before. The second question
arising is how to specify/program the primitives.

It is possible to use a special, defined by us

programming language for primitives which, in a
way, will make CNP self-contained. We have
decided against this approach, however, as it will
imply constant improvements, extensions, and

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 651 Volume 13, 2014

modifications to the language and the corresponding
environment, for which we must be responsible,
together with the corresponding documentation,
installation files, etc.

Following the approach we have chosen, we must
integrate our CNP development environment
with the external IDE of a programming language.
As already mentioned, our main CNP development
environment, LazarusCNP is integrated as a tool
inside the Lazarus IDE. Therefore, a CNP developer
can avail of all the powerful features of Lazarus.
Also, a developer working in Lazarus, can in
principle create a ‘regular’ Lazarus project (e.g., in
OO Pascal) using CNP only for subtasks where
CNP would be most effective. Naturally, this
approach also has drawbacks, the major one being
the necessity to obtain, download and learn the
basics of Lazarus. This disadvantage is not so
severe as Lazarus is freely available and well
maintained; however it still exists. For example, we
need to have Lazarus installed in our teaching labs.

An alternative promising approach is to develop a
‘stand-alone’ CNP environment which does not
depend directly on any specific external
development environment. However, in contrast to
the approach with a specially design programming
languages for coding the primitives which was
mentioned above, a natural and highly appealing
approach would be to use primitives programmed in
different programming languages and eventually
developed in different IDEs. This idea is aligned
with the modern-day idea of language
interoperability [20] - [24]. The idea could be
implemented on the base of any of the two major
groups of managed languages – the .NET SLI
compliant languages and JVM compliant languages
[25], [26]. Creating such a light-weight and highly-
flexible CNP development environment is in our
plans for the near future. In particular, being able to
write primitives in a language of the student’s
choice is a highly desired feature of a CNP
environment used in teaching. The learners of CNP
come from different backgrounds, have different
personal preferences, and would like to be able to
use the language they feel most confident with. A
main idea behind creating the declarative-driven
approach of CNP is that ‘programming’ can be done
by any user, including those with very limited or
even non-existing experience in programming.

Finally, we can develop the previous approach
even further by using a cloud CNP development

environment the core component of which is a
cloud CNP compiler.

A short survey of cloud compilers and
development environments follows. The sections
afterwards describe our current two working CNP
cloud compiler called Bouquet and SpiderCloud,
respectively.

4 Cloud-based IDEs

4.1 Cloud IDEs and compilers: state-of-the-

art
It is widely accepted that cloud computing is
undoubtedly one of the biggest buzzwords in the
technology world today. According to Fast
Company [27], the cloud is a vast network of low-
cost, high availability computing resources. Almost
60% of companies are already in the cloud and an
additional 20% are planning to do so within the next
12 months. Cloud computing refers to application
service provisioning where typical client server
software is run at a remote location. Such services
are given popular acronyms like 'SaaS' (software as
a service), 'PaaS' (platform as a service), 'IaaS'
(infrastructure as a service), 'HaaS' (hardware as a
service) and finally 'EaaS' (everything as a service)
[28].

Cloud computing has well-known advantages and
challenges which we are not going to address here
in general. Instead, we discuss below the advantages
and limitations of cloud IDE’s, simpler development
tools, and compilers.

Software development, and in particular its most
important component – compiling - can also be
shifted from being performed on a user’s physical
computer into being done in the cloud using
available remote software resources. The result of
this approach is the so called cloud development
environments (most developed ones are referred to
as cloud IDEs). Some authors use the phrase online
environment/platform or online compiler – this is
technically correct but does not emphasize well
enough the nature of a cloud application – it is not
simply contents available from the internet but it is
actually an integrated resource/service available
remotely, most often from a dynamic website. A
cloud development environment may include much
more than a single compiler – editors, libraries,
online execution facilities, user storage, etc.

For some reason lifting the code production into
the cloud is happening later than many other types
of business and other applications. Advancement in
cloud compiling and cloud IDEs is a comparatively
recent development, an emerging technology.

Some of the most interesting representatives of

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 652 Volume 13, 2014

currently available cloud development environments
are [29] - [44].

They have different features. Some are simple
and free; many of the best ones are (as it should be
expected) paid and highly professional. Some sites
support many (e.g., 60) languages, others are highly
specialized and focus on one particular
programming language or tool. Some allow for the
execution of the compiled object program on the
cloud server or even for the deployment of the
compiled embedded code into a particular device.
Some IDEs also allow the developed code to be
deployed into cloud platforms such as Windows
Azure, Amazon Cloud Services, or Heroku.

Jimenez, founder of [32], summarizes: “The
online IDE is one of the final frontiers of apps
ported to the web. I would like to be able to develop
from any computer or operating system and have the
same experience without having to install software
or install anything.”

The following advantages of cloud compilers
may be identified (not all sites possess all
advantages).

It can be frustrating to have to install volumes of
software just to write a little bit of code. Cloud IDEs
keep it simple by making all these tools available in
the cloud with the click of a mouse. Some cloud
IDEs come equipped with almost every tool, library,
etc. that the code developer may ever need. With
an online IDE, one can get their projects up and
running faster than ever by skipping over tedious
installations, and getting right down to the
programming of the project itself.

The local computer is not loaded with large-size
software, neither is computer time and other
resources used for compilation and other related
tasks.

Cloud IDEs allow the code to be accessed and
edited from just about any computer worldwide,
freeing the programmer from the need to have
constant access to a single computer where all the
tools and files are. Typically, cloud IDEs are cross-
browser and device-friendly. They have been tested
across all modern desktop and mobile web browsers
like Internet Explorer, Firefox, Chrome, and Safari.
With support for touchscreen interaction one could
write code all from their mobile or tablet device. It
is possible to log into one’s online IDE with a
smartphone or tablet, edit the code, test it and send it
off to a client in a matter of minutes.

A developer is now able to program for a wide
selection of devices, without actually needing to go
out and purchase them. They can write for Mac,

Windows, Linux or even an iPhone or iPad without
spending the money on buying one of each.

A cloud IDE can integrate features that can
hardly be achieved by a compiler installed on a local
computer.

The remote server can be more powerful (in
terms of speed, storage and memory) than a local
computer. The compiler, editor and other
components may be most advanced and possess
most useful and increasing the developer’s
productivity features. E.g., the cloud compiler may
include advanced code optimizing features, the
editors may support features such as autocomplete,
syntax checking, multiple cursors, keyboard
shortcuts, etc. Live editing might be supported
where you can see real-time updates as you tweak
your code. Advanced tracing may be included, even
simulating the state of data. Powerful latest popular
and non-standard libraries may be made available.
The software components on the cloud-based site
will be kept up-to-date at any time.

You can have a user account at the cloud IDE – a
central depository and a virtual console. You can
forget about Dropbox, USB sticks, external drives
— with a cloud IDE central depository your code is
always accessible online. You can access files
directly from your folders on the IDE or from
Dropbox, Google Drive, Amazon S3, etc. You can
keep a revision history. You do not have to compile
into local native images or re-download pre-
compiled native images.

Figure 7 A screenshot from shiftedit.net

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 653 Volume 13, 2014

An especially important feature is the possibility
to easily share your code and collaborate. Some
cloud IDEs enable developers around the world
such as teammates or peers to edit the same code
and chat together in real time.

Some IDE’s allow the developer to integrate with
many other services that are important within the
development life cycle. Thus the user can work with
the tools they know and like, or even develop and
integrate their own extensions.

Some sites offer for download local servers that
can automatically synch with the cloud workspace.

Fig. 7 is a
screenshot
from the
home page of
[32] and
summarizes
some of the
major
advantages
that cloud
IDEs offer.
We are
tempted to
also reproduce
the
memorable
statement
from the
video at [29]:
“And just like
everything
else important
in your life,
c9 IDE is
cloud-based”.

Of course,
cloud IDE’s
also have
shortcuts and
limitations –
some of them
are inherent,
other relate to
the fact that
the
technology is
only
emerging.
One of the
major issues
is security –
both in

relation to the user code, and in relation to the
integrity of the servers of the provider. Another
issue is the client-server communication, in
particular during the editing. Usage of graphical
tools such as graphical editors or complex graphical
I/O in the developed programs might be a serious
challenge. Reaction to errors on the server and auto-
safe functionality are another issue to address.

4.2 Cloud IDE’s and learning systems
It is often claimed that online IDEs and compilers
are a perfect learning tool for students and other

Figure 8 The Bouquet cloud CNP compiler

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 654 Volume 13, 2014

persons learning programming with a particular
programming language or tool. Some of the systems
mentioned in the previous subsection have been
actually created mainly as a learning tool.

A cloud IDE is easy to be used by students. They
can create their codes all from the comfort of their
browsers. All the heavy lifting has been done by the
creators of the cloud IDE, so students and learners
can just focus on writing and learning code. A cloud
IDE is a natural sandbox for learning a
programming language. You can write code in the
computer lab and pick up where you left off at
home. You can learn programming by visualizing
code execution, use advanced editors, etc.

Many of the other assets which cloud IDEs
demonstrate and we discussed in the previous
subsection, can be considered as essential
advantages from the viewpoint of learning systems.

It is also natural to integrate a cloud
IDE/compiler within an integrated learning system.
In addition to the IDE, an integrated learning
environment may include reference guides, online
interactive tutorials, pdf and video tutorials, demos,
tests, problems, projects, other resources, etc.

Cloud IDE sites often include blogs and forums.
You can easily get help from the programming
community as well as from other students and
learners.

In addition to teaching and learning, cloud IDEs
may be used in training courses and certification,
recruitment, programming contests, and similar
activities.

5 CNP cloud compilers

Using a cloud-based CNP development environment
is especially convenient and advantageous for a user
who wants to learn the basics of CNP and use it for
running demos or creating their own small-size CNP
applications. Generally, our students belong to this
class of user, together with other students,
researchers or programmers whose aims are to get
basic awareness of CNP and its possibilities but are
not yet its heavy users.

5.1 The Bouquet CNP cloud compiler
Following the modern trends in ‘lifting’ compilers
into the cloud described above, and first of all
understanding the substantial advantages of cloud
IDEs, we have developed two online CNP compilers
described in the current and the next sections,
correspondingly.

We have called the CNP cloud compiler
presented in this section Bouquet which is the

English translation of the name (Buket) of the
programmer most actively involved in its coding.
The compiler can be accessed at [46].

The general view of the cloud compiler is shown
in Fig. 8. The data that can be seen are from the
NFA application described earlier in Sec. 2.2 (where
SpiderCNP was used).

The webpage includes three input and one output
forms. An input area exists for each of the three files
that specify a CNP application: SpiderUnit.pas for
the primitives, SpiderNet.txt for the textual
representation of the CN, and the console file
project1.lpr. These files were discussed in Sec. 3.2.

In order to compile a CNP application we must
enter (e.g., write or copy) the corresponding files
into the three input windows. We can also use the
Browse button under each form. Three exemplary
applications are prepared in advance and their files
can be loaded with the click of a single button – the
Animals classification, Map traversal, and the
Technical example. These are the major examples
used for introducing CNP in [2]-[4],[6],[7], as well
as in teaching CNP at university.

When the three input files of an application are
ready, the user can activate the Compile button. This
triggers the following sequence on actions. A
project folder with a partially random name is
created on the virtual server. The randomness of the
folder name allows multiple independent users to
work simultaneously with the cloud CNP
environment. A new CNP project is created in that
folder. The input files from the forms are uploaded
into the project folder. Then compilation/building is
started by executing the file
SpiderCompilerCloud.exe on the virtual server. This
file is a cloud version of SpiderCompiler.exe (see
Fig. 3). The generated name of the project folder is
given as an argument to SpiderCompilerCloud.exe.
In addition to the application executable file, a
second output file, CompResult.txt is produced
which contains details of the compilation and is
most useful in the case of errors. Finally,
lazbuild.exe is run which in absence of errors
generates the CNP application executable file
project1.exe and saves it in the application folder in
the cloud. The user can now push the Download

project1.exe button and download the executable
file of the CNP application to their local computer.
Execution of the application file directly in the
cloud is not offered due to the security policy of the
cloud services provider.

In case the CNP compiler or the Lazarus builder
encounters errors, corresponding messages will be
displayed in the output window. The text displayed

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 655 Volume 13, 2014

is a filtered version of CompResult.txt. After fixing
the errors the user can initiate compilation again.

Currently the Bouquet CNP environment is
hosted using Amazon Elastic Compute Cloud
(Amazon EC2) web services [47]. We found this
advanced but still convenient and user-friendly
cloud services platform suitable and attractive.
However, this is a paid service and we will have to
find an alternative solution in the future.

The cloud CNP environment is installed on a
remote virtual server (rented from Amazon WS).
Windows 2008 R2 server with IIS7 is installed on
the virtual server instance. The application is coded
in ASP.NET and C# using web forms with code
behind. Setting properly the server configuration
actually proved to be probably the most difficult
part of developing the CNP compiler as allowing an
executable file (the CNP cloud compiler) to run on
the server was a hard job.

5.2 The SpiderCloud CNP online compiler
Our second CNP online compiler, SpiderCloud has
been described in [45]. Its look and feel remind
those of the Bouquet compiler – basically, the user
interface has the same three input and one output
areas: CN editor area (for loading and editing the
textual description of the CN), Primitives editor area
(for loading and editing the file SpiderUnit which
typically contains definitions of primitives and
global variables), Main console editor area (for
loading and editing the main program of the console
application), and Messages area (for output
messages related to the project compilation and
building). The main menu consists of buttons for
starting a new project, compiling a project, and
downloading the generated executable file. This can
be considered as a fifth, control area.

The general underlying idea of the SpiderCloud
compiler functioning is also similar to the one used
in Bouquet. However, its implementation is based
on a very different technology.

For implementing the SpiderCloud CNP
development environment we use the advanced
IntraWeb technology [48], [49]. IntraWeb is a
platform for easy and fast development of web
applications (usually called weblications) [50] –
[52]. A weblication is any type of application that is
similar to what you would put into an executable,
but instead deployed using a web browser and the
Internet [50]. In other words, a weblication is
similar in terms of interface and functionality to an
ordinary application to be run on a local computer,
but instead it is run on a web server and accessed
from an Internet browser. This is exactly what an

online CNP development environment must be.
IntraWeb is the only tool specifically geared

towards this type of development [50]. Its usage
allows a developer to create complicated
weblications extremely quickly and easily. While in
a typical web application the developer must take
care of all the details of communication
(input/output) using different protocols and
approaches, in IntraWeb all these tasks are
automated. IntraWeb developers design and create
their weblications in the same manner a usual
Windows application is developed. They use control
components and IntraWeb forms and define their
properties and create corresponding events,
similarly to using a visual control library (VCL).
Based on [49], we can give the following concise
definition of IntraWeb: IntraWeb is a component-
based Web development framework combining the
visual development normally associated with RAD
tools with a robust collection of dynamic Web site
creation features. It is included in Delphi 7 Studio,
and is available for Delphi 5 and 6, Kylix 2 and 3,
C++ Builder 5 and 6, and JBuilder 7. The code
behind may be written in C#, VB, Java, C++, or
Delphi.

Above, we have talked about web applications
only. Actually, the other type of web site
development mode is page mode (as distinct from
application mode). In application mode, an
IntraWeb application is a self-contained, state-
maintaining executable that generates HTML and
JavaScript for rendering by a Web browser.

Figure 9a ASAPI type application

Figure 9b Stand-alone server-type application

Web applications developed in IntraWeb can be
now divided into two application types depending
on their deployment in order to be made available to

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 656 Volume 13, 2014

the Internet users. The first standard approach which
is used in all other web application development
platforms and can be used in IntraWeb is illustrated
in Fig. 9a (borrowed from [49]). Typically, a web
server such as Apache or Microsoft IIS must be
installed and configured first on the web hosting
machine. In IntraWeb this type of applications are
called web server extensions or ASAPI type
applications.

In the stand-alone mode (Fig. 9b), the IntraWeb
application is a server itself, listening for HTTP
requests on a specified port. In this mode, the
IntraWeb server processes the browser's HTTP
requests directly. The SA Server is a web
application that includes three parts: an embedded
web server, the IntraWeb core code, and the specific
user code. The main goal of this approach is to
allow the developer to easily deploy the application,
without all the issues of installing and configuring a
web server like IIS or Apache. As the stand-alone
server application includes its own web server
(which is an Indy based web server), one can simply
execute the application and it is ready to receive
requests and send responses.

Because of the simplicity and convenience of the
second type of IntraWeb applications discussed
above, the SpiderCloud CNP development
environment has been implemented as a stand-alone
server-type weblication. It includes an embedded
web server, IntraWeb core code, and the actual code
of the Spider compiler. In order to become
functioning and ready for use by Internet users,
SpiderCloud.exe must be started on a cloud
Windows server. As the HTTP server is embedded
into the application, during the coding the ports for

receiving external requests and sending responses
must be set. Usually IntraWeb applications are
compiled for work with port 8888; however, setting
port 80 for HTTP communication will avoid
problems related to firewalls, proxies, etc.

The access to the so installed cloud CNP
development environment may be done from any
web browser using a link such as http://ec2-54-241-
120-135.us-west-1.compute.amazonaws.com:8080
or http://54.241.120.135:8080.

We can note that practically there is no need to
install SpiderCloud on a sophisticated advanced
cloud computing platform such as, for example,
Amazon EC2. Multiple-user access to the
environment can be achieved by simply using a
home computer through a communication port with
outside access permission.

The implemented architecture of the SpiderCloud
weblication is illustrated in Fig. 10. It consists of
two main modules. SpiderCodeCL is a set of tools
for initialization, upload/download, and text editors
for the CN program components. SpiderBuilder
includes the standard Spider compiler which is re-
used from the stand-alone CNP development
environment SpiderCNP (Sec. 3.1, [16]). It also
embodies SpiderIntegrator which creates the final
executable file of the application.

5.3 Further development of cloud CNP

development environments
As an emerging technology, today's online
compilers are certainly not without their limitations.
Most online compilers have yet to integrate reliable
version control capabilities which are necessary on

production projects, as well as
to enhance their integrated
auto-save functionality to
temporarily make up for lost
ground, for example when the
internet connection is lost.

Bouquet and SpiderCloud
are more than just compilers,
more precisely – they are
simple development
environments. They are,
however, still not cloud IDEs.
They are missing many of the
advanced features of cloud
IDEs discussed in Sec. 4.1 and
4.2. In particular, we plan on
adding users’ registration and
history control, tools for

testing, error elimination and
fine tuning of projects, means Figure 10 SpiderCloud architecture

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 657 Volume 13, 2014

for remote execution of the compiled projects.
Development continues.

The first most important feature that needs further
research and improvement would be the possibility
to use the graphical editor in the cloud version of the
environments.

Another important task is to integrate a cloud
environment into an advanced learning system for
studying and improving skills in CNP. Such a
system is currently under development.

6 Conclusion

Different approaches to creating programming
environments for developing and running CNP
applications have been considered. Particular
attention has been paid to our most powerful visual
environment SpiderCNP which is run on a user’s
local computer, as well as to two versions of light-
weight cloud-based environments ready to be run on
remote servers which are especially suitable for use
by persons learning CNP. It has been emphasized
that “Primitives + Control network = CN program”,
with this postulate playing a fundamental role in
designing a CNP environment.

References:

[1] K.Kratchanov, B.Yüksel, T.Golemanov, and
E.Golemanova, Learning Control Network
Programming with the Bouquet Cloud
Compiler. In: Recent Advances in Educational

Technologies and Education: Proc. 2014 Intl.

Conf. on Educational Technologies and

Education (ETE 2014), Interlaken,

Switzerland, 2014, pp. 29-36. Available also
at: http://www.europment.org/library/2014/
interlaken/bypaper/EDU/EDU-02.pdf.

[2] K. Kratchanov, T. Golemanov, and E.
Golemanova, Control Network Programming.
In Proc. 6

th
 IEEE/ACIS Conf. on Computer

and Information Science (ICIS 2007), July

2007, Melbourne, Australia, pp. 1012-1018.
[3] K. Kratchanov, E. Golemanova, and T.

Golemanov, Control Network Programs and
Their Execution. In Proc. 8

th
 WSEAS Int.

Conf. on AI, Knowledge Engineering & Data

Bases (AIKED ’09), Feb 2009, Cambridge,

UK, pp. 417-422.
[4] K. Kratchanov, T. Golemanov, and E.

Golemanova, Control Network Programming:
Static Search Control with System Options. In
Proc. 8

th
 WSEAS Int. Conf. on AI, Knowledge

Engineering & Data Bases (AIKED ’09), Feb

2009, Cambridge, UK, pp. 423-428.

[5] K. Kratchanov, T. Golemanov, E.
Golemanova, and T. Ercan, Control Network
Programming with SPIDER: Dynamic Search
Control. In Knowledge-Based and Intelligent

Information and Engineering Systems, Proc.

14
th
 Intl Conf. (KES 2010), Cardiff, UK, Sep

2010, Part II, Lecture Notes in Computer

Science (Lecture Notes in Artificial

Intelligence), vol. 6277, Springer, 2010, pp.
253-262.

[6] K. Kratchanov, E. Golemanova, T.
Golemanov, and Y. Gökçen, Implementing
Search Strategies in Winspider I: Introduction
to Control Network Programming and Search.
In Knowledge-Based Automated Software

Engineering, I. Stanev, and K. Grigorova,
Eds., Cambridge Scholars Publ., 2012, pp. 87-
113.

[7] K. Kratchanov, E. Golemanova, and T.
Golemanov, Control Network Programming
Illustrated: Solving Problems With Inherent
Graph-Like Structure. In Proc. 7th IEEE/ACIS

Int. Conf. on Computer and Information

Science (ICIS 2008), May 2008, Portland,

Oregon, USA, pp. 453-459.
[8] K. Kratchanov, E. Golemanova, T.

Golemanov, and T. Ercan, Non-Procedural
Implementation of Local Heuristic Search in
Control Network Programming. In:
Knowledge-Based and Intelligent Information

and Engineering Systems, Proc. 14
th
 Intl Conf.

(KES 2010), Cardiff, UK, Sep 2010, Part II,

Lecture Notes in Computer Science (Lecture

Notes in Artificial Intelligence), vol. 6277,
Springer, 2010, pp. 263-272.

[9] K. Kratchanov, E. Golemanova, T.
Golemanov, and Y .Gökçen, Implementing
Search Strategies in Winspider II: Declarative,
Procedural, and Hybrid Approaches. In
Knowledge-Based Automated Software

Engineering, I. Stanev and K. Grigorova, Eds.,
Cambridge Scholars Publ., 2012, pp. 115-135.

[10] E. Golemanova, Declarative
Implementations of Search Strategies for
Solving CSPs in Control Network
Programming. WSEAS Transactions on

Computers, vol. 12, No.4, 2013, pp. 174-183.
[11] N. Wirth, Algorithms + Data Structures =

Programs. Prentice-Hall, 1975.
[12] R. Kowalski, Algorithms = Logic + Control.

Comm. ACM, vol. 22, 1979, pp. 424-436.
[13] Z. Michalewicz, Generic Algorithms +

Data Structures = Evolution Programs.
Springer, 1992.

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 658 Volume 13, 2014

[14] K. Kratchanov, E. Golemanova, T.
Golemanov, and B. Külahçıoğlu, Using
Control Network Programming in Teaching
Nondeterminism. In Proc. 13th Int. Conf. on

Computer Systems and Technologies

(CompSysTech’12), Ruse, B. Rachev and A.
Smrikarov, Eds., ACM Press, New York,
2012, pp. 391-398. Also, ACM Digital
Library, http://dl.acm.org/citation.cfm?id=
2383333&dl=ACM&coll=DL&CFID=169141
915&CFTOKEN=28327026.

[15] K. Kratchanov, E. Golemanova, T.
Golemanov, and B. Külahçıoğlu, Using
Control Network Programming in Teaching
Randomization. In Int. Conf. Electronics,

Information and Communication Engineering,

Macau (EICE 2012), ASME, 2012, pp. 67-71.
Also, in ASME Digital Library:
http://dx.doi.org/10.1115/1.859971.paper14.

[16] T. Golemanov, SpiderCNP - an Integrated
Environment for Visual Control Network
Programming. University of Ruse Annual, vol.
51, 2012, ser. 3.2, pp. 123-127 (in Bulgarian).

[17] http://www.embarcadero.com/products/delp
hi

[18] http://www.lazarus.freepascal.org/
[19] http://cnprogramming.com.
[20] http://msdn.microsoft.com/en-us/library

/vstudio/a2c7tshk(v=vs.100) .aspx.
[21] http://msdn.microsoft.com/en-us/library/

a2c7tshk.aspx.
[22] http://forums.codeguru.com/showthread.php

?369066-NET-Framework-IL-What-is-
Language-Interoperability.

[23] M. Enevoldsen, Object Oriented Language

Interoperability (Master's Thesis), Uni. Of
Aarhus, 2004 (available at http://users-
cs.au.dk/beta/eclipse/mbeOOLI.pdf.

[24] http://en.wikipedia.org/wiki/Language_inter
operability.

[25] http://en.wikipedia.org/wiki/List_of_CLI_la
nguages.

[26] http://en.wikipedia.org/wiki/List_of_JVM_l
anguages.

[27] http://www.fastcompany.com/3001010/clou
d-computing.

[28] http://en.wikipedia.org/wiki/Cloud_computi
ng.

[29] https://c9.io/.
[30] http://www.compileonline.com/.
[31] https://compilr.com/.
[32] https://shiftedit.net/.
[33] http://codepad.org/.
[34] http://pythontutor.com/.
[35] http://ideone.com/.

[36] http://www.onlinecompiler.net/.
[37] http://www.tutorialspoint.com/.
[38] http://www.w3schools.com/.
[39] http://codebender.cc/.
[40] http://cloudcompiling.com/.
[41] http://mbed.org/.
[42] https://ludei.com/.
[43] http://www.silverlightshow.net/items/Wind

ows-Phone-8-Compile-in-the-Cloud.aspx.
[44] http://www.codeproject.com/Articles/19953

7/What-are-Online-Compilers-Online-IDE-s.
[45] T. Golemanov, K. Kratchanov, and E.

Golemanova. SpiderCloud – A Control
Network Programming Environment Cloud-
Based Environment. Ruse Univ. Annuals, v.
52, ser. 3.2, 2013, 131-136 (in Bulgarian).

[46] http://cnprogramming.com/download.html
[47] http://aws.amazon.com/ec2/.
[48] http://www.atozed.com/intraweb/index.en.a

spx
[49] http://edn.embarcadero.com/article/29650
[50] http://www.atozed.com/intraweb/Weblicatio

n/index.EN.aspx
[51] http://docs.atozed.com/docs.dll/getting%20s

tarted/IntraWeb%20Application%20Types.ht
ml

[52] http://docs.atozed.com/docs.dll/Deployment
/Deploying%20your%20application%20as%2
0a%20Stand%20Alone%20Server.html

WSEAS TRANSACTIONS on COMPUTERS
Kostadin Kratchanov, Tzanko Golemanov,
Buket Yüksel, Emilia Golemanova

E-ISSN: 2224-2872 659 Volume 13, 2014

