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Abstract: - Automatic epileptic seizure detection has important research significance in clinical medicine. 
Feature extraction method for epileptic EEG occupies core position in detection algorithm, since it seriously 
affects the performance of algorithm. In this paper, we propose a novel epileptic EEG feature extraction method 
based on the statistical property of complex networks theory. EEG signal is first converted to complex network 
and cluster coefficients of every node in the network are computed. Through analysis of the cluster coefficient 
distribution, the partial sum of cluster coefficient distribution is extracted as the classification feature. A public 
epileptic EEG dataset was utilized for evaluating the classification performance of extracted feature. 
Experimental results show that the extracted feature achieves classification accuracy up to 94.50%, which 
indicates that it can clearly distinguish between the ictal EEG and interictal EEG. The higher classification 
accuracy demonstrates the extracted classification feature’s great potentiality of the real-time epileptic seizures 
detection. 
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1 Introduction 
Epilepsy is one of the most common neurological 
disorders and has significant impacts, such as 
temporary impairments of perception, speech, motor 
control, memory or consciousness, on patient daily 
life. Symptom of epilepsy attack is that a person has 
repeated seizures or convulsions. Nearly one out of 
three epilepsy patients cannot obtain treatment [1], 
because the epilepsy attacks are completely sudden 
and unforeseen. Moreover, traditional epileptic 
seizure detection, which needs time-consuming 
observation and analysis of the entire length of 
electroencephalograph (EEG) by a neurologist, is a 
tedious and subjective diagnostic process. 

With the advent of technology, the digital EEG 
data can be fed into an automated seizure detection 
system implemented by computer. Epileptic seizure 

detection problem is then modelled as EEG signals 
classification problem by computer.  Analysis time 
is reduced considerably due to automation and the 
neurologist can treat more patients in a given time. 
Base on several classification algorithms, automatic 
epileptic seizure detection has been implemented 
but still has significant importance in clinic. The 
techniques for epileptic EEG classification contain 
two primary parts, which are the feature extracted 
method and classifier design. The feature extraction 
method extracts several objective quantitative 
features, which can clearly characterize the 
fundamental difference between the research objects 
and is then used as the representative of the research 
object. Brain activity during an epileptic seizure 
stage differs greatly from that in the normal state. 
An ideal classification feature contains only intrinsic 
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information of the object, which means that the 
extracted feature can catch the different 
characteristics between various objects and get 
much better classification performance. According 
to growing awareness that the electrical activities of 
the brain are complex nonlinear dynamic systems 
[1], compared to the linear features, nonlinear 
features are more suitable for characterizing the 
nature of EEG. 

Numerous nonlinear features of EEG signals 
have been applied into the analysis of EEG signals, 
recently [2-12]. Based on largest Lyapunov 
exponent, reference [2] discussed the detection and 
prediction of epileptic seizure. Reference [3] 
analyzed the correlation dimensions of epileptic 
EEGs, and concluded that the correlation dimension 
of the epileptic EEG is larger than the normal 
EEG’s. Higher order spectral analysis (HOS) is a 
powerful tool for the nonlinear dynamical analysis 
of nonlinear, non-stationary and non-Gaussian 
physiological signals. In [4,5], HOS were used to 
analyze epileptic EEG signals and extracted useful 
features which could be used to detect epileptic 
seizures. In [6,7], the third order cumulant (3rd 
HOC) which highlights the nonlinear behaviour was 
used for analyzing epileptic EEG signals. The Hurst 
exponent of the epileptic EEG was discussed in [8] 
and the results shown that the normal EEG is 
uncorrelated whereas the epileptic EEG is long 
range anti-correlated. Spectral entropy and 
embedding entropy, which can be used to measure 
the system complexities, were introduced to 
epilepsy detection in [9,10]. The recurrence 
quantification analysis (RQA), which is used to 
analysis the recurrence plot (RP), gives parameters 
that measure the complexity and nonlinearity of the 
non-stationary data. Acharya et al. [11] used RQA 
features for the three-class classification of epilepsy 
EEG signals. Combined with these classification 
features, the classifiers, such as artificial neural 
network (ANN) and support vector machine (SVM), 
have also been widely applied into the epilepsy 
detection algorithm [12-17]. From these literatures, 
we can conclude that an excellent classification 
feature not only obtains better classification 
accuracy but also spends less computational 
complexity because of it does not need combined 
with classifier. These advantages are significant for 
the clinical application. 

Recently, complex networks theory shows its 
advantages in analysis of nonlinear time series. 
Zhang and Small [18] proposed the pioneering 
algorithm that converted the pseudo-periodic time 
series into complex network. A bridge between 
nonlinear time series analysis and complex networks 

theory has been built. After that, various conversion 
algorithms were proposed and the complex network 
method has been applied into several application 
fields. Reference [19] converted time series into 
complex network based on time delay embedding 
theory, and shown, compared with pseudo-periodic 
time series, that the chaos attractor reveals a more 
heterogeneous structure and exhibits small world 
feature. In [20] and [21], the transition network, 
another type of complex network, was applied into 
the analysis of the traffic flow time series and 
random process, respectively. Yang et al. [22] 
constructed the correlation complex network of time 
series under different dynamics, which was based on 
the time delay embedding theory and the similarity 
between the two nodes was measured by correlation 
coefficient. Lacasa et al. [23] first proposed the 
visibility graph algorithm, which could convert 
arbitrary time series into a network. Marwan et al. 
[24] constructed the recurrence network of time 
series and made some comparison with the RQA. 
He proved that the topology statistical properties of 
complex network could capture transfer dynamics 
characteristic of time series. Gao and Jin [25] used 
the directed weighted complex network, which can 
reserve more information about the series, to 
analyze the time series. Based on these conversion 
algorithms, the nonlinear time series dynamics were 
analyzed. In [26], the super-family phenomena that 
the set of complex networks with the same relative 
abundance of the different sub-graph was 
discovered and defined. Liu et al. [27] unveiled that 
the detrended fluctuation analysis (DFA) scaling 
exponent of the time series uniquely determines the 
classification of the super-family phenomenon. 
Tang et al. [28] applied the complex networks 
theory into the analysis of the topology 
characteristics of the non-stationary traffic-flow 
time series network. Through the conversion 
algorithm, time series is mapped into the phase 
space, and we can analyze its dynamic structures by 
plenty of statistical properties of complex networks 
theory. Complex networks theory provides a new 
perspective for dynamics analysis of nonlinear time 
series 

In this paper, a new classification feature 
extracted method for epileptic seizure detection is 
proposed. Firstly, the EEG signal is converted into 
the complex network. Then the cluster coefficients 
of every nodes and the cluster coefficient 
distribution of the resulting complex network are 
calculated. At last, partial sum of cluster coefficient 
distribution, which is extracted as the classification 
feature, is utilized to describe the differences 
between the epileptic EEGs at different stages. A 
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classification experiment, which utilizes the 
extracted feature for distinguishing the ictal EEGs 
from the interictal EEGs, is used to verify the 
classification performance of the extracted feature. 

This paper has been organized as follows. 
Section 2 presents the algorithm for converting the 
time series into weighted network, and focuses on 
describing the feature extraction method for 
automatic epileptic seizure detection. In Section 3, 
the EEG signal benchmark dataset and the 
evaluation parameters used in the classification 
experiment are described. Then the experimental 
results are presented. Finally, some conclusions are 
included in Section 4. 
 
 
2 Methods 
The main idea of applying the complex network 
theory into the analysis of the dynamics of the 
nonlinear time series is: (1) map the time series into 
the complex network domain and (2) use the 
topology structure statistical properties provided by 
the complex network theory to analyze the time 
series complex network (TSCN).  
 
 
2.1 Algorithm for Converting the Time 
Series into Complex Network 
A time series is denoted as 

{ }mj ssss ,...,,...,, 21 [ ]( )mj ,1∈ ,              (1) 
where the sj is the jth sample point in time series and 
the length of the series is m.  

A complex network composes of node set and 
edge set.  

In order to construct the node set of the TSCN, 
the nonlinear time series is divided up into several 
individual cycles and each cycle is then treated as a 
node in the TSCN. According to the local minimum 
(or maximum) values, the time series is divided up 
into several non-overlapping cycles and the cycle 
set is denoted as{ }Nccc ,...,, 21 , where cj represents the 
jth cycle divided from the time series. Obviously, the 
number of cycles in the cycle set, N, is related to the 
amount of local minimum (or maximum) values. 
Points before the first local minimum (or maximum) 
values and after the last local minimum (or 
maximum) values are abandoned.  Each cycle is 
then treated as a node in the TSCN and the node set 
is obtained. 

The complex network edge set contains a 
number of edges, which represent the connections 
between nodes in the TSCN. The similarity between 
the two nodes is used as a standard to judge whether 
the two nodes connect each other or not. From the 

view of high-dimensional phase space, the distance 
between two nodes ci and cj is described by 
Euclidean distance, denoted as dij. Since the cycles 
have different length, the Euclidean distance is 
modified as 
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where ci(k) is the kth point in ci. The lengths of ci and 
cj are Li and Lj, respectively (assuming Li<Lj). Two 
nodes with a smaller distance are closer in phase 
space, which means that the two nodes are more 
similar. After a pair wise high-dimensional distance 
computing between every two nodes in TSCN, a 
distance similarity matrix is obtained, denoted 
as ( )

NNijdD
×

= . 
The edge between two nodes is determined by 

equation (3). 
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where the ε is a predetermined value used to 
construct an edge between the two nodes which 
have bigger similarity. The aij = 1 means that there 
is an edge between the ith node and the jth node, 
whereas aij = 0 means there is no edge between two 
nodes. 

With an appropriate critical value ε selected, the 
distance similarity matrix D is converted into a 
binary matrix ( )

NNijaA
×

= , namely adjacency 
matrix. Since the adjacency matrix A contains the 
node set and edge set of the network, it can fully 
represent the entire TSCN.  

In the conversion algorithm, the parameters ε, 
which may seriously affect the performance of the 
TSCN, need to be settled. It determines whether the 
embedded dynamics of time series can be sufficient 
encoded into the topological structure of the TSCN 
or not. When ε is extremely large, the nodes with 
weak similarities are also connected, which result in 
that the physically meaningful correlations of time 
series are submerged by the noises. With ε 
decreased, more and more noises can be filtered out. 
The ε cannot be extremely small, since some 
connections with physical significance may be 
filtered out. Moreover, due to a small finite number 
of connections caused by the extremely small ε, 
strong statistical fluctuations may appear. The 
widely used determination of the threshold ε is 
based on the changes of network density [19], which 
is suitable for the complex networks with 
hierarchical structure. In order to investigate the 
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neighbours’ structure of every node in the TSCN, 
the total number of edges in the TSCN is fixed as 
5% of the total number of all possible edges [26], 
which is realized as follow: 

1) Ranking all the elements of the distance 
similarity matrix D (except elements of principal 
diagonal) in ascending order; 
2) Finding out the (2×0.05×N×(N–1)+1)th element. 
This element is the value of the ε. 
 
2.2. Analysis of the Time Series Complex 
Network Based on Complex Network Theory 
Since the adjacency matrix A contains the detailed 
information of the entire TSCN, the analysis of 
TSCN can be realized by studying the matrix A. 

 

(b) 

(c) (a) 

1

 
2

 

3

 
4

 

5

 
 

Fig.1 A sample complex network with 5 nodes and 5 
edges (a). (b) The complete triangle and (c) the triangular 

graph. 

In TSCN, every node interrelates to its 
neighbours (except isolated node). Two neighbours 
of a node may be neighbours themselves. The 
clustering coefficient is a feature which 
characterizes the presence of order three loops. The 
clustering coefficient of the ith node is defined as 

,
)(
)(

3 iN
iNCi

∆=                              (4) 

where ( )iN∆  is the number of complete triangles 
with the ith node and N3(i) is the number of 
connected triples with the ith node, respectively 
shown in Fig.1 (b) and (c). A triangle is a set of 
three vertices with edges between each pair of 
vertices; a connected triple is a set of three vertices 
where each vertex can be reached directly or 
indirectly from each other, i.e., two vertices must be 
adjacent to another vertex which is called as the 
central vertex. It can be seen from Fig.1 that each 
triangle can be seen as consisting of three different 
connected triples, one with each of the vertices as 
central vertex. 

In TSCN, the ( )iN∆ and the N3(i) can be 
calculated through equation (5) and (6), 
respectively. 

( ) ,∑
>
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jk
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>

⋅+⋅+⋅=
jk

kjkijkjiikij aaaaaaiN    (6) 

where the aij is the element of the adjacency matrix 
A and the sum is taken over all triples of distinct 
vertices j and k only one time. Considered the 
example shown in the Fig.1, since node 1 has 1 
complete triangle and 3 triangular graphs (i.e., 3-1-2, 
5-1-2, 3-1-5), so the C1=1/3. 

Obviously, 0≤C≤1, C=0 if and only if all 
neighbours are unconnected for any node in the 
network and C=1 if and only if all nodes are 
connected each other, such as a set of isolated nodes 
and a fully connected regular network, respectively. 
Its has been a common observation that cluster 
coefficients of the most real-world networks satisfy 
O(N-1)<<C<<1, which indicates that most real-world 
networks are neither completely random nor 
completely regular. 
 
 
2.3 Feature Extraction Method Based on the 
Cluster Coefficient Distribution 
Cluster coefficient characterizes the proportion of 
that the neighbour nodes between each other are 
also neighbours, i.e., the perfect degree of small 
group structure. The Ci characterizes the regularity 
degree of neighbours of the ith node. 

According the awareness that the dynamic 
structure of interictal EEG signal shows more 
complex than the ictal EEG dynamic structure [1], 
which means that the dynamic structure of interictal 
EEG is more irregular than the dynamic structure of 
ictal EEG, we defines clustering coefficient 
distribution (CCD) of TSCN and uses it to analyze 
the irregular degree of TSCN:  

( )
,)( 1

N

sCtrue
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N

i
Ii∑

=

∈

=                (7) 

where the I in (7) is an integer in the interval [1 12]. 
The symbol ‘ture()’ is used for judging the true or 
false of the expression in the parenthesis. When the 
expression in the parenthesis is true, the symbol 
‘ture()’ is 1, otherwise is 0. 

In order to facilitate subsequent analysis, the 
cluster coefficients belong to the interval [0 1] are 
divided up into 12 subintervals, as equation (8),  
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Since smaller Ci means imperfect small group, 
which indicates irregularity, the sum of P(I)s from 
the 2nd to the 6th subintervals, corresponding to the 
interval (0 0.5], is extracted as the feature, defined 
as 

.)(
6

2
∑
=

=
I

clu IPP                               (9) 

Time series with different dynamics have various 
TSCN structures, i.e. the shapes of their CCDs are 
different. When the extracted feature Pclu is larger, 
the TSCN may have many nodes with smaller 
cluster coefficient, which means that the TSCN is 
more irregular. 
 
 
3 Results and Discussion 
3.1 Data Description 

 
Fig.2 The typical EEG waveforms corresponding to 
epilepsy: a) an interictal EEG sample in dataset D, b) an 
ictal EEG sample in dataset E. The length of each EEG 

sample is 4097. 

In this paper, the public database [29], came from 
Department of Epileptology, Bonn University, 
Germany, is used for testing classification 
performance of the extracted feature. The EEG 
dataset D and dataset E are used in the classification 
experiment, each of which contained 100 single-
channel EEG data of 23.6 s time duration. The 
dataset D was composed of intracranial EEGs 
recorded during interictal periods. The EEG signals 
in dataset E were recorded during ictal periods. 
They were all measured through using deep 
electrodes placed within the epileptogenic zone of 
the brain. The EEGs of two datasets were taken 
from five epileptic patients experiencing pre-
surgical diagnosis. All EEG signals were recorded 
with the same 128-channel amplifier and digitized at 
173.6 samples per second at 12-bit resolution. Each 

datum had 4097 sampling points. Fig.2 (a) and (b) 
depict examples of interictal EEG and ictal EEG, 
respectively. 
 
 
3.2 Performance Evaluation Parameters 
In experiment section, the interictal EEGs and the 
ictal EEGs are regarded as the positive class and the 
negative class, respectively. The classification 
performance of the extracted feature is evaluated by 
using parameters such as sensitivity (SEN), 
specificity (SPE), and overall accuracy (ACC), 
which are shown in equations (10), (11), and (12), 
respectively[14]. 

,
FNTP

TPSEN
+

=                   (10) 

the number of true positives (TP) divided by the 
total number of interictal EEG signals labelled by 
the EEG experts. TP stands for the interictal EEG 
signals recognized by both the detection algorithm 
and the EEG experts. False negative (FN) is the 
number of interictal signals labelled epileptic by the 
detection algorithm. 

,
FPTN

TNSPE
+

=                   (11) 

the number of true negatives (TN) divided by the 
total number of ictal EEG signals labelled by the 
EEG experts. TN stands for the ictal EEG signals 
recognized by both the detection algorithm and the 
EEG experts. False positive (FP) is the number of 
epileptic signals labelled interictal by the detection 
algorithm. 

,
FPTNFNTP

TNTPACC
+++

+
=         (12) 

the number of correctly recognized EEG signals 
(TP+TN) divided by the total number of EEG 
signals. 
 
 
3.3 Classification Experiment Results and 
Discussion 
In this experiment section, the local maximum 
values of the EEG signals are used for time series 
segmentation. For the purpose of testing the 
classification performance of the extracted feature, 
two hundred interictal EEG samples and 200 ictal 
EEG samples, which are respectively taken out from 
the dataset D and dataset E, constitute the test set. 
Each original datum in the two datasets is divided 
up into two equal-length sections of 2048 points and 
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the two sections are used as two independent 
samples. Then the time series complex networks 
(TSCN) of the 400 test samples are constructed and 
the cluster coefficient distributions (CCD) of all the 
resulting TSCNs are calculated. 

 
Fig.3 The cluster coefficient distributions of the 

resulting complex networks constructed from the 200 
interictal test EEG samples in the test dataset. The length 

of each test sample is 2048. 

 
Fig.4 The boxplots for total appearing probabilities of 
the cluster coefficients belong to the Ith subinterval shown 

in Fig.3. 

According to equation (7), P(I) is total appearing 
probability of cluster coefficients belong to the Ith 
subinterval. The CCD of one EEG test sample 
contains twelve P(I)s. In order to find the similarity 
of CCDs in each category and the difference of 
CCDs between two categories, in Fig.3 the Ith total 
appearing probabilities P(I)s, which come from 
every interictal test samples’ CCD, are shown 
together in the Ith subinterval, and all the same to the 
CCDs of ictal test samples, shown in Fig.5. 

In Fig.4 and Fig.6, the Ith boxplot contains 200 
P(I)s in the Ith subinterval come from the interictal 
test EEGs or the ictal test EEGs, respectively. These 

boxplots may clearly display the distribution of 
P(I)s, i.e., two hundred total appearing probabilities 
of cluster coefficient in the Ith subinterval. 

 
Fig.5 The cluster coefficient distributions of the 

resulting complex networks constructed from the 200 
ictal test EEG samples in the test dataset. The length of 

each test sample is 2048. 

 
Fig.6 The boxplots for total appearing probabilities of 
the cluster coefficients belong to the Ith subinterval shown 

in Fig.5. 

It can be seen from Fig.3 that, for all the 
interictal test samples, P(I)s in each subinterval I are 
very similar. For the ictal test EEG samples shown 
in Fig.5, the same conclusion is obtained. That is to 
say that the CCDs of the samples in the same 
category, such as ictal set or interictal set, have very 
similar distribution form. 

In Fig.4, P(3) in the 3rd subinterval distributes 
near 0.1943, whereas P(3) distributes near 0.0642 in 
Fig.6. The P(4) and P(6) distribute near 0.1470 and 
0.0930 in Fig.4, respectively, whereas the P(4) and 
P(6) distribute near 0.0617 and 0.0824 in Fig.6, 
respectively. These results suggest that the CCD 
shapes of interictal test samples are significant 
different from the CCD shapes of ictal test samples. 
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Moreover, the TSCN of interictal EEG has more 
nodes with smaller cluster coefficients, whereas the 
TSCN of ictal EEG has more nodes with large 
cluster coefficients. It can be concluded that the 
TSCN of interictal EEG is more complex (irregular) 
than the TSCN of ictal EEG. This confirms the 
conclusion [1] that the time series dynamic under 
epileptic interictal period is more complex than 
epileptic ictal period. 

The observed result and obtained conclusion 
indicate that the extracted feature Pclu can clearly 
characterize the difference between the dynamics of 
the EEG signals under different brain conditions in 
TSCN domain. Therefore the Pclu can be extracted 
as the classification feature to distinguish between 
the two kinds of EEG signals. 

 
Fig.7 The classification result of the extracted feature 
by a straight line. The classification accuracy is 94.50%. 

The distribution of 400 Pclus is shown in Fig.7, 
where each ‘x’ represents Pclu of one ictal test 
sample and each ‘•’ represents Pclu of one interictal 
test sample. It also can be found that the Pclus of 
ictal test samples are smaller than the interictal test 
samples except several special samples. Only 9 
interictal test samples and 13 ictal test samples are 
put into wrong category when the test samples are 
classified by the dotted line (0.4673) shown in 
Fig.7. The classification accuracy is 94.50% (with 
the sample length L is 2048). In Table 1, the 
classification performance of the approximate 
entropy and sample entropy, which are also utilized 
as extracted feature to classify the same test set ( the 
sample length is 2048), are used to compare with the 
classification performance of the extracted feature. 
The average run times of these feature extraction 
methods are also listed in Table 1. A conclusion can 
be drawn from the Table 1 that the extracted feature 
Pclu shows the best performance not only in 
classification SEN and SPE, but also in ACC. The 

run time taken by feature extraction method 
(L=2048) is slightly longer than the run time taken 
by other two entropies and the time of feature 
extraction is only 17.33% of the sample duration 
(11.8785 s). 

Table 1 The classification results of the proposed feature 
and two other features for comparison  

Feature SEN 
(%) 

SPE 
(%) 

Run  
Time(s) 

ACC 
(%) 

Approximate 
Entropy 83.00 91.50 

1.96 
±0.36 87.25 

Sample 
Entropy 91.50 84.00 

1.86 
±0.34 87.75 

Pclu(2048) 95.50 93.50 
2.06 

±0.16 94.50 

Pclu(1024) 91.50 91.50 
0.66 

±0.01 91.50 

Table 2 lists the accuracies of several established 
epilepsy automatic classification algorithms, which 
are combined with the SVM classifier and applied to 
the same epileptic EEG dataset. Here, the DFA-α is 
the scaling exponent of the detrended fluctuation 
analysis of epileptic EEG. The results of 
approximate entropy combined with SVM and 
sample entropy combined with SVM are obtained 
based on the results listed in Table 1. Table 2 shows 
that the single feature classification algorithm based 
on the Pclu proposed in this study achieves the 
highest classification accuracy compared with other 
established classification algorithms, which 
combined with classifier. To some extent, this result 
also shows that the feature, Pclu, extracts more 
essential information than other features listed in 
Table 2, which makes Pclu conform to the main 
purpose of the feature extraction method. 

Table 2 The classification accuracies of different 
epileptic EEG classification algorithms applied into the 

same epileptic EEG dataset 

Feature ACC (%) 

DFA-α + SVM[10] 82.00 

Hurst + SVM[11] 87.25 

Approximate Entropy + SVM 89.00 

Sample Entropy + SVM 91.00 

Single feature classification 
 based on Pclu  

94.50 

In order to investigate whether the length of 
sample affects the classification performance of the 
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extracted feature, each datum in the two epileptic 
EEG datasets is divided into four equal-length 
sections of 1024 points. The 2nd section and the 4th 
section are regarded as two different test samples. In 
this way, two hundred ictal test samples and 200 
interictal test samples constitute a new test set. The 
same analysis procedure is then applied to the new 
test set. From Fig.8 to Fig.11, the results of the 
CCDs and the corresponding boxplots for the two 
different kinds of EEG signals are displayed. 

 
Fig.8 The cluster coefficient distributions of the 

resulting complex networks constructed from the 200 
interictal test EEG samples in the second test dataset. The 

length of each test sample is 1024. 

 
Fig.9 The boxplots for total appearing probabilities of 
the cluster coefficients belong to the Ith subinterval shown 

in Fig.8. 

The classification result of the extracted feature 
under the short data length is shown in Fig.12. The 
classification performance evaluation parameters, 
SEN, SPE, and ACC are listed in Table 1 (L is 
1024). Compared with sample length is 2048, the 
ACC of the extracted feature under short length is 
slightly lower, about 91.50%, but the feature 
extraction time is much shorter, only 0.66 s. It can 
be concluded that as the data length become short 

the classification accuracy of the extracted feature is 
slightly low, but the feature extraction time has 
decreased significantly. 

 
Fig.10 The cluster coefficient distributions of the 

resulting complex networks constructed from the 200 
ictal test EEG samples in the second test dataset. The 

length of each test sample is 1024. 

 
Fig.11 The boxplots for total appearing probabilities of 
the cluster coefficients belong to the Ith subinterval shown 

in Fig.10. 

 
Fig.12 The classification result of the extracted feature 
by a straight line. The classification accuracy is 91.50%. 
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4 Conclusion 
In this paper, a novel feature extraction method for 
epileptic EEG is proposed, which can be applied 
into the detection of interictal EEG and ictal EEG. 
The proposed scheme firstly construct the node set 
of time series complex network (TSCN) according 
to local maximum and the edge set of TSCN is 
constructed based on the similarity between every 
two nodes. Then the cluster coefficients of all the 
nodes in the TSCN and the cluster coefficient 
distribution (CCD) are calculated. At last, the partial 
sum of CCD, Pclu, is defined and extracted as the 
classification feature. The classification 
performance of Pclu is evaluated by classifying two 
kinds of epileptic EEGs. Experimental results show 
that the Pclu can clearly describe the essential 
difference between the two kind signals and 
achieves the higher classification accuracy up to 
94.50% (L=2048). The feature extraction time for 
one EEG sample with 2048 sampling points is 
approximately 2.06 s, which is shorter than the EEG 
sample’s time duration (11.8 s). Taking into account 
these advantages, the feature proposed in this paper 
shows its great potentiality for real-time detection of 
epileptic seizure. 
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