
ANN Models Optimized using Swarm Intelligence Algorithms

N. KAYARVIZHY1, S. KANMANI2, R.V. UTHARIARAJ3
1Assistant Professor, Department of Computer Science and Engineering

AMC Engineering College
12th K.M., Bannerghatta Road, Bangalore – 560083
2Professor, Department of Information Technology

Pondicherry Engineering College
Puducherry – 605014

3Professor and Director, Ramanujam Computing Centre,
Anna University, Chennai – 25, Tamil Nadu

INDIA
1kayarvizhy@gmail.com, 2kanmani@pec.edu, 3rhymend@annauniv.edu

Abstract: - Artificial Neural Network (ANN) has found widespread application in the field of classification.
Many domains have benefited with the use of ANN based models over traditional statistical models for their
classification and prediction needs. Many techniques have been proposed to arrive at optimal values for
parameters of the ANN model to improve its prediction accuracy. This paper compares the improvement in
prediction accuracy of ANN when it is trained using warm intelligence algorithms. Swarm intelligence
algorithms are inspired by the natural social behaviour of a group of biological organisms. Models have been
formulated for evaluating the various ANN-Swarm Intelligence combinations. Fault prediction in Object
oriented systems through the use of OO metrics has been considered as the objective function for the models.
The swarm intelligence algorithms considered in this paper are Particle Swarm Optimization, Ant Colony
Optimization, Artificial Bee Colony Optimization and Firefly. The object oriented metrics and fault
information for the analysis have been taken from NASA public dataset. The models are compared for their
convergence speed and improvement in prediction accuracy over traditional ANN models. The results indicate
that Swarm Intelligence Algorithms bring improvement over ANN models trained with gradient descent.

Key-Words: - Artificial Neural Network, Swarm Intelligence, Particle Swarm Optimization, Ant Colony
Optimization, Artificial Bee Colony Optimization, Firefly

1 Introduction

Artificial Neural Network (ANN) is a mathematical
model inspired by the biological neural networks.
ANN is a non-linear mapping model and has been
successfully applied in many domains like
bankruptcy prediction [6], [34], [57], handwriting
recognition [20], [31], product inspection [50], [35]
and in fault detection [8], [22]. ANN is also a
widely accepted choice of fault prediction model
[2], [27], [30]. ANN is adaptive as it can change its
structure based on the information that flows
through the network. This adaptability is achieved
by training the ANN with known data set. In an
ANN based prediction model, prediction accuracy
can be improved by finding optimal parameter
values for the model.

 Optimal values can be found for ANN
parameters like number of input neurons, hidden
layers, hidden neurons, activation function and
weight values. Since weight values are the key to a
well trained ANN, finding the optimal weight values
of ANN has been considered in many research
studies. ANN can be trained using many techniques.
Gradient Descent (GD) algorithm is a widely used
ANN training technique due to its inherent
simplicity and ease of implementation. In GD, an
error function computes the difference between the
observed and predicted values and hill climbing or
descent is used to find the weight values which
reduce the error. Studies have confirmed that
gradient descent is prone to the following problems
– it may get stuck at a local optimum [28] and it
may take a very long time to converge [47].

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 501 Volume 13, 2014

mailto:kayarvizhy@gmail.com
mailto:kanmani@pec.edu
mailto:rhymend@annauniv.edu

This led researchers to focus on the ANN training
mechanism. Swarm intelligence algorithms are a set
of generic, population based, meta-heuristic
optimization algorithms. They are inspired by the

natural process of social-behavior among a group of
organisms. Swarm algorithms are known to have
good exploration and exploitation capabilities in
solution space compared to traditional algorithms.
This helps them to avoid getting caught in a local

Table 1 List of Swarm Intelligence Algorithms

Algorithm Author Year

Particle Swarm Optimization Kennedy & Eberhart 1995

Ant Colony Optimization Dorigo & Di Caro 1999

Artificial Bee Colony Karaboga & Basturk 2007

Artificial Cooperative Search Pinar Civicioglu 2012

Artificial Immune Systems Dasgupta 1999

Bat Algorithm Xin-She Yang 2010

Charged System Search Kaveh & Taletahari 2010

Cuckoo search Xin-She Yang 2009

Differential search algorithm Pinar Civicioglu 2012

Firefly algorithm Xin-She Yang 2009

Glowworm swarm optimization Krishnanand & Ghose 2005

Gravitational search algorithm Saryazdi et al. 2009

Intelligent water drops Shah-Hosseini 2007

Krill herd algorithm Gandomi & Alavi 2012

Magnetic optimization algorithm Tayarani 2008

Multi-swarm optimization Blackwell & Branke 2004

River formation dynamics Rubio et. al. 2007

Self-propelled particles Vicsek et al. 1997

Stochastic diffusion search Bishop 1992

Group Search Optimizer He et. al 2006

Fish Swarm Algorithm Li et. al 2002

Bacterial Foraging Optimization Passino 2002

Shuffled Frog Leaping Algorithm Muzzaffar & Kevin 2003

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 502 Volume 13, 2014

optimal solution. Swarm intelligence algorithms
have been adopted for use in various optimization
problem domains. A number of swarm intelligence
algorithms have been proposed. Table 1 gives
details on some of the swarm intelligence
algorithms that have been proposed. We consider
four popular swarm intelligence algorithms for our
study – Particle Swarm Optimization (PSO), Firefly,
Artificial Bee Colony (ABC), Ant Colony
Optimization (ACO).

2 Related Work
ANN has been used in a wide variety of applications
like fault detection in Analog Circuits [62],
classification of electrical disturbances [45],
classifying structured patters [58], classification in
time varying environment [52], electro-cardiogram
analysis [48], [25]. ANN has also been successfully
used in the food industry [14], power transmission
[3] and noisy data classification [59]. Many research
studies have focused on ANN Training.
Traditionally, feed forward ANN has been trained
with gradient descent using back propagation [51].
Improvements on the back propagation techniques
like scale gradient conjugate back propagation [44],
conjugate gradient back propagation with Polak-
Riebre updates , conjugate gradient back
propagation with Fletcher-Reeves updates , one
secant back propagation [64], resilient back-
propagation [40] were attempted. Other attempts
include Marquardt algorithm [21], [56] enhanced
heuristic training [11], [53] accelerated convergence
[36], [43], [24], recursive training [4] and adaptive
algorithms [32], [49].
 ANNs have been trained using Evolutionary
algorithms. Evolutionary algorithms are a subset of
evolutionary computation in Artificial Intelligence.
They are a general population based meta-heuristic
optimization algorithms. Evolutionary algorithms
are inspired by the biological process of evolution,
reproduction, mutation, recombination and
selection. Genetic Algorithms (GA) are one of the
most popular evolutionary algorithms. Ganatra, et
al. [19] investigated the application of genetic
algorithm in training an artificial neural network.
They conclude that ANN-GA has increased
convergence speed and the local optima problem is
overcome compared to ANN-BP. Feng, et. al. [17]
used ANN-GABP for estimating cost of software
projects. Compared with the general ANN-BP
model, the ANN-GABP model has lower forecast
errors in lesser iterations. They conclude that GABP
model is appropriate for construction cost
estimation. Alba and Chicano [5] have trained ANN
with hybrid GA. Other evolutionary algorithms like

Differential Evolution algorithms have been applied
to ANN with good results [23], [55].
 Swarm Intelligence algorithms have been
applied to train ANN [69], [70], [71]. Particle
Swarm Optimization is a heuristic algorithm
proposed by Kennedy [29]. Bashir and El-Hawary
[9] have employed the PSO technique to train ANN
for load forecasting. Yogi et. al [63] have applied
PSO to train a functional link ANN and noted that it
improves the classification capability compared to
traditional neural networks. Zhang and Wu [65]
have used an adaptive chaotic PSO to train ANN for
crop classification and have confirmed the
superiority of ANN-PSO to various BP techniques.
Other ANN-PSO studies also confirm an
improvement over traditional ANN models [7], [54],
[37]. Firefly algorithm [61], is a popular swarm
intelligence algorithm. Nandy, et al. [46] has trained
ANN for dynamic systems using Firefly and
concluded that Firefly trained ANN takes lesser
iterations for convergence compared to traditional
ANN based on BP. Ant colony optimization [15] is
a probabilistic technique in the swarm intelligence
family. Kumar et al. [33] trained ANN using Ant
colony optimization and applied it to biometric
fusion. They found that it contributed significantly.
Chen, et al. [12] constructed an ANN based on Ant
colony optimization. They used it for optimizing
discounted cash flows in project scheduling.
McMullen [42] applied ANN-Ant colony for JIT
sequencing problem. Artificial Bee Colony
algorithm is another swarm intelligence algorithm
that has been successfully used to train ANN. It has
been used for software defect prevention by
Farshidpour and Keynia [16]. They benchmarked
the performance of ANN-ABC against ANN trained
with the standard BP. Their experimental result
showed that the performance of ANN-ABC was
better than ANN-BP. Zhang et. al. [66] constructed
a scaled chaotic artificial bee colony (SCABC).
They used SCABC as training algorithm for an
ANN and compared it with traditional training
methods like BP, momentum BP, GA, elite GA with
migration, simulated annealing. The used it for
magnetic resonance brain image classification. They
concluded that SCABC performs better than these
algorithms both in lesser mean square error and
better classification accuracy. ANN-ABC has been
used in other classification problems [41].
 There is a need for comparing various
swarm intelligence algorithms in their ability to
train ANN for predicting faults in OO systems. We
also felt a need for testing different set of algorithm
parameters to arrive at the optimal set of parameters
giving the best prediction accuracy. This motivated

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 503 Volume 13, 2014

us to build an ANN model for predicting object
oriented software quality using OO metrics and train
it using different swarm intelligence algorithms.

3 Metrics
A key element of any engineering process is
measurement. Measurement can be used to better
understand the attributes of the models that are
created and used to assess the quality of engineered
products or system built. Measure of internal
product attributes provides a real-time indication of
the efficacy of the requirements, design, code and
test cases and the overall quality of the software to
be built [18].
 Software quality of systems depends on the
internal attributes of the software like size, coupling,
and cohesion. These internal attributes can be
measured and assigned a value - software metrics.
Software quality is reflected only through its
external attributes like reliability, usability and
efficiency. These external attributes are referred to
as the quality indicators. Quality prediction models
are functions that map the internal attributes to the
external attributes. By predicting the quality
indicators (external) using the software metrics
(internal), it becomes easy to control the quality of
the product. During the development of a software
product the internal attributes are measured and fed
to the model. Based on the prediction made by the
model for the quality indicator, necessary corrective
and preventive actions can be taken. This ensures
that quality is managed even during the design and
development stage of a software product.
 Object oriented systems continue to share a
major portion of software development and
customer base for these systems is on the rise. This
is because there are huge incentives in taking the
object oriented approach. Object oriented paradigm
has features like encapsulation, data abstraction,
inheritance, polymorphism etc. to model complex
OO systems. A lot of time, money and effort are
spent in ensuring the quality of these systems.
Chidamber & Kemerer [13] proposed six measures
which are the most widely used design measures for
object oriented systems focusing on class and class
hierarchy. The metrics in the CK Metric suite are
Lack of Cohesion of Methods (LCOM), Coupling
Between Objects (CBO), Depth of Inheritance Tree
(DIT), Number of Children (NOC), Weighted
Methods per Class (WMC) and Response for a
Class (RFC). After the inception of the CK metric
suite, many have introduced new class level design
metrics. Li and Henry [38] introduced a set of
measure for the maintenance of OO system and are
validated by regression analysis. Lorenz and Kidd

[39] categorized class measures into four broad
categories as size, inheritance, internals and
externals. Abreu et. al. [1] proposed a set of metrics,
which can be applied at system level. Basili et. al.
[10] introduced a set of coupling measures for C++.
Xenos, et al. [60] surveyed the existing OO
measures and evaluated them. Thus there are many
metrics suites proposed in the literature. The general
conclusion is that these metrics are important
indicators of external quality factors.
 Design level metrics play an important role
since a bug is less costly to fix when caught in the
design phase and is not allowed to propagate
further. We have chosen the design level metrics
proposed by Chidamber and Kemerer [13].

4 Artificial Neural Network
Artificial Neural Network (ANN) is a simplified
model of the human nervous system. It is composed
of many artificial neurons that co-operate to perform
the desired functionality. ANN is an approximation
function mapping inputs to outputs. The ability to
learn and adapt to the data set makes ANN
applicable in a variety of fields. The output is based
on the ‘n’ inputs values (and weights () [67].
It is given by Eq. (1)

 (1)

The example shows a sigmoidal activation function
in Eq. (2), where y is the slope parameter and ‘x’ is
the input,

 (2)

The artificial neurons can be combined to form an
artificial neural network. The neurons in input layer
map the various inputs values. One or more hidden
layers with neurons map the input neurons to the
output neurons. The number of output neurons
depends on the number of output variables that we
plan to map. Weights exist between input-hidden
layers and hidden-output layers.

 ANN exhibits some remarkable properties
like adaptability, learning by examples and
generalization which makes it an ideal candidate for
pattern classification problems. Fault prediction is a
subset of classification problem where the fault
prone modules need to be identified and tagged. In
the case of object oriented systems the lowest level
of abstraction is a class. The prediction models like
ANN identify classes that could be faulty and tag
them. The development team can then work on the

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 504 Volume 13, 2014

tagged classes and design them better. The first step
in the creation of a good fault prediction model
based on ANN, involves providing known
information with which the model can be trained. In
our case we need to have class level metrics data
along with the fault details. The ANN model is
trained using this information. Once trained the
ANN model is ready to be used on new data set
where only the metrics are known and fault has to
be predicted. The ANN model is used to predict
whether the classes in the new data set are likely to
be faulty or not. A well trained ANN has a higher
probability of predicting fault-prone classes. The
probability is captured by the prediction accuracy
which is the percentage of correct classifications
compared to the overall classification. The
prediction accuracy of an ANN fault prediction
model depends on various factors like model
parameters, dataset, domain etc

4.1 ANN Parameter Optimization
ANN is a complex model and its prediction
accuracy can be improved by optimizing its
parameters. The parameters that can be optimized in
an ANN can be grouped under the following
categories

1. Architecture
a. Number of input neurons
b. Number of hidden layers and hidden

neurons
c. Number of output neurons

2. Training
a. Weights
b. Training algorithm
c. Training epochs

3. Transfer function
4. Data

a. Selection
b. Pre-processing
c. Quantity and quality

5 Swarm Intelligence Algorithms
A swarm is defined as a large number of insects or
other organisms. Swarm behavior is a collective
behavior exhibited by the swarm with the ability to
communicate directly or indirectly with each other.
The swarm collectively carries out a distributed
problem solving through the swarm behavior.
Swarm intelligence [29] is the discipline that deals
with natural and artificial systems composed of
many individuals that coordinate using
decentralization and self organization. The
individual organisms in the swarm follow very
simple rules with no central control. Even random
communication between the organisms in the swarm

eventually results in an intelligent overall behavior.
The organisms might not be even aware of this
global intelligence. Many swarm intelligence exists
in nature like termite colonies, ant colonies, bird
flocking, bee colonies, schools of fish etc.
 There are certain common traits in all
swarm intelligence algorithms. The swarm is
composed of many individual organisms. The
organisms are homogeneous and communication
between the organisms is based on set rules. The
organisms have limited intelligence as individuals
but they can carry out simple tasks. Swarm
intelligence algorithms based on social behavior of
biological organisms is analyzed further in this
section.

5.1 Particle Swarm Optimization
PSO employs social learning concept to problem
solving. Birds flocking together generally exchange
valuable information on the location of the food.
When a bird learns of a promising location, its
experience grows about the surrounding. This is
hugely enhanced when the birds share the
information with one another, boosting the swarm’s
intelligence. This helps other birds to converge on
the most promising food location. PSO is widely
applied in many research areas and real world
applications as a powerful optimization technique.
Simulating the natural behavior, the PSO algorithm
has a set of particles that fly around an n-
dimensional problem space in search of an optimal
solution. To start with, the particles are distributed
randomly in the solution space.
 Each particle P in the swarm S is represented as
{X, V} where X = {x1, x2, x3… xn} represents the
position of the particle and V = {v1, v2, v3… vn}
represents the velocity of the particle. In every
iteration, the particles learn from each other and
update their knowledge regarding the whereabouts
of a good solution. Each particle keeps track of its
best solution with its corresponding position in
pbest and the swarm’s best position is tracked in
gbest. Each particle will have the influence of its
current direction, the influence of its memory
(pbest) and the influence of the swarm’s intelligence
(gbest).
 The particles update their velocity and position
based on the formula given in Eq. (3) [29]. Here ‘i’
represents the particle number, ‘d’ represents the
dimension, ‘V’ is the velocity, ‘p’ is the pbest, ‘g’
represents gbest, ‘w’ is the inertia weight, c1 and c2
are the constants for controlling the influence of pi
and g respectively, ‘x’ is the current position and
‘rp’ and ‘rg’ are random numbers between 0 and 1.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 505 Volume 13, 2014

 (3)

PSO is simple to implement with less number of
parameters to adjust. PSO has been used
successfully in function optimization, neural
network training and many more fields requiring
optimization.

Pseudo code of PSO algorithm

gbest = NULL

for i=1 to total_particles

 particle.pos = rand(poslower, posupper)

 particlebest.pos = xi

 particlebest.obj = objfunc (xi)

 if (particlebest.obj < gbest.obj)

 gbest = particlebest

 end if

 particle.vel = rand(velocitylower, velocityupper)

end for

do

 for i=1 to total_particles

 for d =1 to total_dimension

 pick random numbers : rp, rg between 0 and 1

 particleid.vel = w * particleid.vel + c1 rp
(particlebest.pos - particleid.pos) + c2

 rg (gbest.pos - particleid.pos)

 particleid.pos = particleid.pos + particleid.vel

 particleid.obj = objfunc(particleid.pos)

 if (particleid.obj < particlebest.obj)

 particlebest = particleid

 if (particlebest.obj < gbest.obj)

 gbest = particlebest

 end if

 end if

 end for

 end for

while (gbest.obj > objdesired OR iteration <

iterationmax)

5.2. Ant Colony Optimization
ACO is among the most successful swarm based. It
is well suited for discrete optimization problems and
is a probabilistic method for solving computational
problems. ACO is inspired by the behavior of ants
in finding paths from their colony to food sources.
 Biological ants, in the real world, randomly
search for food sources around their colony. But
once they find a food source, they return to their
colony leaving behind pheromone trails. When other
ants sense the trail they tend to follow the trail
instead of taking a random approach. They also
leave behind pheromones and thus reinforce the
trail. Pheromone is a chemical that evaporates after
a period of time and thus reducing in its ability to
attract ants. If the path is longer between the food
source and colony the pheromones in that path have
a greater chance of evaporating compared to a
shorter path. The shorter path will get
reinforcements frequently and hence sustain its
pheromone concentration.
 The ACO algorithm will search for an ‘n’
dimensional solution in the search space, X = {x1,
x2, x3… xn}. At every step of the ACO algorithm
there is a selection process for the next node, xi. A
probability function based on the current
pheromones levels is used. The desirability of
having nodes xi, xj in the solution is given by Dij. If
the remaining nodes to be processed are in a set S
(xi) then the probability of each of those nodes in
the set is given in Eq. (4) [15].

 (4)

The pheromone evaporation helps the ACO
algorithm to avoid converging on a local optimal
solution. In the absence of pheromone evaporation
the first random path would have been reinforced
and considered as the final solution. This would
have resulted in the algorithm not doing any search

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 506 Volume 13, 2014

on the solution space and considering the first
solution as final solution. But with pheromone
evaporation this problem is solved and when an ant
finds a shorter path from the colony to a food
source, other ants are more likely to follow the new
shorter path. This continues and the pheromone
distribution towards shorter paths eventually leaves
all the ants following the single shortest path

Pseudo code of ACO algorithm

init (ants)

init trail Ti

best trail Tb = Ti

objbest = objfunc(Tb)

initialize pheromone on the trail

iteration = 0

do

 new trail Tn = function(ants_old, pheromone,
random)

 for i=1 to total edges

 pheromone_decrease = Pdf * pheromone_old

 pheromone_increase = i ε Tn

 pheromone_new = pheromone_decrease +
pheromone_increase

 end for

 obj = objfunc(Tn)

 if obj < objbest

 objbest = obj

 end if

while (objbest > objdesired OR iteration < iterationmax)

5.3. Artificial Bee Colony Optimization

The swarm intelligence algorithms based on bees
are formulated on their foraging behavior. It
includes artificial bee colony (ABC), the virtual Bee

algorithm, the bee colony optimization algorithm
and Bee hive algorithm. In all bee swarm
optimization algorithms, an individual bee exhibits a
simple set of behaviors. The group shows a complex
overall behavior with useful properties such as
scalability and adaptability.
 In ABC algorithm, the colony of artificial bees
can be grouped into three types: employed bees,
onlookers and scouts. Each food source discovered
so far is tracked by an employed bee. Hence, the
number of food sources is equal to employed bees.
The food source is the solution candidate and is
coded with an ‘n’ dimensional vector X = {x1, x2,
x3… xn}. The location of food sources map to the
search space of the problem and the best food
source is the most qualified optimized solution for
the problem. An employed bee computes a modified
position from her memorized food location
depending on the local information and tests the
quality of food on the new source (new solution). If
the new location is a better food source compared to
the previous one, the bee memorizes the new
position and forgets the old one. After all employed
bees complete the search process they share new
food source information and their position
information with the onlooker bees on the dance
area. Onlooker bees wait on the dance area and
select food sources based on the dance performed by
the employed bees. The onlooker bees choose the
solution based on the Eq. (5) below [68]

 (5)

Onlooker bees visit the food source that they select
and identify a nearby modified source. They
evaluate and choose between the original and new
source. To get a nearby food source Eq. (6) is used,
where Rand is a random number between -1 and 1

 (6)

The employed bees whose sources were abandoned
become scouts and go in search of new food
sources. The scout discovers a new food source by
employing Eq. (7), where Rand is a random number
between 0 and 1

 (7)

The algorithm avoids getting into local optimum by
having the scouts perform a random global search
for new food sources.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 507 Volume 13, 2014

Pseudo code of ABC algorithm

init totalbees

init beesemployed, beesonlooker , scout_limit

totalobj = 0

for i=1 to beesemployed

 beei = random (for each dimension)

end for

do

 for i=1 to beesemployed

 dim = random(1,dimensions)

 beemodifiedi = random (beei,dim)

 objmodified = function(beemodifiedi)

 obji = function(beei)

 if (objmodified > obji)

 obji = objmodified

 beei = beemodifiedi

 end if

 totalobj = totalobj+obji

 end for

 for i=1 to beesemployed

 probi = 0.9 * obji/totalobj + 0.1

 end for

 for i=1 to beesonlooker

 beechosen = choose employed bee based on
probi

 dim = random(1,dimensions)

 chosenmodifiedi = random (beechosen,dim)

 objmodified = function(chosenmodifiedi)

 obji = function(beechosen)

 if (objmodified > obji)

 beechosen = chosenmodifiedi

 end if

 end for

 for i=1 to beesemployed

 if not chosen for limit times

 beei = random (for each dimension)

 end if

 end for

while (objbest > objdesired OR iteration <
iterationmax)

5.4. Firefly algorithm
The Firefly algorithm (FA) is a meta-heuristic
algorithm that is inspired by the flashing behavior of
fireflies. It can be used for constrained optimization
tasks. The flashing behavior of fireflies occurs due
to the bioluminescence phenomenon. Fireflies can
control their flashing behavior based on external
stimulus. They use it to attract other fireflies or
prey. In a Firefly algorithm, a population of fireflies
is considered. These fireflies get attracted to each
other based on the intensity of light that they emit.
The firefly would get attracted towards a firefly that
has highest luminescence. The solution space is
mapped on to the fireflies and the quality of solution
of each firefly is directly proportional to the level of
intensity of its flashing. Thus fireflies with better
solutions attract its partners (regardless of their sex),
which makes the search space exploration efficient.
The candidate solutions mapped as fireflies are
denoted by X = {x1, x2, x3… xn}. The fireflies ‘i’
and ‘j’ move towards each other based on the Eqs.
(8)-(10) below where Distij is the distance between
the two fireflies, β, γ are algorithm optimization
parameters.

 (8)

 (9)

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 508 Volume 13, 2014

 (10)

Three basic rules are followed during the movement
of firefly towards each other.

• All fireflies are unisex and hence they would move
towards the brighter firefly regardless of the sex.

• The degree of attractiveness of a firefly to another
firefly is directly proportional to its brightness. So
the less bright firefly would move towards the
brighter firefly. Distance is inversely proportional
to brightness. As the distance increases between
two fireflies the perceived brightness decreases
between them. This is because of the fact that the
air absorbs light. If there is no brighter firefly than
a particular one it will then move randomly.

• The objective function of a problem domain
determines the brightness or light intensity of a fire
fly.

Pseudo code of Firefly algorithm

for i=1 to numfireflies

 fireflyi = random(for all dimensions k)

 Ii = function(fireflyik)

end for

iteration = 0

do

 for i = 1 to n

 for j=1 to n

 for k = 1 to dimensions

 distance = fireflyik – fireflyjk *

 fireflyik – fireflyjk

 end for

 distance = sqrt(distance)

 if (Ii > Ij)

 for k = 1 to dimensions

 T = alpha * (distance – 0.5) *

 (upper – lower)

 fireflyik – fireflyik * (1 – beta) +

 fireflyik * beta + T

 end for

 end if

 update Ii = function(fireflyi)

 end for

end for

rank fireflies and find current best

while (objbest > objdesired OR iteration <
iterationmax)

6 ANN Training using Swarm
Intelligence Algorithms
Adapting the swarm intelligence algorithm to train
the ANN involves the following generic steps
irrespective of which Swarm Intelligence Algorithm
is considered. Since the weights of the ANN need to
be optimized they need to be tracked as the
fundamental entity depending on the Swarm
Intelligence algorithm. The problem space contains
the combinations of all possible weight values for
the ANN. This search space is of n-dimensions
where n is the total number of weights that needs to
be optimized. The Swarm Intelligence Algorithm is
applied and objective function is based on the
prediction accuracy of ANN. The weights are
mapped to the required entity of the algorithm, like
a particle’s position in PSO, the position of firefly or
the trails that ants need to take in ACO. While
evaluating the fitness in Swarm Intelligence, the
weights are assigned to the ANN and its prediction
accuracy is found. If the fitness is the best so far it
will be taken as the best combination of weights and
hence the best solution so far according to the
Swarm Intelligence Algorithm. The steps for a ANN
optimized using Swarm Intelligence is given below
and summarized below in Fig. 1.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 509 Volume 13, 2014

Fig. 1 ANN Swarm Model

 Pseudo code of ANN-Swarm algorithm
• Define the ANN architecture – number of

input, hidden and output neurons.

• Identify the fitness function which returns the

error as difference of actual and predicted

output for the ANN.

• Initiate a swarm of ‘x’ organisms with

random weights of ‘n’ dimension where n is

the total number of weights that needs to be

optimized for the ANN. The weights have to

be mapped to one of the factors of the swarm

intelligence algorithm. For example in PSO it

is mapped to the position of the particle.

• For each iteration do this to the x organisms

o Find the fitness of each organism as

defined in Step 2. The fitness function

is again dependent on the swarm

intelligence algorithm. For example

in ANN-FA the intensity of the FA is

determined as the prediction

accuracy of ANN.

o Update the best solution so far

o Update algorithm parameters for

next iteration

Do the steps till the iterations are completed
or required prediction accuracy is obtained

7 Empirical Study
We have conducted two types of empirical study. In
the first study we compare the prediction accuracy
and time taken by ANN-GD model with various
ANN-Swarm intelligence algorithm models. In the
second study, we compare our ANN-PSO and
ANN-ABC models with existing models having
different set of parameters.

7.1. Data Set
Ten projects were considered for the study. The
metrics and bug information were collected from the
NASA public dataset. Projects were chosen that
differed in the size of samples. Different versions of
the same project were also chosen. The metrics
chosen for the study are listed in Table 2 and their
statistical significance is given in Table 3.

Table 2 Metrics considered for the study

Metric Definition

WMC Weighted Method per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 510 Volume 13, 2014

RFC Response For a Class

LCOM Lack of Cohesion in Methods

LCOM3 Lack of Cohesion in Methods

CA Afferent Coupling

CE Efferent Coupling

NPM Number of Public Methods

DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Abstraction

CAM Cohesion Among Methods

IC Inheritance Coupling

CBM Coupling Between Methods

AMC Average Method Complexity

CC McCabe’s Cyclomatic Complexity

LOC Lines of Code

7.2. Comparison of ANN-GD with ANN-Swarm
Intelligence Algorithms
Five ANN models were used in this study. ANN
architecture of all the models had one input layer
with 20 neurons mapping each of the metric in the
data set. We opted for one hidden layer with 50
hidden neurons after testing a wide variety of
values. We had one output layer with a single
neuron to map the prediction accuracy of the model.
While this particular ANN architecture cannot be
considered as optimal, it is still sufficient to
compare the accuracy and performance of the
various ANN models. The parameters of swarm
intelligence algorithms were arrived at after
experimenting with different values taken from
literature survey. The models were implemented in
Visual C++ IDE as integrated software. The
software picks different comma separated value
(CSV) data files containing metrics and bug data
from a folder and executes the models with this
data. It computes the accuracy and time taken by
each algorithm. The software was run on a Dell
Inspiron 1525 laptop with a dual core processor
running at 1.2 GHz, 2 GB of RAM and using
Windows 8 operating system.

 The comparison of the models was based on
prediction accuracy – percentage of correctly
mapped bug data and time taken in seconds to
converge at the solution.
7.2.1. Training using back propagation
Gradient descent is the most widely used back
propagation algorithm for training the ANN. It is
simple to implement but has disadvantages of
getting caught in a local optima. It also takes a
longer duration to converge on the optimal solution.
The learning rate chosen was 0.001. Momentum
was set at 0.9 and 1000 epochs were performed on
the input data sets. The activation function was a
simple sigmoidal function
7.2.2. Training using ANN-PSO algorithm
Adapting the PSO algorithm to train the ANN
involves the following steps. Since the weights of
the ANN need to be optimized, they need to be
tracked as the position of the particles in the PSO
algorithm. The problem space contains the
combinations of all possible weight values for the
ANN. This search space is of n-dimensions where n
is the total number of weights that needs to be
optimized. Each particle has a position vector and a
velocity vector of n-dimensions. The PSO particles
fly around this search space and come up with the
optimal set of weights. While evaluating the fitness
of a particle in PSO, the weights are assigned to the
ANN and its prediction accuracy is found. This
provides the fitness for the particle. If the fitness is
the best so far for the particle it will be taken as its
personal best and if it is the best so far for the
swarm, it would be considered as global best. The
global best position after a desired number of
iterations yield the optimized weights for the ANN.
The following PSO parameters were used. Twenty
particles were used for 100 iterations. The inertia
weight was set at 0.529. Both local (c1) and global
weights (c2) were set to 1.4944

7.2.3. Training using ANN-Firefly algorithm
In the ANN-Firefly algorithm we mapped the
weights as the position of the fireflies. The flashing
behaviour of the firefly indicates the prediction
accuracy of the ANN using the position of the
firefly as training weights. Thus an ANN with
higher prediction becomes the most attractive firefly
and other fireflies converge towards it. The
parameters of an ANN-Firefly algorithm were taken
after analyzing similar studies in the literature. The
number of fireflies was taken as 20 and the
iterations were kept at 100. Alpha, beta and gamma
were taken as 0.5, 0.2 and 1.0.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 511 Volume 13, 2014

 7.2.4. Training using ANN-ABC algorithm
In ANN-ABC the weights of ANN are mapped to
the food sources of ABC. The fitness values of the
food source are measured with an objective
function. The objective function provides the
prediction accuracy through ANN. A colony size of
40 was considered for the experiment out of which
20 were employed bees tracking as many food

sources. The improve limit was kept at 100. So, any
employed bee, whose food source could not be
improved after 100 trials, will become a scout and
search for a new food source to track. The foraging
cycle was kept at 100.

Table 3 Statistical highlights of the data

Metric Min 25Q Mean Median 75Q Max SD

WMC 0 3 9.55 6 12 252 12.90

DIT 0 1 1.88 1 3 6 1.23

NOC 0 0 0.47 0 0 39 2.36

CBO 0 3 9.75 6 11 448 18.13

RFC 0 6 23.83 15 30 511 30.22

LCOM 0 0 94.11 4 33 29258 654.13

CA 0 1 4.72 1 4 446 17.19

CE 0 0 4.68 3 7 76 6.26

NPM 0 2 7.84 4 9 231 11.54

LCOM3 0 0.58 1.10 0.85 2 2 0.70

LOC 0 21 167.69 63 171 7956 355.01

DAM 0 0 0.61 1 1 1 0.48

MOA 0 0 0.74 0 1 24 1.50

MFA 0 0 0.36 0 0.82 1 0.41

CAM 0 0.30 0.49 0.44 0.67 1 0.26

IC 0 0 0.35 0 1 4 0.58

CBM 0 0 0.66 0 1 21 1.76

AMC 0 4.5 14.14 8.86 16.33 894.5 24.88

MAX_CC 0 1 2.68 1 3 95 4.13

AVG_CC 0 0.67 1.02 0.96 1.14 10 0.73

FAULTS 0 0 0.39 0 0 28 1.36

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 512 Volume 13, 2014

7.2.5. Training using ANN-ACO algorithm
In ANN-ACO the ant trail maps the weights of
ANN. The fitness of the trail is evaluated based on
the performance of ANN. The pheromone effect
helps the ANN-ACO from getting caught in local
optima. The algorithm takes 100 ants with 200 stops
for each ant. The pheromone evaporation time was
fixed at 20 iterations.

7.2.6. Results
The comparison results of ANN-GD and ANN-
Swarm intelligence algorithms have been listed in
Table 4 and Table 5.

Table 4 indicates the prediction accuracy of the
various algorithms for different input and Table 5
lists the time taken. ANN-GD has an average fault
prediction accuracy of 55.75% at an average of
21.038 seconds per run. All the four models trained
using swarm intelligence algorithms perform better
than ANN-GD. ANN-Firefly has an average fault

prediction improvement percentage of 18.559%
over ANN-GD and the average time taken is 22.796
seconds. ANN-ACO has fault prediction accuracy
better than ANN-GD by 28.606% and the average
time taken is 5.568 seconds. ANN-ABC has an
improvement of 38.852% with average time of
56.339.

Table 4 Prediction Accuracy

Project ANN-GD ANN-PSO ANN-Firefly ANN-ABC ANN-ACO

Arc 67.521 87.606 88.462 88.462 85.043

Camel 1.0 94.395 96.165 95.575 96.165 96.165

Camel 1.2 19.079 64.474 43.750 52.467 37.665

Camel 1.4 33.028 83.372 46.560 77.523 74.427

Camel 1.6 26.218 80.518 20.725 53.264 34.715

Intercafe 81.482 85.185 81.482 85.185 85.185

Tomcat 68.532 91.026 86.131 88.811 88.695

Table 5 Time Taken (in seconds)

Project ANN-GD ANN-PSO ANN-Firefly ANN-ABC ANN-ACO

Arc 6.133 1.793 1.693 0.971 4.998

Camel 1.0 9.562 2.212 1.133 1.579 7.181

Camel 1.2 4.446 5.052 54.609 138.24 3.446

Camel 1.4 16.875 11.069 46.198 157.49 5.874

Camel 1.6 53.591 14.167 47.163 88.857 13.206

Intercafe 0.002 0.033 0.355 1.396 1.109

Tomcat 56.661 2.319 8.421 5.84 3.167

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 513 Volume 13, 2014

The ANN-PSO provides the best fault prediction
accuracy average of 84.04. This is a 50.75%
improvement over ANN-GD. The time taken by
ANN-PSO is also the least among the models
considered, at an average of 5.235 seconds

7.3. Comparison with parameters used by
existing ANN-Swarm Intelligence systems

In the second study we compared ANN-PSO and
ANN-ABC with parameters used in existing
systems. The motivation behind the study was to
understand the impact of modifying the algorithm
parameters based on an existing study. For ANN-
PSO a study by Ardil & Sandhu [7] was considered.
They had employed ANN-PSO for modelling
severity of faults in software systems. Parameters
from this system is denoted as ANN-PSORef in the
Table 6 below, while the parameters used in the first
study are retained as ANN-PSO.

Table 6 ANN-PSO parameters

Parameter ANN-PSO ANN-PSORef

Number of Particles 20 25

Number of iteration 100 2000

Inertia Weight 0.529 0.9

Local weight (c1) 1.4944 2

 Similar to ANN-PSO, we considered an existing
system for ANN-ABC. The parameters were taken
from an existing ANN-ABC study by Jin and Shu
[26] and named as ANN-ABCRef. The reference
system has more number of bees in the colony and
hence more food sources. The foraging cycle or
algorithm iterations in the reference system is 2000
compared to the 100 that we had for our ANN-ABC
system.

Table 7 ANN-ABC parameters

Parameter ANN-ABC ANN-ABCRef

Colony size 40 50

No of food sources 20 25

Improve limit 100 100

Foraging cycle 100 2000

This would help us to compare the prediction
accuracy and time taken between these two sets of
values. The parameters are listed in Table 7

7.3.1. Results

The parameters for the ANN-PSO and ANN-ABC
models given in the section above mainly differs in
the size of the colony and the iterations. ANN-
PSORef has 5 more particles and iterations increase
from 100 to 2000 compared to ANN-PSO. Similarly
ANN-ABCRef has 10 additional bees and the
foraging cycle increases from 100 to 2000. Table 8
indicates the prediction accuracy and time taken for
the ANN-PSO and ANN-PSORef models. Table 9
indicates the prediction accuracy and time taken in
seconds for ANN-ABC and ANN-ABCRef models.

 It can be seen from the results that in most
cases the prediction accuracy of ANN-PSORef and
ANN-ABCRef increases marginally or stays the
same compared to ANN-PSO and ANN-ABC
respectively. Minor improvments in prediction
accuracy comes at a huge cost in time taken. The
average prediction accuracy of ANN-PSORef
increases by 0.312% compared to ANN-PSO. In
case of ANN-ABCRef it is an increase of 8.763%.
However the the time taken increases by an average
of 16 seconds for ANN-PSORef and by 1300
seconds for ANN-ABCRef. In the dataset Camel 1.2
ANN-ABCRef increases from 52.467 to 64.638, an
increase of 23.19%. For the same dataset, the time
taken increases by 2268.158%. This is because, in
general, swarm intelligence algorithm converge
faster to a candidate solution. Further increase in the
number of interations or organisms gives only minor
improvements. Even the ANN- PSORef and ANN-
ABCRef models converge in 100 iterations to the
same level of accuracy as ANN-PSO and ANN-
ABC modes. In further iterations it keeps trying to
improve the accuracy. The time taken is logged only
if the accuracy improves. Since the iterations are
huge minor improvements are achieved but after
significant number of iterations and hence the time
taken increases drastically. So the parameters which
are considered for the study based on literature
review holds well and can be considered appropriate
for the data sets chosen. They provide a good
balance between prediction accuracy and time
taken.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 514 Volume 13, 2014

8 Limitations and Future Work
A subset of the available swarm intelligence
algorithms has been considered for this study.
Including other swarm intelligence algorithms could
yield precise fault prediction or faster convergence.
This study also focuses on weight optimization of
ANN. There are other parameters of ANN that can
be optimized using swarm intelligence algorithms.
Even combinations of swarm intelligence algorithm
can be attempted according to the parameters
chosen for optimization. The projects considered for
this study have been taken from NASA public
dataset. Future work could include data from open
source projects for a fair comparison.

9 Summary and Concluding remarks
In this paper we have investigated the influence of
Swarm Intelligence Algorithms in improving the
prediction accuracy of Artificial Neural Network
based fault prediction models on NASA public
datasets. Our analysis confirms that Swarm
Intelligence Algorithms considerably improve the
fault prediction capability of ANNs. We have
considered four swarm intelligence algorithms for
the comparison – particle swarm optimization, fire
fly algorithm, artificial bee colony optimization and
ant colony optimization. We also compared the
various Swarm Intelligence Algorithms for the time
taken to converge on the solution. We find that the
Particle Swarm Optimization technique has better

Table 8 Comparison of ANN-PSO and ANN-PSORef models

Project ANN-PSO ANN-PSORef ANN-PSO ANN-PSORef

Arc 87.606 88.462 1.793 10.150

Camel 1.0 96.165 96.165 2.212 2.587

Camel 1.2 64.474 65.132 5.052 63.122

Camel 1.4 83.372 83.372 11.069 27.153

Camel 1.6 80.518 80.725 14.167 31.655

Intercafe 85.185 85.185 0.033 0.303

Tomcat 91.026 91.142 2.319 17.603

Table 9 Comparison of ANN-ABC and ANN-ABCRef models

Project ANN-PSO ANN-PSORef ANN-ABC ANN-ABCRef

Arc 88.462 88.462 0.971 1.186

Camel 1.0 96.165 96.165 1.579 2.429

Camel 1.2 52.467 64.638 138.24 3273.742

Camel 1.4 77.523 83.372 157.49 413.754

Camel 1.6 53.264 80.518 88.857 654.411

Intercafe 85.185 85.185 1.396 2.864

Tomcat 88.811 91.026 5.84 5142.351

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 515 Volume 13, 2014

prediction accuracy and efficiency in time taken to
arrive at the solution compared to the other swarm
intelligence algorithms considered. We also
compared the algorithm parameters arrived at from
literature survey with parameters taken from
existing study on ANN-PSO and ANN-ABC
models. We find that there is a marginal
improvement with the parameters from existing
study at huge cost in time taken for execution. This
confirms that the parameters taken after rigorous
literature review is appropriate.

References:
[1] Abreu, F Brito, Miguel Goulao, and Rita

Esteves. “Toward the design quality evaluation
of object-oriented software systems.”
Proceedings of the 5th International Conference
on Software Quality, Austin, Texas, USA. 1995.
44-57.

[2] Aggarwal, KK, Yogesh Singh, Arvinder Kaur,
and Ruchika Malhotra. “Application of
Artificial Neural Network for Predicting
Maintainability using Object-Oriented Metrics.”
Transactions on Engineering, Computing and
Technology (Citeseer) 15 (2006): 285-289.

[3] Aggarwal, RK, QY Xuan, RW Dunn, AT Johns,
and A Bennett. “A novel fault classification
technique for double-circuit lines based on a
combined unsupervised/supervised neural
network.” Power Delivery, IEEE Transactions
on (IEEE) 14, no. 4 (1999): 1250-1256.

[4] Aladjem, Mayer. “Recursive training of neural
networks for classification.” Neural Networks,
IEEE Transactions on (IEEE) 11, no. 2 (2000):
496-503.

[5] Alba, Enrique, and J Francisco Chicano.
“Training neural networks with GA hybrid
algorithms.” Genetic and Evolutionary
Computation--GECCO 2004. 2004. 852-863.

[6] Altman, Edward I, Giancarlo Marco, and Franco
Varetto. “Corporate distress diagnosis:
Comparisons using linear discriminant analysis
and neural networks (the Italian experience).”
Journal of Banking \& Finance (Elsevier) 18,
no. 3 (1994): 505-529.

[7] Ardil, Ebru, and Parvinder S Sandhu. “A soft
computing approach for modeling of severity of
faults in software systems.” Int. J. Phys. Sci 5,
no. 2 (2010): 74-85.

[8] Bartlett, Eric B, and Robert E Uhrig. “Nuclear
power plant status diagnostics using artificial
neural networks.” Tech. rep., Tennessee Univ.,
Knoxville, TN (United States). Dept. of Nuclear
Engineering, 1991.

[9] Bashir, ZA, and ME El-Hawary. “Applying
wavelets to short-term load forecasting using
PSO-based neural networks.” Power Systems,
IEEE Transactions on (IEEE) 24, no. 1 (2009):
20-27.

[10] Basili, Victor R, Lionel C. Briand, and
Walcelio L Melo. “A validation of object-
oriented design metrics as quality indicators.”
Software Engineering, IEEE Transactions on
(IEEE) 22, no. 10 (1996): 751-761.

[11] Bello, Martin G. “Enhanced training
algorithms, and integrated training/architecture
selection for multilayer perceptron networks.”
Neural Networks, IEEE Transactions on (IEEE)
3, no. 6 (1992): 864-875.

[12] Chen, Wei-Neng, Jun Zhang, HS-H Chung,
Rui-Zhang Huang, and Ou Liu. “Optimizing
discounted cash flows in project scheduling—
An ant colony optimization approach.” Systems,
Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on (IEEE) 40, no.
1 (2010): 64-77.

[13] Chidamber, Shyam R, and Chris F Kemerer.
“A metrics suite for object oriented design.”
Software Engineering, IEEE Transactions on
(IEEE) 20, no. 6 (1994): 476-493.

[14] Di Natale, Corrado, et al. “Electronic nose
and electronic tongue integration for improved
classification of clinical and food samples.”
Sensors and Actuators B: Chemical (Elsevier)
64, no. 1 (2000): 15-21.

[15] Dorigo, Marco, Vittorio Maniezzo, and
Alberto Colorni. “Ant system: optimization by a
colony of cooperating agents.” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE
Transactions on (IEEE) 26, no. 1 (1996): 29-41.

[16] Farshidpour, Solmaz, and Farshid Keynia.
“Using Artificial Bee Colony Algorithm for
MLP Training on Software Defect Prediction.”
2012.

[17] Feng, W, W Zhu, and Y Zhou. “The
Application of Genetic Algorithm and Neural
Network in Construction Cost Estimate.” Proc.
Third International Symposium on Electronic
Commerce and Security Workshops
(ISECS'10). 2010. 29-31.

[18] Fenton, Norman E, and Shari Lawrence
Pfleeger. Software metrics: a rigorous and
practical approach. PWS Publishing Co., 1998.

[19] Ganatra, Amit, YP Kosta, Gaurang Panchal,
and Chintan Gajjar. “Initial Classification
Through Back Propagation In a Neural Network
Following Optimization Through GA to
Evaluate the Fitness of an Algorithm.” 2011.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 516 Volume 13, 2014

[20] Guyon, I. “Applications of neural networks
to character recognition.” International Journal
of Pattern Recognition and Artificial
Intelligence (World Scientific) 5, no. 01n02
(1991): 353-382.

[21] Hagan, Martin T, and Mohammad B
Menhaj. “Training feedforward networks with
the Marquardt algorithm.” Neural Networks,
IEEE Transactions on (IEEE) 5, no. 6 (1994):
989-993.

[22] Hoskins, JC, KM Kaliyur, and DM
Himmelblau. “Incipient fault detection and
diagnosis using artificial neural networks.”
Neural Networks, 1990., 1990 IJCNN
International Joint Conference on. 1990. 81-86.

[23] Ilonen, Jarmo, Joni-Kristian Kamarainen,
and Jouni Lampinen. “Differential evolution
training algorithm for feed-forward neural
networks.” Neural Processing Letters (Springer)
17, no. 1 (2003): 93-105.

[24] Jacobs, Robert A. “Increased rates of
convergence through learning rate adaptation.”
Neural networks (Elsevier) 1, no. 4 (1988): 295-
307.

[25] Jiang, Wei, and G Seong Kong. “Block-
based neural networks for personalized ECG
signal classification.” Neural Networks, IEEE
Transactions on (IEEE) 18, no. 6 (2007): 1750-
1761.

[26] Jin, Feihu, and Guang Shu. “Back
Propagation Neural Network Based on Artificial
Bee Colony Algorithm.” 2012.

[27] Kanmani, S, V Rhymend Uthariaraj, V
Sankaranarayanan, and P Thambidurai. “Object-
oriented software fault prediction using neural
networks.” Information and Software
Technology (Elsevier) 49, no. 5 (2007): 483-
492.

[28] Kartalopoulos, Stamatios V, and Stamatios
V Kartakapoulos. Understanding neural
networks and fuzzy logic: basic concepts and
applications. Wiley-IEEE Press, 1997.

[29] Kennedy, James. “Particle swarm
optimization.” In Encyclopedia of Machine
Learning, 760-766. Springer, 2010.

[30] Khoshgoftaar, Taghi M, Edward B Allen,
John P Hudepohl, and Stephen J Aud.
“Application of neural networks to software
quality modeling of a very large
telecommunications system.” Neural Networks,
IEEE Transactions on (IEEE) 8, no. 4 (1997):
902-909.

[31] Knerr, Stefan, Leon Personnaz, and Gerard
Dreyfus. “Handwritten digit recognition by
neural networks with single-layer training.”

Neural Networks, IEEE Transactions on (IEEE)
3, no. 6 (1992): 962-968.

[32] Kollias, Stefanos, and Dimitris Anastassiou.
“An adaptive least squares algorithm for the
efficient training of artificial neural networks.”
Circuits and Systems, IEEE Transactions on
(IEEE) 36, no. 8 (1989): 1092-1101.

[33] Kumar, Amioy, Madasu Hanmandlu, Harsh
Sanghvi, and HM Gupta. “Decision level
biometric fusion using Ant Colony
Optimization.” Image Processing (ICIP), 2010
17th IEEE International Conference on. 2010.
3105-3108.

[34] Lacher, R Christopher, Pamela K Coats,
Shanker C Sharma, and L Franklin Fant. “A
neural network for classifying the financial
health of a firm.” European Journal of
Operational Research (Elsevier) 85, no. 1
(1995): 53-65.

[35] Lampinen, Jouko, Seppo Smolander, and
Markku Korhonen. “Wood surface inspection
system based on generics visual features.”
International Conference on artificial neural
networks ICANN. 1995. 9-13.

[36] Levin, Esther, and Michael Fleisher.
“Accelerated learning in layered neural
networks.” Complex systems 2 (1988): 625-640.

[37] Li, Kewen, Jisong Kou, and Lina Gong.
“Predicting software quality by optimized BP
network based on PSO.” Journal of Computers
6, no. 1 (2011): 122-129.

[38] Li, Wei, and Sallie Henry. “Object-oriented
metrics that predict maintainability.” Journal of
systems and software (Elsevier) 23, no. 2
(1993): 111-122.

[39] Lorenz, Mark, and Jeff Kidd. Object-
oriented software metrics: a practical guide.
Prentice-Hall, Inc., 1994.

[40] Mastorocostas, PA. “Resilient back
propagation learning algorithm for recurrent
fuzzy neural networks.” Electronics Letters
(IET) 40, no. 1 (2004): 57-58.

[41] Mazwin Mohmad Hassim, Yana, and
Rozaida Ghazali. “Training a Functional Link
Neural Network Using an Artificial Bee Colony
for Solving a Classification Problems.” 2012.

[42] McMullen, Patrick R. “An ant colony
optimization approach to addressing a JIT
sequencing problem with multiple objectives.”
Artificial Intelligence in Engineering (Elsevier)
15, no. 3 (2001): 309-317.

[43] Miniani, AA, and Ronald D Williams.
“Acceleration of back-propagation through
learning rate and momentum adaptation.”

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 517 Volume 13, 2014

Proceedings of International Joint Conference
on Neural Networks. 1990. 676-679.

[44] Moller, Martin Fodslette. “A scaled
conjugate gradient algorithm for fast supervised
learning.” Neural networks (Elsevier) 6, no. 4
(1993): 525-533.

[45] Monedero, Inigo, Carlos Leon, Jorge
Ropero, Antonio Garcia, Jose Manuel Elena,
and Juan C Montano. “Classification of
electrical disturbances in real time using neural
networks.” Power Delivery, IEEE Transactions
on (IEEE) 22, no. 3 (2007): 1288-1296.

[46] Nandy, Sudarshan, Partha Pratim Sarkar,
Ajith Abraham, Manoj Karmakar, Achintya
Das, and Diptarup Paul. “Agent based adaptive
firefly back-propagation neural network training
method for dynamic systems.” Hybrid
Intelligent Systems (HIS), 2012 12th
International Conference on. 2012. 449-454.

[47] Narendra, Kumpati S, and Kannan
Parthasarathy. “Identification and control of
dynamical systems using neural networks.”
Neural Networks, IEEE Transactions on (IEEE)
1, no. 1 (1990): 4-27.

[48] Oien, GE, NA Bertelsen, T Eftestol, and JH
Husoy. “ECG rhythm classification using
artificial neural networks.” Digital Signal
Processing Workshop Proceedings, 1996.,
IEEE. 1996. 514-517.

[49] Park, Dong C, Mohamed A El-Sharkawi,
Robert J Marks, and others. “An adaptively
trained neural network.” Neural Networks,
IEEE Transactions on (IEEE) 2, no. 3 (1991):
334-345.

[50] Petsche, Thomas, Angelo Marcantonio,
Christian Darken, Stephen Jose Hanson, Gary
M Kuhn, and Iwan Santoso. “A neural network
autoassociator for induction motor failure
prediction.” Advances in neural information
processing systems (MORGAN KAUFMANN
PUBLISHERS), 1996: 924-930.

[51] Rumelhart, David E, Geoffrey E Hinton,
and Ronald J Williams. “Learning
representations by back-propagating errors.”
Cognitive modeling 1 (2002): 213.

[52] Rutkowski, Leszek. “Adaptive probabilistic
neural networks for pattern classification in
time-varying environment.” Neural Networks,
IEEE Transactions on (IEEE) 15, no. 4 (2004):
811-827.

[53] Samad, Tareq. “Back-propagation
improvements based on heuristic arguments.”
Proceedings of International Joint Conference
on Neural Networks. 1990. 565-568.

[54] Sharma, Kanu, Navpreet Kaur, Sunil
Khullar, and Harish Kundra. “Defect Prediction
based on Quantitative and Qualitative Factors
using PSO optimized Neural Network.” 2012.

[55] Slowik, Adam, and Michal Bialko.
“Training of artificial neural networks using
differential evolution algorithm.” Human
System Interactions, 2008 Conference on. 2008.
60-65.

[56] Suratgar, Amir Abolfazl, Mohammad
Bagher Tavakoli, and Abbas Hoseinabadi.
“Modified Levenberg--Marquardt method for
neural networks training.” World Acad Sci Eng
Technol (Citeseer) 6 (2005): 46-48.

[57] Tam, Kar Yan, and Melody Y Kiang.
“Managerial applications of neural networks:
the case of bank failure predictions.”
Management science (INFORMS) 38, no. 7
(1992): 926-947.

[58] Tsai, Hsien-Leing, and Shie-Jue Lee.
“Entropy-based generation of supervised neural
networks for classification of structured
patterns.” Neural Networks, IEEE Transactions
on (IEEE) 15, no. 2 (2004): 283-297.

[59] Wu, G, and P Huang. “A Vectorization-
Optimization-Method Based Type-2 Fuzzy
Neural Network for Noisy Data Classification.”
(IEEE) 2013.

[60] Xenos, Michalis, D Stavrinoudis, K Zikouli,
and D Christodoulakis. “Object-oriented
metrics-a survey.” Proceedings of the FESMA.
2000. 1-10.

[61] Yang, Xin-She. “Firefly algorithms for
multimodal optimization.” In Stochastic
algorithms: foundations and applications, 169-
178. Springer, 2009.

[62] Yang, Zheng Rong, Mark Zwolinski, Chris
D Chalk, and Alan Christopher Williams.
“Applying a robust heteroscedastic probabilistic
neural network to analog fault detection and
classification.” Computer-Aided Design of
Integrated Circuits and Systems, IEEE
Transactions on (IEEE) 19, no. 1 (2000): 142-
151.

[63] Yogi, Sandhya, KR Subhashini, and JK
Satapathy. “A PSO based Functional Link
Artificial Neural Network training algorithm for
equalization of digital communication
channels.” Industrial and Information Systems
(ICIIS), 2010 International Conference on.
2010. 107-112.

[64] Zakaria, Zulhadi, NAM Isa, and SA Suandi.
“A study on neural network training algorithm
for multiface detection in static images.” World
Acad Sci Eng Technol 38 (2010): 170-173.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 518 Volume 13, 2014

[65] Zhang, Yudong, and Lenan Wu. “Crop
Classification by forward neural network with
adaptive chaotic particle swarm optimization.”
Sensors (Molecular Diversity Preservation
International) 11, no. 5 (2011): 4721-4743.

[66] Zhang, Yudong, Lenan Wu, and Shuihua
Wang. “Magnetic resonance brain image
classification by an improved artificial bee
colony algorithm.” Progress in Electromagnetics
Research (EMW Publishing) 116 (2011): 65-79.

[67] Lippmann, Richard P. "An introduction to
computing with neural nets." ASSP Magazine,
IEEE 4.2 (1987): 4-22.

[68] Karaboga, Dervis. “An idea based on honey
bee swarm for numerical optimization” vol.
200. Technical report, Erciyes University,
Engineering Faculty, Computer Engineering
Department, 2005.

[69] Argha Roy, Diptam Dutta and Kaustav
Choudhury. “Training artificial neural network
using particle swarm optimization algorithm.”
International Journal of Advance Research in
Computer Science and Software Engineering 3,
no. 3, (2013): 430-434.

[70] Kawam, Ahmad AL, and Nashat Mansour.
"Metaheuristic Optimization Algorithms for
Training Artificial Neural Networks."
International Journal od Computer and
Information Tecnology–ISSN: 2279-0764.

[71] Yu, Jianbo, Lifeng Xi, and Shijin Wang.
"An improved particle swarm optimization for
evolving feedforward artificial neural
networks." Neural Processing Letters 26.3
(2007): 217-231.

WSEAS TRANSACTIONS on COMPUTERS N. Kayarvizhy, S. Kanmani, R. V. Uthariaraj

E-ISSN: 2224-2872 519 Volume 13, 2014

