
Frequent Segment Clustering of Test cases for Test Suite Reduction

NARENDRA KUMAR RAO.B1, Dr.A.RAMAMOHAN REDDY2,
1Research Scholar, Dept. of CSE. 2Professor,Dept. of CSE.
 2JNTU Hyderabad 2SV University College of Engineering.

1Hyderabad,India 2Tirupati,India
1narendrakumarrao@yahoo.com. 2ramamohansvu@yahoo.com

Abstract: - Execution profiles are indicators for code coverage of program; this has been demonstrated by
researchers on a large scale through their contributions on the same. Test Suite reduction is a feature which
achieves code coverage with minimum number of test cases ensuring that all code items have been tested. It is a
Non-deterministic Polynomial-time Complete (NP-Complete) problem. Few approaches like Greedy approach,
Harrold,Soffa and Gupta(HGS) approach have been used in literature which are good approaches. Current work
achieves similar milestones with reduced test cases as well. This paper presents Maximal frequency item set
clustering and sequencing of similar test cases, residue code requirements based test case reduction and
modification based test case selection. In the current work, few interesting results were found, where in similar
program trace test cases were greatly reduced ensuring high code coverage percentage during testing. Fault
detection can be tuned by selecting test cases from similar groups.

Key-Words: - Clustering, Test Suite Reduction, Test case coverage, Program Profiles, Test case Selection,
Regression Testing

1 Introduction
Test case is a pair of input data and corresponding
program output. Its intent is to find issues in the
code and to check whether the code meets its
requirements or not. This is commonly known by
two terms, verification and validation.

Observation based testing relies on the input of
data for a test case and observing the output
obtained along with the execution behavior of the
program under study. These results are then
analyzed through automation and a result test set is
generated to ensure the conformance with product
requirements. The purpose of automated analysis is
to reduce the manual effort in reducing/filtering the
number of test cases (subset) to be executed in the
code. The reducing/filtering process needs to be
inexpensive when compared to executing the entire
set of test cases.

The goal of such an approach is to increase
insight into modification based fault removal.
Filtering process performed on the profiles of
program are also known by the name Cluster
analysis. Cluster analysis is a multivariate analysis
for grouping of objects which have been categorized
by attribute values. Cluster analysis group objects
with similar attribute values in a cluster, while
objects with dissimilar attribute values are placed in
different clusters. Similarity or dissimilarity is
measured in terms of metric called distance like

Euclidean distance. After clustering phase, it moves
ahead to test suite reduction.

Test suite is a collection of test cases. It
comprises of a large number of test cases that can
test various requirements. In this scenario it is
possible that redundant test cases are generated,
because test cases are generated on basis of
requirements for system testing. Also an effective
strategy is to assign minimal number of test cases to
attain maximum code coverage at a point of time
during testing without compromising maximum
defect detection.

Test Suite reduction is the process of reducing
test cases from the test suite. Two test cases are
redundant if they are verifying same program
structures with same intent producing same output.
It is quite effective to remove such redundant test
cases from test suite. This reduces the efforts for
testing, all these are to be performed at the cost of
maximal code coverage. If an effective code
coverage criteria chosen for the test suite reduction
process then testing process can reveal more bugs.

“The first formal definition of test suite reduction
problem introduced in 1993 by Harrold et al. is as
follows: Given. {t1, t2,…, tm} is test suite T from m
test cases and {r1, r2,…, rn} is set of test
requirements that must be satisfied in order to
provide desirable coverage of the program entities
and each subsets {T1, T2,…, Tn} from T are related

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 368 Volume 13, 2014

to one of ris such that each test case tj belonging to
Ti satisfies ri.

Problem. Find minimal test suite T' from T
which satisfies all ri s covered by original suite T.”

In current paper the program profiles are taken as
criteria for test suite reduction, also in further
sections it is applied for regression testing. This is
not a new criterion as such from literature and many
other authors have effectively used program profiles
for the same.

Testing activities occur after subsequent code
changes. Regression testing usually refers to testing
activities during software maintenance phase. The
major objective of regression testing is retest the
changed components and check the affected parts.
Regression testing can be done at different levels
like unit level, function level and code level.
Software change information (change notes),
updated software requirement and design
specifications, and user manuals form the basis for
regression testing. Formal definition for regression
testing is as follows: Regression Testing refers to a
portion of test cycle in which program P’ is tested to
ensure that not only does newly added or modified
code behaves correctly but also code carried over
from version P continues to behave correctly.

In Current paper the discussion on background
requirements is presented in section 2, Literature
survey in brief is presented in section 3, proposed
system is introduced with important procedures in
section 4, Experimentation and results are presented
in section 5.Conclusion and future work is presented
in last section before references.

2 Background

2.1 Program Profiling
Program profiling refers to the observation of
behaviour of program under consideration. Profiling
is performed by the usage of tool called “Profiler”.
Generally, profilers are used during runtime of
program to collect data relevant to program like
events, function calls, values held by variables
which reflects the behavior of the system. Profilers
are classified as Flat, Call graph, Input sensitive
profilers. Flat profilers compute the call times but
do not depend on the context of program for the
computation. Call chains, full profiles of the
programs are stored in Call graph profiles.
Performance measurement of programs based on
varying inputs, workloads can also be performed
using Input sensitive profilers.

Based on the data granularity in profilers, they
can be classified as Event based profilers, Statistical
profilers and Instrumentation based profilers. All
event based languages directly support event-based
profilers like JVMTI (JVM Tools Interface) API in
Java. .NET supports direct attachment of profiling
objects in COM terminology, hotshot profiling
module is readily available in python. Statistical or
Sampling profilers can directly interact with
Program counters, Operating systems level for
profiling programs under consideration without
much burden or effect on the program under
observation. CodeXL from AMD, Oprofile for
Linux, Intel VTune are few profilers of this type.

2.2 Call Stacks
Call stack is the collection of active function calls
during program execution. It is also generally
defined as sequence of functions which are ordered
represented by set C such that it comprises of
elements fi where i corresponds to the various
functions executed during execution. Every stack
trace starts with a function f1, from there on f1
allows invocation of functions f2 such that fi always
invokes fi+1. A call stack is recursive if it contains
recursive calls to itself.

2.3 Call stacks and Test cases
Execution of a test case produces a sequence of calls
, which represents behaviour of the program for a
given test case. Call trace for a given test case
convey more semantic sense compared to functions,
because they represent the context of the program
under execution.

Our work assumes the availability of program
execution trace before start of the test suite
reduction process, with fair degree of accuracy. A
Programmer obtains this information by attaching
call profilers to programs under test to capture the
call stacks for every test case. Primarily this module
comprises of two steps like recording the traces of
programs under execution as a first step and second
step involves pre-processing the obtained
information offline.

2.4 Requirements Traceability
Requirements traceability maps system
requirements to test cases to be used in the system
testing phase. This feature can be used in risk
analysis phase, requirements analysis and
specification phase, design analysis and
specification phase, source code analysis, unit
testing & integration testing phase, validation –
system testing, functional testing phase.

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 369 Volume 13, 2014

Multi dimensional memory format is widely
used in industry for mapping system requirements to
test case identifiers during system testing.

2.5 Clustering
Clustering is grouping of objects with similar
properties or attributes without considering the
outcome of it, but can sure be achieved something
of the same. They are grouped only based on the
attributes of the items under consideration in the
universal set.

Clustering algorithms are classified among three
types which are partition clustering, density based
clustering and hierarchical clustering. The basic
need for clustering in current work is for ease of
testing, fault identification & isolation, grouping
like test cases and grouping like coverage items for
testing.

3 Literature Survey
Coverage is the extent that a structure has been
exercised as a percentage of the items being
covered. If coverage is not 100%, then more tests
may be designed to test those items that were
missed and therefore, increase coverage [5]. Test
coverage helps in monitoring the quality of testing,
and assists in directing the test generators to create
test cases that cover areas of a program that have not
been tested before. Coverage criteria survey is
included in the following [7, 11, 4, 13, 8, 2, 10].

Ammons et al. first proposed the concept of
calling tree during run time of the program [1].
Later on Bond and McKinley proposed a
probabilistic approach for the same. Prior to this
work McMaster at al.[12] has used this approach for
coverage based test suite reduction and obtained
good results on a small scale. Our current work
focuses on this point and moves forward to
understand program behaviour from clustered test
cases. Supporting work can be found in [12, 18, 9,
16, 4, 6, 3, 19, 17,20].

4 Proposed System
The model in Fig.1 proposes a Conceptual system
design for accomplishing the test suite reduction and
selection. Modules work in coordinated fashion for
effective performance of the system.
Test Suite
Test suite comprises complete suite of the test cases
for the system. They can be designed from view
point of system requirements, code coverage etc.. In

current work, the test cases are developed from
requirements.

 Test Case DB

Fig.1 Conceptual System

Test case Database
The intention of the test case database is to store the
following and retrieve them when required.
Revision history stores the list of methods added,
deleted and modified in each revision, Source code
changes history per file at level of functions, Test
case traceability matrix, program trace data for each
test case and indices of functions of code. Comment
and description type changes are discarded
manually.
Change history
This module comprises of two major programs one
which codeDiffs two files of source code and
produces a report in HTML format which is further
analyzed by another program to generate or fill lists
which are of the forms like addM, storing the list of
newly added code, delM storing the list of deleted
methods and modM storing the listed of modified
methods in a give file.
Test Case-Code Coverage matrix
Test cases produce execution sequence and based on
the results obtained, the tester decides whether it has
produced a successful or failure run. All successful
runs are mapped to a matrix where rows represent
the test cases executed per revision and columns
represent the methods or indices corresponding to
methods used in selected system requirements. All
corresponding columns are mapped to value i if the
given method is encountered in ith position for a
given test case execution. The given value of i

Application
Program

Requirement
s Generator

Change
History

Test
Suite

Test
Case DB

Profiler
Program

Reqmnts
Trace
Matrix

Test case -
Code Cov.

Matrix

Most Max
Freq Trace
Clustering

Residual
Requirements

based Test case

Change
History based

Test case

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 370 Volume 13, 2014

increments in 1 for every successful mapping of
function or method for the given test case. This
proceeds until all methods for a given test case are
mapped and all test cases are hence mapped.
Requirements generator
This is M X N format where in more than one test
case may be used in a given requirement, same test
case can be used across many requirements and
likely repeated test cases also could have been
induced through different requirements.
Profiler program
Profiler program records the sequence of calls
executed by a program during its execution.
Application Program
 The source for testing is taken from standard test
suite SIR repository for purpose of testing, which
induces a bug per each revision. Hence test cases on
these versions can be used in the verification of
programs.
Most Maximal Frequent Trace Clustering
Test cases are redundant in many cases since they
are designed keeping requirements in view.
Requirements are mapped to test cases through
traceability matrix, which identify the test cases
required for testing.

In this paper a clustering algorithm based on
frequent program code coverage items and traces is
proposed which groups most frequent traces of
coverage items into a group among the test cases in
the given suite. The clustering process continues
until all the code coverage items are clustered in
form of test cases as described in the algorithm next.
Sequence Clustering of test cases based on frequent
item segments
In Most Maximal Frequent Trace Clustering
algorithm (MMFTC), the coverage items are only
clustered, but it does not, produce the desired effect
in reduction and selection process. In such a case
test case sequence are to be clustered such that they
are sorted sequentially based on similarity scores of
sequences of coverage items.
Redundant test case Elimination
The check for redundant test case is through
identification of similar score sequences with in a
cluster and check for length, if length and strings
match in program traces, then the test cases are
marked as redundant.
Residual Requirements based Test Suite Reduction
(RRBC)
The current algorithm is more focused on selecting
residual code coverage requirements, where in the
algorithm selects those test cases which have high
potential of code coverage ie., covering more
unselected methods rather than selecting test cases
which are of maximal length as in other approaches

(Greedy and HGS).This algorithm fares better with
HGS approach and similar to Greedy approach
(better in few peculiar near similar test case
sequences).
Change history based test case selection
Change history is made available to the test case
selection process in the lists thereby ensuring that all
relevant test cases are selected for testing. The
change history comprise of details in form of lists
like added methods, modified methods and deleted
methods.

4.1 Data Structures
Following are essential data structures for
implementation of Most Maximal Frequency trace
based clustering -Residue requirements based test
suite reduction (MMFTC-RRBC):
 Requirements traceability matrix- RTCij.
 Test Case-Code Coverage matrix- RTij.
 Code index visited after selecting a test case- Vi.
Counting frequency of occurrence of a item in a
given Test Case- Code Coverage matrix-
freqCountk.
coverage items of code base- covItemk.
Storing the test case id for every cluster- RTSij.
Minimal test cases satisfying code coverage-
RTSmin,i.
Representation for change history list for a given
version.
struct ChHist
{
modMi; - Modified Items
addM i; - Added Items
delMi; - Deleted Items
};
Safe Test cases after reduction- Rsafe(i)(j).
Safe Minimum test cases per version of code
Rsafe=RTSmin U RTSAmin U RTSDmin U RTSMmin

4.2 Procedures
Algorithm-1
 MaxFreqTraceClustering(freqCounti, RTi,j)
 Process:
1 For all (xi and yk ᴧ visitedl!=1) or until all items

are visited or or until there are coverage item
clusters less than 2(TWO).
// xi and yk pair of code items

 a Assign xi,yk with max(FreqCountm),
max(FreqCountm-1) from RTCij

 b Populate test cases in RTStemp such that
RTStemp={(xi,yk)/xi,yk∈RT ᴧ

 n-1, n-2
F(xi∩yk)=max{∩F(xi,yk)}}

 i=k=0

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 371 Volume 13, 2014

 Where F(xi)represents set of test cases
traversing code item xi. Repeat above steps such
that F((x∩y)i∩ yk)=F(x∩y)i ∩ F(yk).

 c Repeat F(x∩y)i, yk)=F(x∩y)i ∩ F(yk).
 d RTSn = RTSn U RTStemp

curFreq(n)
j={k / k∈ F(xi∩yk)!= Ǿ ᴧ n∈ RTS(n)}

visitedl=C{C/C=1, if F(xi∩yk)!= Ǿ;C=0}
 e RTi

(j) = RT i
(j)-RTSn // Eliminate the test

case from further clustering process.
 f n++;repeart using step-1.
 Output:
 RTSn contains n cluster of test cases with each

cluster containing test cases of a particular
coverage item(s) common in all the given
clustered test cases. Every cluster is grouped based
on common coverage item with a given item
count.

Algorithm-2
 RRTestReduce(RTSi, covItemk)
 Process
1 In a cluster RTSi, the unselected maximal length

test case from RTS and mark all covItemk for the
set of methods the particular test case has
covered.
tk=x {x,tk/∀tk x=max(length(tk))ᴧ tk ∈RTSi)}

2 Mark all the covItemk as visited and select the
next maximal length test case from next
maximal count cluster and compute the residue
of coverage requirements, the test case with
maximal residue count is selected as the target
test case.
tj={xj/∀xj max(covItem(xj))ᴧ xj ∈RTS(i)

j)}
3 Repeat the above steps by considering one test

case at a time from each cluster RTS to cover all
the items of covItemk.

RSafe = RSafe U tj ; iff {tj/∀tj∈RTSi}
 Output:
 Selects the maximum requirements coverage

test case into Rsafe. There by ensuring that
maximal coverage items are selected from
minimal number of test cases from different
clusters.

Algorithm-3
 SeqClust(RTSij)
 Process:
1 Repeat for all n until all clusters are done
 a Computing the Position Weight Matrix

(PWM)
 b Computing similarity scores of sequences

based on scores in PWM(SimScore).
 c Sequencing the test cases based on

similarity Scores(SortSeq).
a PWM(RTij)
 i For frequent items of given cluster,

compute the Position weight matrix for all
sequences of cluster.

 ii This involves computing frequency of an
item at a given position, represented by
M(x, P), where function M represents the
frequency of x at position P.

 iii M(x, P)= n(x, p)/N, where n(x, p) denote
the number of occurrences of x at position
p in the set of sequences, N is the number
of maximum items in sequence and
update positional scores in RTPsij

b SimScore(RTij ,RTPsij)
 I For each item of the sequence, substitute

the corresponding positional score from
PWM for the item.

 ii Compute the position weight score for all
other non frequent items (elements of
sequence which are not part of current
frequent item set of cluster as ZERO.

 iii Score (M,S) = Σw
p=1M(p, S[p]) where

sequence S of length w, P is the position in
sequence and update score in tScorek.

c SortSeq(RTij, tScorek,RTSn)
 i Align the test cases in the order of

similarity of test cases based on Score
(M,S) in decreasing order of weights stored
already in tScorek

 Output
 Sorted and sequenced Test cases in RTSi.

Algorithm-4
 RedntEliminate(RTSij)
 Process
1 For all the clusters do the following
 a For all test cases in RTSi do
 b If(SimScore(tj)==SimScore(tk))
 c If (Length(tj)==Length(tk))
 d If(CompareString(tj,tk))=0 then test case tj is

redundant and eliminate it from RT.
 e If RTSi={tk}, append it to RTSn where

n∈|RTS|-1.//(Singleton set)
 Output:
 Redundant test cases elimination in RTSij

Algorithm-5
 CHTestSelect(RTSmin , Struct ChHist)
 Process
1 1. Select the type of modification list as A-

added, M-Modified and D-Deleted methods.
2 If the list type is ‘M’ then perform the following
 a For all the elements from the list modM[],

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 372 Volume 13, 2014

which contains the index of the column in
the requirement test case matrix RTij do the
following:

 b Select the corresponding rows k(test cases)
which are marked non zero and store in RSafe.

C(k) = {k /(k∈RTi

(j)) ᴧ (∀i RTi
(j)!=NULL) ᴧ

{j,q / j∈∀q modM[q] = 1 ᴧ q∈[0..m-1])}
ᴧ i ∈[0..n-1]}

RSafe = RTSmin U {∀k C(k)}
 c Repeat steps a and b for all elements of

modM[].
3 If the list type is ‘D’ then perform the following
 a For all the elements from the list delM[],

which contains the index of the column in
the requirement test case matrix RTij do the
following:

 b Select the corresponding rows tj(test cases)
which are marked non zero and store in RSafe.

D(k) = {k /(k∈RTi

(j)) ᴧ (∀i RTi
(j)!=NULL) ᴧ

{j,q / j∈∀q delM[q] = 1 ᴧ q∈[0..m-1])}
ᴧ i ∈[0..n-1]}

RSafe = RTSmin U {∀k D(k)}
 c From the RTSij eliminate the corresponding

column selected from delM[].
RT(i)

j = RT(i)
j - q; where q∈ delM[]

 d Repeat until all elements of delM[] are
covered

4 If the list type is ‘A’ then perform the following.
 a For all the elements from the list

addM[],which contains the index of the
column in the requirement test case matrix
RTij do the following:

 b Select the corresponding rows k(test cases)
which are marked non zero and store in RSafe.
A(k) = {k /(k∈RTi

(j)) ᴧ (∀i RTi
(j)!=NULL) ᴧ

{j,q / j∈∀q addM[q] = 1 ᴧ q∈[0..m-1])}
ᴧ i ∈[0..n-1]}

RSafe = RTSmin U {∀k A(k)}
 c Add the new column to current version of

RT.
RT(i)

j = RT(i)
j U q where q∈ addM[] ᴧ

j= n-1;n+=1
 d Repeat steps a and b for all elements of

addM[].
 Output:
 Manipulated RTij and selected test cases in

RTSmin based on change history of test cases.
Working model is demonstrated in Appendix-1.

5 Experiments and Analysis
Current work compares the effectiveness of call
stack based reduction based on function level
granularity. This also compares the fault detection
ability of proposed work with random reduced test
suites for its evaluation.

5.1 Subject Application & Metrics
SIR repository based space program was used in
this work as program data. It has a test pool of
nearly 1400 test cases and 38 versions of the same
program containing faults. Code Tune was used in
instrumentation of call stacks and call coverage tree
for the work. It generates reports in excel, which
requires programs further to analyze it and populate
the program profile. Current work traces based on
only the function name but not based on its
complete signature. Out of 136 odd functions of
space program, test case trace generated to selective
test cases covering set of functions. The code is well
analyzed before testing and test cases set to target
given functions. Nearly 38 versions are maintained
for the same program, such that each program
differs from the other with a single failure. The
experiment was conducted by seeding multiple
failures between two versions and then clusters the
test cases by taking into consideration its previous
program trace information.

During course of trace recording, recursive
programs are not taken repetitively, but considered
once for its multiple runs. Many iterative calls were
skipped to single calls following the modified
sequitur algorithm [14] for program profile
representation. Library functions invoked during the
test case runs were eliminated, as we felt they may
not influence on our work.

Fault detection effectiveness is one
corresponding measure that is being used in current
work. Percentage of code requirements coverage,
percentage of size reduction and percentage fault
detection reduction has been calculated over the
entire experiment to measure the effectiveness of
the proposed method over random experiments.

Rtot-represents the total number of test
consideration requirements and Rcov is the total
number of requirements satisfied by test cases
selected during reduction for equation-1.

 |Rcov|
R COV(%) = X 100 (1)
 |Rtot|

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 373 Volume 13, 2014

|T|- Total number of test cases in the original
suite and |Trs| represents test cases in
representative set for equation-2.

Percentage reduction in fault detection FD(%

Red), and other formulae in (fig-3)FDReduced represents
Defect detection from reduced suite, FDFull is
complete suite for equation-3.

There were few hundred and above functions
involved in program run. The possible call stacks
were recorded for given suite. It is possible to
generate a test case from suite and record its call
trace. In different versions of program only those
test cases that failed due to the induced defect in the
version and relevant test cases alone failed, all other
succeeded. Hence it is not necessary to test entire set
of test cases for every version. The result of
clustering algorithm was sufficient for identifying
whether defective test case was included or not.

5.2 Method of Experimentation
The defects can be detected from the suite in two
ways:
1. Select a given number of test cases by applying

the test case selection approach and detect the
fault detection effectiveness.

2. Select a given ‘K’ number of cases where it
depends on algorithm which selects the number of
test cases and identify the number of faults
detected by each k test cases. Repeat this until all
faults are detected.
No Change history information is taken into

consideration during this process, so that
comparison is with similar set up i.e. random
approach. In our case, second approach was used
where test cases were selected in units of K, where
test cases were obtained from random MMFTC.
Random based Fault detection

1. Test suite of specified number of test cases
 are selected.
2. Test the application with given ‘K’ tests and
 record faults.
3. Repeat until all the faults are detected.

MMFTC-RRBC based Fault detection
1. Form the reduced set of Test coverage

satisfying test cases by using MMFTC.
Repeat the process by selecting ‘K’
unselected test cases from the clusters such

that minimal of K/n cases are selected
from each cluster, where n- is the number of
clusters. In clusters where there are less than
k/n test cases select the residue test cases
from other clusters.

2. Form the set of faults detected by the reduced
suite, such that faults are recorded after every
iteration until all faults are identified.

The number of test cases used in each run of
proposed algorithm was incremented in value of 50,
starting from minimal value of 50 to 500.This was
performed to detect the fault detection capability of
suite. All the procedures were implemented in C
language on Windows operating system with a
Pentium dual core processor 2.0 GHz. It was
observed that as number of test cases increased, the
program execution time increased as shown in graph
(Fig-2).

Fig.2 Time vs Size

The experiment procedure specified above

section is performed with ‘K’ number of test cases
selected by random approach and by means of
MMFTC and following results were obtained. The
proposed approach is definitely scaling better in
terms of identifying faults by selecting test cases
from clusters that had relatively more number of
faults (Fig-3). Current approach is compared with
other approaches like HGS and Greedy approach in
Appendix-2. Appendix-3 depicts performance
compared with Greedy approach in graph.

Fig.3 Test cases vs %Cumulative Faults detected

 |FDReduced|
FD(% Red) =1 - X 100 (3)
 | FDFull |

 |Trs|
TS (% Red) =1 - X100 (2)
 |T|

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 374 Volume 13, 2014

In sample runs it was also observed that as the
number of test cases increased the percentage of
fault detection effectiveness decreased gradually as
large test case chunks (size K) were induced into
testing in both the experiments of random and
MMFTC. This was for the reason that similarity
sequenced test cases were selected during iterations
from clusters for detecting faults.

Sufficient benefit is acquired when this
technique uses the sequencing of similar test cases,
which enhances detection of co-associated or
change impact faults which span similar test cases
having similar call sequence.

Table 1. Coverage Criteria Clustering

Means over Test Suites
Original Suite Random

reduced
MMFTC-

RRBC reduced
CASE-I

Size Faults
Detected

Size Faults
Detected

Size Faults
Detected

500 34 60 24 60 28
% Reduction
from Original

88 30 88 17

CASE-II
500 34 80 34 72 34

% Reduction
from Original

84 0 85.6 0

Above results (table-1) were obtained with total
suite, random suite and a MMFTC reduced suite.
We can infer that this work can considerably
decrease test suite size and improve faults detected,
compared to random suites. Experimentation can be
classified as two cases (Case-I & II).

Case-I represents a scenario where in K test
cases are chosen randomly from the suite based on
random experimentation and MMFTC-RRBC. The
result under case-I depicts scenario where in there is
a considerable decrease in suite size and effective
defect detection.

 Case-II depicts scenario where in defect
revealing test cases are chosen by reducing test
cases from more defective clusters, i.e. selecting test
cases from similar clusters which relatively reveal
more defects during testing. This is in-line with
software myth, where more defects tend to
concentrate in relative locations of defects.

5.3 Change history based test case selection
Change history inclusion in test case selection is a
better approach, since the code which underwent
code changes were populated in separate lists and
test cases corresponding to those changes are
included into testing process as introduced in
section-4.

In above experimentation section (4), change
history module computes the codeDiff between the
code modules and generates a program report on
code differences between the two versions. A
program analyzer module (as discussed above)
reduces them to a change history list. The change
history list is capable of inducing test cases which
are affected by the corresponding code changes.

In current experimentation set up for defect
detection, code version (Vi) was made diff with
earlier version (Vi-1) and recorded the changes in
change lists accordingly, it recorded the changes and
incorporated the test case for the corresponding
change.

This method was effective in incorporating not
only the defect rendering changes, but also many
test cases, which were introduced as part of code
changes, which did not introduce any defect.

The Change history module comprises of two
sub functionalities such as codeDiff and records
changes at coarse level like added function,
modified function, deleted function from the diff
engine and populates them into lists corresponding
to addM, delM, modM. These lists are further used
in analysis for test case selection.

The results were suggestive of the fact that all
test cases for changes were introduced, which is
capable of introducing defects (irrespective of type
of changes taken into consideration). Comment type
changes and code formatting changes are not at all
included, but had to be removed manually. Future
study can incorporate such changes as well. The
above approach was used for test suite reduction and
apart from them, test cases which are not redundant,
but are change introduced test cases are selected for
testing.

Following observations were made on
percentage of reduction in size of suite and
reduction in percentage of defect detection
capability.

Table 2. Percentage Reduced for random vs.
MMFTC-RRBC based TEST SUITE

Means over Test Suites

Original Suite MMFTC-RRBC +
 change Induced

Size Faults
Detected

Size Faults
Detected

500 34+4* 70 28+4*
% Reduction from
Original

86 15.7

The above table-2 demonstrates the fact that all
change inducing test cases are incorporated during
test case selection, there by capable of detecting
defects for all scenarios (given fact that all test cases

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 375 Volume 13, 2014

are present in test suite and incorporated in
requirements traceability during test plan).The
actual defect detection was based on MMFTC and
change induced test case selection. In above table-2,
* indicates the faults due to program induced
failures. The change induced test cases were able to
select and hence detect the change induced failures.
This experiment also produces similar results on
comparison with Table-I case-II, when more test
cases are chosen from fault revealing clusters to
achieve 100% defect detection. Future work is in
these directions to select context sensitive test cases
revealing faults and improve precision.

During change based test case selection, analysis
of regression test selection is performed, in which
we consider three important categories as described
by Rothermal, which are Inclusiveness, Precision
and Efficiency.

Inclusiveness refers to the extent to which the
current test case selection technique is capable of
capturing the modification revealing test cases from
original suite T into new suite. It is defined in [15]
as “Suppose T contains n tests that are modification
revealing for P and P’ and suppose M(test selection
mechanism) selects m of these tests. Then
inclusiveness of M relative to P, P’ and T is 100 *
(m/n).”Accordingly this method is able to select all
the modification revealing test cases, given a
modification entity.

Hence, this achieves m/n ratio as 1, which
ensures that technique is safe. If a given approach of
test selection is more inclusive, then it has the
potential to expose faults, which is hypothesized in
current results as in [15].

Precision refers to the extent to which M omits
tests that are non-modification revealing. It is
defined again in [15] as “Suppose T contains n tests
that are non-modification revealing for P and P’ and
suppose M omits m of these tests. The precision
relative to P, P’ and T is 100 * (m/n).”

The precision indicates the omission of non-
modification revealing test cases, but our technique
selects all possible test cases traversing the method,
irrespective of whether the test case is traversing the
modified portion of the code, this ensures that more
test cases are selected and none of the test cases are
omitted, which is an indication of Safe regression
technique.

Efficiency is measured in terms of space and
time requirements. As per time constraint, it should
be economical than retest-all approach, such that
cost selection should be less than cost of running
tests in T-T’. Space efficiency represents the test
history and program analysis information the
technique must store and access.

During regression testing, the test case selection
approach should perform well during both
preliminary phase, where initial version is released
and there is sufficient duration for locating and
fixing issues and Critical phase where regression
testing is crucial and needs to reduce the time and
cost for testing [15].But this is likely to perform
better in former case rather than later case, but from
quality perspective is a good choice at all times.

Table 3. Reduced results for Random vs.
MMFTC-RRBC based TEST SUITE

Original
Suite
Size

Induced
Faults

Inclusiveness Precision Efficiency

CASE-I
500 4 100% 70% O(|T|*|P|)

CASE-II
500 4 100% 55% O(|T|*|P|)

|T|-represents size of suite selected using the current
technique and |P|-represents size of program in
terms of functions. These results in the above table-
3 are validated with work by Rothermal et al.,
proposed in the modified entity form to be a safe
technique.
The experimentation follows section 5.2 in which
similar approach as case-I, case-II and the given
precision was observed. There was considerable
improvement in reduction of non-modification
revealing test cases (related to precision).
Few benefits of approach to practitioners include the
following:

• Faults were detected early compared to
random suites.

• Early fault detection leads to early fixing of
issues.

• Relatively less testing effort in terms of number
of test cases and testing cost reduction.

5.4 Threats to validity
A program run may produce different program
traces for successful run. A given test case
producing distinct program traces at different times
based on environment and variation in input but
produce similar outputs are not included, which is a
potential threat for the current work and its validity.

The granularity adopted in this work is a method,
hence statement level defects cannot be detected
until unless all test cases are introduced during test
selection process.

Test suites used in current work are designed
complete with respect to requirements, any other
criteria based test suites have not been tested with
this approach.

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 376 Volume 13, 2014

6 Conclusion
Even though much required inclusiveness and
precision is achieved in this work, this can only be
achieved at higher cost, this can be further improved
by prioritizing the test cases before selection.

Change history based test case selection is
effective process in revealing faults in the program,
except that all modification traversing test cases are
selected. Hence they can be prioritized for selection
step, such that higher priority is assigned to test
cases with more number of methods/functions and
precedence of priority for various changes like
deletion, addition and modification of methods.

The current work is more effective in terms of
identifying defects in modification traversing and
revealing test cases rather than change effect
impacted methods.

Intention further is to take up this work in GUI
development and testing for mobile environment,
where traces are unique sequences and some of
methods are common or used as libraries, basic user
interfaces, event handlers and other reusable forms.
This will be a perfect match for this work.

Fine grained coverage items can be used in this
study. The effectiveness in terms of clustering,
defect detection effectiveness are broad areas of
further study.

Improvement in intelligent clustering methods
can attribute to better results. Program behavior and
context sensitive information are two important
criteria that affect test suite reduction.

References:
[1] Ammons G and James R, “Improving data-

flow analysis with path profiles.”,SIGPLAN
Not. 39, 4 (April 2004), 568-582.

[2] [Angeletti, D., E. Giunchiglia,“Automatic Test
Generation for Coverage Analysis of ERTMS
Software”, In the International Conference on
Software Testing Verification and Validation,
2009. ICST '09.

[3] Arafeen, M.J.; Hyunsook Do, "Test Case
Prioritization Using Requirements-Based
Clustering", Software Testing, Verification and
Validation, 2013 IEEE Sixth International
Conference on , vol., no., pp.312,321, 18-22
March 2013.

[4] Arvind K.," Pair-Wise Time-Aware Test Case
Prioritization for Regression Testing ",
Information Systems, Technology and
Management Communications in Computer
and Information Science, vol., no.285,
pp.176,186, 2012.

[5] Beizer, B. Software Testing Techniques,
Second Edition, International Thompson
Computer Press, Boston, 1990.

[6] Carlson, R.; Hyunsook Do; Denton, A., "A
clustering approach to improving test case
prioritization: An industrial case study",
Software Maintenance (ICSM), 2011 27th
IEEE International Conference on , vol., no.,
pp.382,391, 25-30 Sept. 2011.

[7] Eugenia Díaz, J. T., Raquel B (2004). "A
Modular Tool for Automated Coverage in
Software Testing.", Software Engineering
Notes. Vol. 26, no.5, pp. 256-267. Sept. 2001.

[8] Kapfhammer G.M., Soffa, M.L.(2008)
“Database-Aware Test Coverage Monitoring”,
Proceedings of the Ist India Software
engineering conference ISEC’08, Hyderabad,
India, ACM.77-86."

[9] Khalilian A and Saeed P , “Bi-criteria test suite
reduction by cluster analysis of execution
profiles.”, In Proceedings of the 4th IFIP TC 2
Central and East European conference on
Advances in Software Engineering Techniques
(CEE-SET'09), Springer-Verlag, Berlin,
Heidelberg, 243-256.

[10] Koochakzadeh V,"An Empirical Evaluation to
Study Benefits of Visual versus Textual Test
Coverage Information.", in the fifth conference
on The Testing: Academic and Industrial
Conference, Practice and Research Techniques
(TAIC PART), 2010.

[11] Lormans M D. "Reconstructing Requirements
Coverage Views from Design and Test using
Traceability Recovery via LSI”, TEFSE, USA,
ACM 2005.

[12] McMaster S, Memon, A.M., "Call-Stack
Coverage for GUI Test Suite reduction",
Software Engineering, IEEE Transactions on ,
vol.34, no.1, pp.99,115, Jan.-Feb. 2008.

[13] Lingampally R, Gupta A,Jalote P "A
Multipurpose Code Coverage Tool for Java", In
Proceedings of the 40th Annual Hawaii
International Conference on System Sciences,
IEEE Computer Society, 261b, 2007.

[14] Reiss, Steven P., and Manos R. "Encoding
program executions. "proceedings of the 23rd
International Conference on Software
Engineering. IEEE Computer Society, 2001.

[15] Rothermel, G.; Harrold, M.J., "Analyzing
regression test selection techniques," Software
Engineering, IEEE Transactions on , vol.22,
no.8, pp.529,551, Aug 1996.

[16] Shin Yoo, Mark Harman, Paolo T, and Angelo
Susi,”Clustering test cases to achieve effective
and scalable prioritisation incorporating expert

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 377 Volume 13, 2014

knowledge.”, XVIII international symposium
on Software testing and analysis (ISSTA '09).
ACM, New York, NY, USA, 201-212.

[17] Vipindeep V, Jacek Czerwonka, and Phani
Talluri. “Test case comparison and clustering
using program profiles and static execution”, In
Proceedings of the the 7th joint meeting of the
European software engineering conference and
the ACM SIGSOFT symposium on The
foundations of software engineering ,ACM,
New York, NY, USA, 293-294,2009.

[18] William Dickinson, David Leon, “Finding
Failures by Cluster Analysis of Execution
Profiles”, Intl. Conf. on Software Engineering,
Toronto, Candada, May 2001, pp. 339-348.
Alireza Khalilian and Saeed Parsa. 2009.

[19] Yi Miao, Zhenyu Chen, Sihan Li, Zhihong
Zhao,and Yuming Zhou. “Identifying
Coincidental Correctness for Fault Localization
by Clustering Test Cases”, Software
Engineering and Knowledge Engineering, 267-
272, 2012.

[20] T Lertphumpanya, T Senivongse, "Basis Path
Test Suite and Testing Process for WS-BPEL",
WSEAS TRANSACTIONS on COMPUTERS,
Vol 7, Issue 5, pp.483-496, May 2008.

Appendix-1
Working model

R={r1,r2,r3,….rm}  {a,b,c,d,e,f,g,h,i,j}
Ts = {t1,t2,t3,…t11}

Table 4.Requirements vs Test case Table

 t1abfg
t2aegi
t3abcdj
t4afbcd
t5afghi
t6abfg
t7acdhi
t8bcij
t9cdgh
t10ijab
t11abcd

1. Clustering Most Maximal Frequent Items
Maximal Frequent items for R is a and b.
 F(a) ∩ F(b)  {t1,t2,t3,t4,t5,t6,t7,t10,t11} ∩
{t1,t3,t4,t6,t8,t10, t11}

 {t1,t3,t4,t6,t10, t11}
F(a ∩ b) ∩ F(c)  {t1,t3,t4,t6,t10,t11} ∩
{ t3,t4,t7,t8,t9, t11}
RTSi min  {t3,t4, t11 }
F(a ∩ b ∩ c)∩ F(g)  Ǿ; F(a ∩ b ∩ c) ∩ F(i)  Ǿ
F(a ∩ b ∩ c) ∩ F(d)  { t3,t4, t11 } ∩ { t3,t4,t7,t9, t11}
 RTSi  F(a ∩ b ∩ c ∩ d)  { t3,t4, t11 }
Insert {a,b,c,d} into visited[],select unvisited
maximal elements and again repeat clustering next
most maximal frequent items
F(a ∩ b ∩ c ∩ d) ∩ F(f)  Ǿ;
F(a ∩ b ∩ c ∩ d) ∩ F(h)  Ǿ
F(a ∩ b ∩ c ∩ d) ∩ F(j)  Ǿ
F(a ∩ b ∩ c ∩ d) ∩ F(e)  Ǿ
Repeat above with other high frequent functions
until no more elements to spare for clustering by
selecting unvisited maximal elements and proceed.
F(g) ∩ F(i)  {t2,t5}
F(g ∩ i) ∩ F(h)  Ǿ;F(g ∩ i) ∩ F(j)  Ǿ
F(g ∩ i) ∩ F(e)  Ǿ ;RTSi+1 min {t2,t5}
Cluster1 = { t3,t4 };Cluster2 ={t2,t5}

Clustering process can eliminate test cases which
were previously selected on basis of frequent items,
until all the test cases are grouped under clusters.
After all the iterations clusters are classified and
arranged as follows:
2. Sequence Clustering of test cases based on
frequent Coverage items (SeqClust)

 Table 5.Requirements vs Test case Table

 t1abfg
t2aegi
t3adcbj
t4afbcd
t5afghi
t6abfg
t7acdhi
t8bcij
t9cdgh
t10ijab
t11abcd

RTSi min  F(a ∩ b ∩ c ∩ d)  { t3,t4,t11 }
Step-1 (PWM)
 t3adcbj
t4afbcd
t11abcd

Step-2 (Score(M,S))
Score(t3) = 1+1/5+2/5+1/5+0 = 9/5
Score(t4) = 1+0+1/5+1/5+1/5 = 8/5
Score(t11) = 1+1/5+2/5+1/5+0 = 9/5
Step-3 (Aligning the sequences)

RTSmin = {t3, t11, t4}

a b c d e f g h i j

t1 1 2 3 4
t2 1 2 3 4
t3 1 2 3 4 5
t4 1 3 4 5 2
t5 1 2 3 4 5
t6 1 2 3 4
t7 1 2 3 4 5
t8 1 2 3 4
t9 1 2 3 4
t10 3 4 1 2
t11 1 2 3 4
F 9 7 6 5 1 4 5 3 5 3

a b c d e f g h i j

t1 1 2 3 4
t2 1 2 3 4
t3 1 2 3 4 5
t4 1 3 4 5 2
t5 1 2 3 4 5
t6 1 2 3 4
t7 1 2 3 4 5
t8 1 2 3 4
t9 1 2 3 4
t10 3 4 1 2
t11 1 2 3 4

 F 9 7 6 5 1 4 5 3 5 3

 I II III IV V
a 1 0 0 0 0
b 0 1/5 1/5 1/5 0
c 0 0 2/5 1/5 0
d 0 1/5 0 1/5 1/5

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 378 Volume 13, 2014

Test cases of all clusters are sequenced and sorted
as in above case based on sequence similarity. In
case of cluster F(a∩b∩f∩g) with frequency count 4
falls under a group and their similarity score is same
for (t1,t6}.It can be observed that t1 is redundant and
hence eliminated by the algorithm.

Table 6.clustered test cases

#Cluster Cluster-
Id

Test
case(s)

Count
of frequent

Items
1 RTS0 {t3, t11, t4} 4
2 RTS1 {t2,t5} 2
3 RTS2 {t7,t9} 3
4 RTS3 {t6,t8,t10} -

It can be observed that t1 is redundant and hence
eliminated by the algorithm. Still clusters with count
item frequency 1 and 0 are available respectively
they are discarded based on criteria max cluster
count frequency > 2, which produces clusters but
not sufficient enough to understand program
behavior. Adaptive Sampling (residual code
requirement based algorithm) is used for reducing
test cases from clusters.

RTSmin = {t3, t2, t5}
Insert {a, b, c, d, e, f, g, h, i, j} into visited [].
3. Modifications and test case Selection
a. Delete function ,after removal of function ”b”
 during code change.

t1abfg  t1afg
t2aegi  t2aegi
t3abcdj  t3acdj
t4afbcd  t4afcd
t5afghi  t5afghi
t6abfg  t6afg
t7acdhi  t7acdhi
 t8bcij  t8cij
 t9cdgh  t9cdgh
 t10ijab
t11abcd




 t10ija
 t11acd

From table- 7, affected test cases D(b)

 {t3,t4,t6,t8,t10, t11}
Rsafe = RTSmin U R(b)
= {t3, t2, t5} U {t3,t4,t6,t8,t10}
Rsafe = {t3, t2, t5,t4,t6,t8,t10}

b. Change in code of function identified
From table-8 change in code identified in method c
and hence, the * mark represents the change or
modification. Hence test cases traversing c are
selected.
C(c){t3,t4,t7,t8,t9,t11}
Rsafe = RTSmin U C(c) = {t3, t2, t5} U {t3,t4,t7,t8,t9, t11}

Rsafe = {t3, t2, t5,t4,t7,t8,t9}
Table 8. Requirements vs Test case Table

c. Adding new function in code of function

 Table 9. Requirements vs Test case Table

t1abfgk a b c d* e f g* h i j* K
t2aegi t1 1 2 3 4 5
t3abcdjk t2 1 2 3 4
t4afbcdk t3 1 2 3 4 5 6
t5afghi t4 1 3 4 5 2 6
t6abfg t5 1 2 3 4 5
t7acdhi t6 1 2 3 4
t8bcijk t7 1 2 3 4 5
t9cdgh t8 1 2 3 4
t10ijab t9 1 2 3 4
t11abcd t10 3 4 1 2
 t11 1 2 3 4 5
 8 6 5 4 1 4 5 3 5 3 3

From table-9, code or method being added is
notified.
A(k) = M(g) ,M(d), M(j)
{t2,t5,t6},{t3,t4,t7,t9 t11},{t3,t8}
{t2,t3,t4,t5,t6,t7,t8,t9,t11}
Rsafe = RTSmin U A(k)
RTSmin = {t3, t2, t5} U { t2,t3,t4,t5,t6,t7,t8,t9 t11}
Rsafe = { t2,t3,t4,t5,t6,t7,t8,t9,t11}

Table 7. Requirements vs Test case

a c d e f g h i j

t1 1 3 4
t2 1 2 3 4
t3 1 3 4 5
t4 1 4 5 2
t5 1 2 3 4 5
t6 1 3 4
t7 1 2 3 4 5
t8 2 3 4
t9 1 2 3 4
t10 3 1 2
t11 1 3 4

 Freq 9 6 5 1 4 5 3 5 3

a b c* d e f g h i j

t1 1 2 3 4
t2 1 2 3 4
t3 1 2 3 4 5
t4 1 3 4 5 2
t5 1 2 3 4 5
t6 1 2 3 4
t7 1 2 3 4 5
t8 1 2 3 4
t9 1 2 3 4
t10 3 4 1 2
t11 1 2 3 4

 Freq 9 7 6 5 1 4 5 3 5 3

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 379 Volume 13, 2014

Appendix-2
Comparison Scenarios

Scenario-1:
Comparison of Greedy heuristic vs Most Maximal
Frequent Clustering based Test Suite reduction as in
table-10.

Table 10. Sample Table-I

r1 r2 r3 r4 r5 r6

t1 X X X
 t2 X

X

 t3

X

X
 t4

X

X

t5

X
 Applying Greed heuristic results in selection of

test cases as follows : test cases {t1, t2, t3 ,t4} - #
Test cases(TC)-04. Most Maximal frequent
Clustering and Residual requirements based
clustering - test cases { t1, t2, t3 ,t4} - # TC-04
Scenario-2
Comparison of Greed heuristic vs Most Maximal
Frequent Clustering based Test Suite reduction as in
table-11:

Table 11. Sample Table-II

r1 r2 r3 r4 r5 r6 r7

t1 X X X X
 t2 X X X X

X
t3 X X X X

X

 t4 X

X X
 t5

X X X

t6 X

X
Greedy heuristic test cases {t2, t3, t5} -#TC-03
Most Maximal frequent – { t2, t5}- #TC-02
Scenario-3
Comparison between HGS(Heuristic General to
specific) approach and Current approach as in table-
12:

Table 12. Sample Table-III

r1 r2 r3 r4 r5 r6

t1 X X
 t2 X

X

X

t3

X X X
 t4

X X

X

t5

X
 t6

X

t7 X
HGS heuristic for this example is{t1, t2, t3}-
 #TC-03
Most Maximal Frequent clustering based approach-
{t2, t3} - #TC-02.

Appendix-3
Cumulative Percentage of Code coverage

Cumulative Percentage of Code coverage expected
(Fig.4) on test case basis will be higher when
compared with heuristic approach since, more
clusters are created and similar test cases are in
same cluster. This ensures that in short runs this
approach can ensure more coverage compared to
other approaches.

C
um

ul
at

iv
e

 C
od

e
C

ov
er

ag
e

Pe
rc

en
ta

ge
 100

80

40 Most Frequent

Trace
clustering

20 Greedy approach without clustering
10
 5 10 15 20 25
 # Test cases

Fig.4. Cumulative Code Coverage Percentage
Graph in Fig.4 illustrates fact that with Most

frequent coverage clustering provides more
coverage with less number of test cases as compared
with Greedy approach. The above inference may not
hold when there are less redundant test cases or all
test cases focusing dissimilar behavior, otherwise
the performance is likely to be same as the Greedy
approach(Fig.5).

C
um

ul
at

iv
e

 C
ov

er
ag

e
Pe

rc
en

ta
ge

 100

80

40

Most Frequent Trace clustering
/ Greedy approach without
clustering

30
20
10
 5 10 15 20 25

 # Test cases
Fig. 5. Cumulative Coverage
Percentage

WSEAS TRANSACTIONS on COMPUTERS Narendra Kumar Rao B., A. Ramamohan Reddy

E-ISSN: 2224-2872 380 Volume 13, 2014

