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Abstract: - Artificial Neural Network (ANN) has found widespread application in the field of classification. 
Many domains have benefited with the use of ANN based models over traditional statistical models for their 
classification and prediction needs. Many techniques have been proposed to arrive at optimal values for 
parameters of the ANN model to improve its prediction accuracy. This paper compares the improvement in 
prediction accuracy of ANN when it is trained using warm intelligence algorithms. Swarm intelligence 
algorithms are inspired by the natural social behaviour of a group of biological organisms. Models have been 
formulated for evaluating the various ANN-Swarm Intelligence combinations. Fault prediction in Object 
oriented systems through the use of OO metrics has been considered as the objective function for the models. 
The swarm intelligence algorithms considered in this paper are Particle Swarm Optimization, Ant Colony 
Optimization, Artificial Bee Colony Optimization and Firefly. The object oriented metrics and fault 
information for the analysis have been taken from NASA public dataset. The models are compared for their 
convergence speed and improvement in prediction accuracy over traditional ANN models. The results indicate 
that Swarm Intelligence Algorithms bring improvement over ANN models trained with gradient descent. 
 
 
Key-Words: - Artificial Neural Network, Swarm Intelligence, Particle Swarm Optimization, Ant Colony 
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1 Introduction 

Artificial Neural Network (ANN) is a mathematical 
model inspired by the biological neural networks. 
ANN is a non-linear mapping model and has been 
successfully applied in many domains like 
bankruptcy prediction [6], [34], [57], handwriting 
recognition [20], [31], product inspection [50], [35] 
and in fault detection [8], [22]. ANN is also a 
widely accepted choice of fault prediction model 
[2], [27], [30].  ANN is adaptive as it can change its 
structure based on the information that flows 
through the network. This adaptability is achieved 
by training the ANN with known data set. In an 
ANN based prediction model, prediction accuracy 
can be improved by finding optimal parameter 
values for the model. 

 Optimal values can be found for ANN 
parameters like number of input neurons, hidden 
layers, hidden neurons, activation function and 
weight values. Since weight values are the key to a 
well trained ANN, finding the optimal weight values 
of ANN has been considered in many research 
studies. ANN can be trained using many techniques. 
Gradient Descent (GD) algorithm is a widely used 
ANN training technique due to its inherent 
simplicity and ease of implementation. In GD, an 
error function computes the difference between the 
observed and predicted values and hill climbing or 
descent is used to find the weight values which 
reduce the error. Studies have confirmed that 
gradient descent is prone to the following problems 
– it may get stuck at a local optimum [28] and it 
may take a very long time to converge [47].
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This led researchers to focus on the ANN training 
mechanism. Swarm intelligence algorithms are a set 
of generic, population based, meta-heuristic 
optimization algorithms. They are inspired by the 

natural process of social-behavior among a group of 
organisms. Swarm algorithms are known to have 
good exploration and exploitation capabilities in 
solution space compared to traditional algorithms. 
This helps them to avoid getting caught in a local 

Table 1 List of Swarm Intelligence Algorithms 

Algorithm Author Year 

Particle Swarm Optimization Kennedy & Eberhart 1995 

Ant Colony Optimization Dorigo & Di Caro 1999 

Artificial Bee Colony Karaboga & Basturk 2007 

Artificial Cooperative Search Pinar Civicioglu 2012 

Artificial Immune Systems Dasgupta 1999 

Bat Algorithm Xin-She Yang 2010 

Charged System Search Kaveh & Taletahari 2010 

Cuckoo search Xin-She Yang 2009 

Differential search algorithm Pinar Civicioglu 2012 

Firefly algorithm Xin-She Yang 2009 

Glowworm swarm optimization Krishnanand & Ghose 2005 

Gravitational search algorithm Saryazdi et al. 2009 

Intelligent water drops Shah-Hosseini 2007 

Krill herd algorithm Gandomi & Alavi 2012 

Magnetic optimization algorithm Tayarani 2008 

Multi-swarm optimization Blackwell & Branke 2004 

River formation dynamics Rubio et. al. 2007 

Self-propelled particles Vicsek et al. 1997 

Stochastic diffusion search Bishop 1992 

Group Search Optimizer He et. al 2006 

Fish Swarm Algorithm Li et. al 2002 

Bacterial Foraging Optimization Passino 2002 

Shuffled Frog Leaping Algorithm Muzzaffar & Kevin 2003 
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optimal solution. Swarm intelligence algorithms 
have been adopted for use in various optimization 
problem domains. A number of swarm intelligence 
algorithms have been proposed. Table 1 gives 
details on some of the swarm intelligence 
algorithms that have been proposed. We consider 
four popular swarm intelligence algorithms for our 
study – Particle Swarm Optimization (PSO), Firefly, 
Artificial Bee Colony (ABC), Ant Colony 
Optimization (ACO).  
 
2 Related Work 
ANN has been used in a wide variety of applications 
like fault detection in Analog Circuits [62], 
classification of electrical disturbances [45], 
classifying structured patters [58], classification in 
time varying environment [52], electro-cardiogram 
analysis [48], [25]. ANN has also been successfully 
used in the food industry [14], power transmission 
[3] and noisy data classification [59]. Many research 
studies have focused on ANN Training. 
Traditionally, feed forward ANN has been trained 
with gradient descent using back propagation [51]. 
Improvements on the back propagation techniques 
like scale gradient conjugate back propagation [44], 
conjugate gradient back propagation with Polak-
Riebre updates , conjugate gradient back 
propagation with Fletcher-Reeves updates , one 
secant back propagation [64], resilient back-
propagation [40] were attempted. Other attempts 
include Marquardt algorithm [21], [56] enhanced 
heuristic training [11], [53] accelerated convergence 
[36], [43], [24], recursive training [4] and adaptive 
algorithms [32], [49].  
 ANNs have been trained using Evolutionary 
algorithms. Evolutionary algorithms are a subset of 
evolutionary computation in Artificial Intelligence. 
They are a general population based meta-heuristic 
optimization algorithms. Evolutionary algorithms 
are inspired by the biological process of evolution, 
reproduction, mutation, recombination and 
selection. Genetic Algorithms (GA) are one of the 
most popular evolutionary algorithms. Ganatra, et 
al. [19] investigated the application of genetic 
algorithm in training an artificial neural network. 
They conclude that ANN-GA has increased 
convergence speed and the local optima problem is 
overcome compared to ANN-BP. Feng, et. al. [17] 
used ANN-GABP for estimating cost of software 
projects. Compared with the general ANN-BP 
model, the ANN-GABP model has lower forecast 
errors in lesser iterations. They conclude that GABP 
model is appropriate for construction cost 
estimation. Alba and Chicano [5] have trained ANN 
with hybrid GA. Other evolutionary algorithms like 

Differential Evolution algorithms have been applied 
to ANN with good results [23], [55]. 
 Swarm Intelligence algorithms have been 
applied to train ANN [69], [70], [71]. Particle 
Swarm Optimization is a heuristic algorithm 
proposed by Kennedy [29]. Bashir and El-Hawary 
[9] have employed the PSO technique to train ANN 
for load forecasting. Yogi et. al [63] have applied 
PSO to train a functional link ANN and noted that it 
improves the classification capability compared to 
traditional neural networks. Zhang and Wu [65] 
have used an adaptive chaotic PSO to train ANN for 
crop classification and have confirmed the 
superiority of ANN-PSO to various BP techniques. 
Other ANN-PSO studies also confirm an 
improvement over traditional ANN models [7], [54], 
[37]. Firefly algorithm [61], is a popular swarm 
intelligence algorithm. Nandy, et al. [46] has trained 
ANN for dynamic systems using Firefly and 
concluded that Firefly trained ANN takes lesser 
iterations for convergence compared to traditional 
ANN based on BP. Ant colony optimization [15] is 
a probabilistic technique in the swarm intelligence 
family. Kumar et al. [33] trained ANN using Ant 
colony optimization and applied it to biometric 
fusion. They found that it contributed significantly. 
Chen, et al. [12] constructed an ANN based on Ant 
colony optimization. They used it for optimizing 
discounted cash flows in project scheduling. 
McMullen [42] applied ANN-Ant colony for JIT 
sequencing problem. Artificial Bee Colony 
algorithm is another swarm intelligence algorithm 
that has been successfully used to train ANN. It has 
been used for software defect prevention by 
Farshidpour and Keynia [16]. They benchmarked 
the performance of ANN-ABC against ANN trained 
with the standard BP. Their experimental result 
showed that the performance of ANN-ABC was 
better than ANN-BP. Zhang et. al. [66] constructed 
a scaled chaotic artificial bee colony (SCABC). 
They used SCABC as training algorithm for an 
ANN and compared it with traditional training 
methods like BP, momentum BP, GA, elite GA with 
migration, simulated annealing. The used it for 
magnetic resonance brain image classification. They 
concluded that SCABC performs better than these 
algorithms both in lesser mean square error and 
better classification accuracy.  ANN-ABC has been 
used in other classification problems [41]. 
 There is a need for comparing various 
swarm intelligence algorithms in their ability to 
train ANN for predicting faults in OO systems. We 
also felt a need for testing different set of algorithm 
parameters to arrive at the optimal set of parameters 
giving the best prediction accuracy. This motivated 
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us to build an ANN model for predicting object 
oriented software quality using OO metrics and train 
it using different swarm intelligence algorithms. 
 
3 Metrics 
A key element of any engineering process is 
measurement. Measurement can be used to better 
understand the attributes of the models that are 
created and used to assess the quality of engineered 
products or system built. Measure of internal 
product attributes provides a real-time indication of 
the efficacy of the requirements, design, code and 
test cases and the overall quality of the software to 
be built [18]. 
  Software quality of systems depends on the 
internal attributes of the software like size, coupling, 
and cohesion. These internal attributes can be 
measured and assigned a value - software metrics. 
Software quality is reflected only through its 
external attributes like reliability, usability and 
efficiency. These external attributes are referred to 
as the quality indicators. Quality prediction models 
are functions that map the internal attributes to the 
external attributes. By predicting the quality 
indicators (external) using the software metrics 
(internal), it becomes easy to control the quality of 
the product. During the development of a software 
product the internal attributes are measured and fed 
to the model. Based on the prediction made by the 
model for the quality indicator, necessary corrective 
and preventive actions can be taken. This ensures 
that quality is managed even during the design and 
development stage of a software product. 
 Object oriented systems continue to share a 
major portion of software development and 
customer base for these systems is on the rise. This 
is because there are huge incentives in taking the 
object oriented approach. Object oriented paradigm 
has features like encapsulation, data abstraction, 
inheritance, polymorphism etc. to model complex 
OO systems. A lot of time, money and effort are 
spent in ensuring the quality of these systems. 
Chidamber & Kemerer [13] proposed six measures 
which are the most widely used design measures for 
object oriented systems focusing on class and class 
hierarchy. The metrics in the CK Metric suite are 
Lack of Cohesion of Methods (LCOM), Coupling 
Between Objects (CBO), Depth of Inheritance Tree 
(DIT), Number of Children (NOC), Weighted 
Methods per Class (WMC) and Response for a 
Class (RFC). After the inception of the CK metric 
suite, many have introduced new class level design 
metrics. Li and Henry [38] introduced a set of 
measure for the maintenance of OO system and are 
validated by regression analysis. Lorenz and Kidd 

[39] categorized class measures into four broad 
categories as size, inheritance, internals and 
externals. Abreu et. al. [1] proposed a set of metrics, 
which can be applied at system level.  Basili et. al. 
[10] introduced a set of coupling measures for C++. 
Xenos, et al. [60] surveyed the existing OO 
measures and evaluated them. Thus there are many 
metrics suites proposed in the literature. The general 
conclusion is that these metrics are important 
indicators of external quality factors. 
 Design level metrics play an important role 
since a bug is less costly to fix when caught in the 
design phase and is not allowed to propagate 
further. We have chosen the design level metrics 
proposed by Chidamber and Kemerer [13]. 
 
4 Artificial Neural Network 
Artificial Neural Network (ANN) is a simplified 
model of the human nervous system. It is composed 
of many artificial neurons that co-operate to perform 
the desired functionality. ANN is an approximation 
function mapping inputs to outputs. The ability to 
learn and adapt to the data set makes ANN 
applicable in a variety of fields. The output is based 
on the ‘n’ inputs values (  and weights ( ) [67]. 
It is given by Eq. (1) 

 (1) 

The example shows a sigmoidal activation function 
in Eq. (2), where y is the slope parameter and ‘x’ is 
the input, 

 (2) 

The artificial neurons can be combined to form an 
artificial neural network. The neurons in input layer 
map the various inputs values. One or more hidden 
layers with neurons map the input neurons to the 
output neurons. The number of output neurons 
depends on the number of output variables that we 
plan to map. Weights exist between input-hidden 
layers and hidden-output layers. 

 ANN exhibits some remarkable properties 
like adaptability, learning by examples and 
generalization which makes it an ideal candidate for 
pattern classification problems. Fault prediction is a 
subset of classification problem where the fault 
prone modules need to be identified and tagged. In 
the case of object oriented systems the lowest level 
of abstraction is a class. The prediction models like 
ANN identify classes that could be faulty and tag 
them. The development team can then work on the 
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tagged classes and design them better. The first step 
in the creation of a good fault prediction model 
based on ANN, involves providing known 
information with which the model can be trained. In 
our case we need to have class level metrics data 
along with the fault details. The ANN model is 
trained using this information. Once trained the 
ANN model is ready to be used on new data set 
where only the metrics are known and fault has to 
be predicted. The ANN model is used to predict 
whether the classes in the new data set are likely to 
be faulty or not. A well trained ANN has a higher 
probability of predicting fault-prone classes. The 
probability is captured by the prediction accuracy 
which is the percentage of correct classifications 
compared to the overall classification. The 
prediction accuracy of an ANN fault prediction 
model depends on various factors like model 
parameters, dataset, domain etc 
 
4.1 ANN Parameter Optimization 
ANN is a complex model and its prediction 
accuracy can be improved by optimizing its 
parameters. The parameters that can be optimized in 
an ANN can be grouped under the following 
categories 

1. Architecture 
a. Number of input neurons 
b. Number of hidden layers and hidden 

neurons 
c. Number of output neurons 

2. Training 
a. Weights 
b. Training algorithm 
c. Training epochs 

3. Transfer function 
4. Data 

a. Selection 
b. Pre-processing 
c. Quantity and quality 

 
5 Swarm Intelligence Algorithms 
A swarm is defined as a large number of insects or 
other organisms. Swarm behavior is a collective 
behavior exhibited by the swarm with the ability to 
communicate directly or indirectly with each other. 
The swarm collectively carries out a distributed 
problem solving through the swarm behavior. 
Swarm intelligence [29] is the discipline that deals 
with natural and artificial systems composed of 
many individuals that coordinate using 
decentralization and self organization. The 
individual organisms in the swarm follow very 
simple rules with no central control. Even random 
communication between the organisms in the swarm 

eventually results in an intelligent overall behavior. 
The organisms might not be even aware of this 
global intelligence. Many swarm intelligence exists 
in nature like termite colonies, ant colonies, bird 
flocking, bee colonies, schools of fish etc.  
 There are certain common traits in all 
swarm intelligence algorithms. The swarm is 
composed of many individual organisms. The 
organisms are homogeneous and communication 
between the organisms is based on set rules. The 
organisms have limited intelligence as individuals 
but they can carry out simple tasks. Swarm 
intelligence algorithms based on social behavior of 
biological organisms is analyzed further in this 
section. 
 
5.1 Particle Swarm Optimization 
PSO employs social learning concept to problem 
solving. Birds flocking together generally exchange 
valuable information on the location of the food. 
When a bird learns of a promising location, its 
experience grows about the surrounding. This is 
hugely enhanced when the birds share the 
information with one another, boosting the swarm’s 
intelligence. This helps other birds to converge on 
the most promising food location. PSO is widely 
applied in many research areas and real world 
applications as a powerful optimization technique. 
Simulating the natural behavior, the PSO algorithm 
has a set of particles that fly around an n-
dimensional problem space in search of an optimal 
solution. To start with, the particles are distributed 
randomly in the solution space.  
 Each particle P in the swarm S is represented as 
{X, V} where X = {x1, x2, x3… xn} represents the 
position of the particle and V = {v1, v2, v3… vn} 
represents the velocity of the particle. In every 
iteration, the particles learn from each other and 
update their knowledge regarding the whereabouts 
of a good solution. Each particle keeps track of its 
best solution with its corresponding position in 
pbest and the swarm’s best position is tracked in 
gbest. Each particle will have the influence of its 
current direction, the influence of its memory 
(pbest) and the influence of the swarm’s intelligence 
(gbest).  
 The particles update their velocity and position 
based on the formula given in Eq. (3) [29]. Here ‘i’ 
represents the particle number, ‘d’ represents the 
dimension, ‘V’ is the velocity, ‘p’ is the pbest, ‘g’ 
represents gbest, ‘w’ is the inertia weight, c1 and c2 
are the constants for controlling the influence of pi 
and g respectively, ‘x’ is the current position and 
‘rp’ and ‘rg’ are random numbers between 0 and 1. 
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 (3) 

PSO is simple to implement with less number of 
parameters to adjust. PSO has been used 
successfully in function optimization, neural 
network training and many more fields requiring 
optimization. 

Pseudo code of PSO algorithm 

gbest = NULL 

for i=1 to total_particles 

   particle.pos = rand(poslower, posupper) 

   particlebest.pos = xi 

   particlebest.obj = objfunc (xi) 

   if (particlebest.obj <  gbest.obj) 

      gbest = particlebest 

   end if 

   particle.vel = rand(velocitylower, velocityupper) 

end for 

do 

   for i=1 to total_particles 

      for d =1 to total_dimension 

         pick random numbers : rp, rg between 0 and 1 

         particleid.vel = w * particleid.vel + c1 rp 
(particlebest.pos - particleid.pos ) + c2   

        rg (gbest.pos - particleid.pos) 

         particleid.pos = particleid.pos + particleid.vel 

         particleid.obj = objfunc(particleid.pos)     

         if (particleid.obj <  particlebest.obj) 

            particlebest = particleid 

            if (particlebest.obj <  gbest.obj) 

               gbest = particlebest 

            end if 

         end if 

      end for 

   end for 

while (gbest.obj > objdesired OR iteration < 

iterationmax) 
 
5.2. Ant Colony Optimization 
ACO is among the most successful swarm based. It 
is well suited for discrete optimization problems and 
is a probabilistic method for solving computational 
problems. ACO is inspired by the behavior of ants 
in finding paths from their colony to food sources.  
 Biological ants, in the real world, randomly 
search for food sources around their colony. But 
once they find a food source, they return to their 
colony leaving behind pheromone trails. When other 
ants sense the trail they tend to follow the trail 
instead of taking a random approach. They also 
leave behind pheromones and thus reinforce the 
trail. Pheromone is a chemical that evaporates after 
a period of time and thus reducing in its ability to 
attract ants. If the path is longer between the food 
source and colony the pheromones in that path have 
a greater chance of evaporating compared to a 
shorter path. The shorter path will get 
reinforcements frequently and hence sustain its 
pheromone concentration.  
 The ACO algorithm will search for an ‘n’ 
dimensional solution in the search space, X = {x1, 
x2, x3… xn}. At every step of the ACO algorithm 
there is a selection process for the next node, xi. A 
probability function based on the current 
pheromones levels is used. The desirability of 
having nodes xi, xj in the solution is given by Dij. If 
the remaining nodes to be processed are in a set S 
(xi) then the probability of each of those nodes in 
the set is given in Eq. (4) [15]. 

 (4) 

 
The pheromone evaporation helps the ACO 
algorithm to avoid converging on a local optimal 
solution. In the absence of pheromone evaporation 
the first random path would have been reinforced 
and considered as the final solution. This would 
have resulted in the algorithm not doing any search 
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on the solution space and considering the first 
solution as final solution. But with pheromone 
evaporation this problem is solved and when an ant 
finds a shorter path from the colony to a food 
source, other ants are more likely to follow the new 
shorter path. This continues and the pheromone 
distribution towards shorter paths eventually leaves 
all the ants following the single shortest path 
 

Pseudo code of ACO algorithm 

init (ants) 

init trail Ti 

best trail Tb = Ti 

objbest = objfunc(Tb) 

initialize pheromone on the trail 

iteration = 0 

do 

   new trail Tn = function(ants_old, pheromone, 
random) 

      for i=1 to total edges 

         pheromone_decrease = Pdf * pheromone_old 

         pheromone_increase = i ε Tn 

         pheromone_new = pheromone_decrease + 
pheromone_increase 

      end for 

      obj = objfunc(Tn)      

      if obj < objbest 

         objbest = obj   

      end if 

while (objbest > objdesired OR iteration < iterationmax) 
 
 
5.3. Artificial Bee Colony Optimization 

The swarm intelligence algorithms based on bees 
are formulated on their foraging behavior. It 
includes artificial bee colony (ABC), the virtual Bee 

algorithm, the bee colony optimization algorithm 
and Bee hive algorithm. In all bee swarm 
optimization algorithms, an individual bee exhibits a 
simple set of behaviors. The group shows a complex 
overall behavior with useful properties such as 
scalability and adaptability.  
 In ABC algorithm, the colony of artificial bees 
can be grouped into three types: employed bees, 
onlookers and scouts. Each food source discovered 
so far is tracked by an employed bee. Hence, the 
number of food sources is equal to employed bees. 
The food source is the solution candidate and is 
coded with an ‘n’ dimensional vector X = {x1, x2, 
x3… xn}. The location of food sources map to the 
search space of the problem and the best food 
source is the most qualified optimized solution for 
the problem. An employed bee computes a modified 
position from her memorized food location 
depending on the local information and tests the 
quality of food on the new source (new solution). If 
the new location is a better food source compared to 
the previous one, the bee memorizes the new 
position and forgets the old one. After all employed 
bees complete the search process they share new 
food source information and their position 
information with the onlooker bees on the dance 
area. Onlooker bees wait on the dance area and 
select food sources based on the dance performed by 
the employed bees. The onlooker bees choose the 
solution based on the Eq. (5) below [68] 

 (5) 

 
Onlooker bees visit the food source that they select 
and identify a nearby modified source. They 
evaluate and choose between the original and new 
source. To get a nearby food source Eq. (6) is used, 
where Rand is a random number between -1 and 1 

 (6) 
 
The employed bees whose sources were abandoned 
become scouts and go in search of new food 
sources. The scout discovers a new food source by 
employing Eq. (7), where Rand is a random number 
between 0 and 1 

 (7) 

The algorithm avoids getting into local optimum by 
having the scouts perform a random global search 
for new food sources. 
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Pseudo code of ABC algorithm 

init totalbees 

init beesemployed, beesonlooker , scout_limit 

totalobj = 0 

for i=1 to beesemployed 

   beei = random (for each dimension) 

end for 

do 

   for i=1 to beesemployed 

      dim = random(1,dimensions) 

      beemodifiedi = random (beei,dim) 

      objmodified = function(beemodifiedi) 

      obji = function(beei) 

      if (objmodified > obji) 

         obji =  objmodified 

         beei = beemodifiedi 

      end if 

      totalobj = totalobj+obji 

   end for 

      for i=1 to beesemployed 

      probi = 0.9 * obji/totalobj + 0.1 

   end for 

   for i=1 to beesonlooker 

      beechosen = choose employed bee based on 
probi    

      dim = random(1,dimensions) 

      chosenmodifiedi = random (beechosen,dim) 

      objmodified = function(chosenmodifiedi) 

      obji = function(beechosen) 

      if (objmodified > obji) 

         beechosen = chosenmodifiedi 

      end if 

   end for 

      for i=1 to beesemployed 

      if not chosen for limit times 

         beei = random (for each dimension) 

      end if 

   end for 

while (objbest > objdesired OR iteration < 
iterationmax) 

 
5.4. Firefly algorithm 
The Firefly algorithm (FA) is a meta-heuristic 
algorithm that is inspired by the flashing behavior of 
fireflies. It can be used for constrained optimization 
tasks. The flashing behavior of fireflies occurs due 
to the bioluminescence phenomenon. Fireflies can 
control their flashing behavior based on external 
stimulus. They use it to attract other fireflies or 
prey.  In a Firefly algorithm, a population of fireflies 
is considered. These fireflies get attracted to each 
other based on the intensity of light that they emit. 
The firefly would get attracted towards a firefly that 
has highest luminescence. The solution space is 
mapped on to the fireflies and the quality of solution 
of each firefly is directly proportional to the level of 
intensity of its flashing. Thus fireflies with better 
solutions attract its partners (regardless of their sex), 
which makes the search space exploration efficient. 
The candidate solutions mapped as fireflies are 
denoted by X = {x1, x2, x3… xn}. The fireflies ‘i’ 
and ‘j’ move towards each other based on the Eqs. 
(8)-(10) below where Distij is the distance between 
the two fireflies, β, γ are algorithm optimization 
parameters. 

 (8) 

 (9) 
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 (10) 

Three basic rules are followed during the movement 
of firefly towards each other.  

• All fireflies are unisex and hence they would move 
towards the brighter firefly regardless of the sex. 

• The degree of attractiveness of a firefly to another 
firefly is directly proportional to its brightness. So 
the less bright firefly would move towards the 
brighter firefly. Distance is inversely proportional 
to brightness. As the distance increases between 
two fireflies the perceived brightness decreases 
between them. This is because of the fact that the 
air absorbs light. If there is no brighter firefly than 
a particular one it will then move randomly.  

• The objective function of a problem domain 
determines the brightness or light intensity of a fire 
fly. 

Pseudo code of Firefly algorithm 

for i=1 to numfireflies 

   fireflyi = random(for all dimensions k) 

   Ii = function(fireflyik) 

end for 

iteration = 0 

do 

  for i = 1 to n 

      for j=1 to n 

         for k = 1 to dimensions 

            distance = fireflyik – fireflyjk *  

                            fireflyik –  fireflyjk 

         end for 

         distance = sqrt(distance) 

         if (Ii > Ij)   

            for k = 1 to dimensions 

               T = alpha * (distance – 0.5) *  

                                 (upper – lower)  

               fireflyik – fireflyik * (1 – beta) +  

                           fireflyik * beta + T 

            end for 

         end if 

      update Ii = function(fireflyi) 

   end for 

end for 

rank fireflies and find current best 

while (objbest > objdesired OR iteration < 
iterationmax) 

 
6 ANN Training using Swarm 
Intelligence Algorithms 
Adapting the swarm intelligence algorithm to train 
the ANN involves the following generic steps 
irrespective of which Swarm Intelligence Algorithm 
is considered. Since the weights of the ANN need to 
be optimized they need to be tracked as the 
fundamental entity depending on the Swarm 
Intelligence algorithm. The problem space contains 
the combinations of all possible weight values for 
the ANN. This search space is of n-dimensions 
where n is the total number of weights that needs to 
be optimized. The Swarm Intelligence Algorithm is 
applied and objective function is based on the 
prediction accuracy of ANN. The weights are 
mapped to the required entity of the algorithm, like 
a particle’s position in PSO, the position of firefly or 
the trails that ants need to take in ACO. While 
evaluating the fitness in Swarm Intelligence, the 
weights are assigned to the ANN and its prediction 
accuracy is found. If the fitness is the best so far it 
will be taken as the best combination of weights and 
hence the best solution so far according to the 
Swarm Intelligence Algorithm. The steps for a ANN 
optimized using Swarm Intelligence is given below 
and summarized below in Fig. 1. 
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Fig. 1 ANN Swarm Model 

 

 Pseudo code of ANN-Swarm algorithm 
• Define the ANN architecture – number of 

input, hidden and output neurons. 

• Identify the fitness function which returns the 

error as difference of actual and predicted 

output for the ANN. 

• Initiate a swarm of ‘x’ organisms with 

random weights of ‘n’ dimension where n is 

the total number of weights that needs to be 

optimized for the ANN. The weights have to 

be mapped to one of the factors of the swarm 

intelligence algorithm. For example in PSO it 

is mapped to the position of the particle. 

• For each iteration do this to the x organisms 

o Find the fitness of each organism as 

defined in Step 2. The fitness function 

is again dependent on the swarm 

intelligence algorithm. For example 

in ANN-FA the intensity of the FA is 

determined as the prediction 

accuracy of ANN. 

o Update the best solution so far 

o Update algorithm parameters for 

next iteration 

Do the steps till the iterations are completed 
or required prediction accuracy is obtained 

 
7 Empirical Study 
We have conducted two types of empirical study. In 
the first study we compare the prediction accuracy 
and time taken by ANN-GD model with various 
ANN-Swarm intelligence algorithm models. In the 
second study, we compare our ANN-PSO and 
ANN-ABC models with existing models having 
different set of parameters. 
 
7.1. Data Set 
Ten projects were considered for the study. The 
metrics and bug information were collected from the 
NASA public dataset. Projects were chosen that 
differed in the size of samples. Different versions of 
the same project were also chosen. The metrics 
chosen for the study are listed in Table 2 and their 
statistical significance is given in Table 3. 
 

Table 2 Metrics considered for the study 

Metric Definition 

WMC Weighted Method per Class 

DIT Depth of Inheritance Tree 

NOC Number of Children 

CBO Coupling Between Objects 
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RFC Response For a Class 

LCOM Lack of Cohesion in Methods 

LCOM3 Lack of Cohesion in Methods 

CA Afferent Coupling 

CE Efferent Coupling 

NPM Number of Public Methods 

DAM Data Access Metric 

MOA Measure of Aggregation 

MFA Measure of Functional Abstraction 

CAM Cohesion Among Methods 

IC Inheritance Coupling 

CBM Coupling Between Methods 

AMC Average Method Complexity 

CC McCabe’s Cyclomatic Complexity 

LOC Lines of Code 
 
7.2. Comparison of ANN-GD with ANN-Swarm 
Intelligence Algorithms 
Five ANN models were used in this study. ANN 
architecture of all the models had one input layer 
with 20 neurons mapping each of the metric in the 
data set. We opted for one hidden layer with 50 
hidden neurons after testing a wide variety of 
values. We had one output layer with a single 
neuron to map the prediction accuracy of the model. 
While this particular ANN architecture cannot be 
considered as optimal, it is still sufficient to 
compare the accuracy and performance of the 
various ANN models. The parameters of swarm 
intelligence algorithms were arrived at after 
experimenting with different values taken from 
literature survey. The models were implemented in 
Visual C++ IDE as integrated software. The 
software picks different comma separated value 
(CSV) data files containing metrics and bug data 
from a folder and executes the models with this 
data. It computes the accuracy and time taken by 
each algorithm. The software was run on a Dell 
Inspiron 1525 laptop with a dual core processor 
running at 1.2 GHz, 2 GB of RAM and using 
Windows 8 operating system. 

 The comparison of the models was based on 
prediction accuracy – percentage of correctly 
mapped bug data and time taken in seconds to 
converge at the solution. 
7.2.1. Training using back propagation 
Gradient descent is the most widely used back 
propagation algorithm for training the ANN. It is 
simple to implement but has disadvantages of 
getting caught in a local optima. It also takes a 
longer duration to converge on the optimal solution. 
The learning rate chosen was 0.001. Momentum 
was set at 0.9 and 1000 epochs were performed on 
the input data sets. The activation function was a 
simple sigmoidal function 
7.2.2. Training using ANN-PSO algorithm 
Adapting the PSO algorithm to train the ANN 
involves the following steps. Since the weights of 
the ANN need to be optimized, they need to be 
tracked as the position of the particles in the PSO 
algorithm. The problem space contains the 
combinations of all possible weight values for the 
ANN. This search space is of n-dimensions where n 
is the total number of weights that needs to be 
optimized. Each particle has a position vector and a 
velocity vector of n-dimensions. The PSO particles 
fly around this search space and come up with the 
optimal set of weights. While evaluating the fitness 
of a particle in PSO, the weights are assigned to the 
ANN and its prediction accuracy is found. This 
provides the fitness for the particle. If the fitness is 
the best so far for the particle it will be taken as its 
personal best and if it is the best so far for the 
swarm, it would be considered as global best. The 
global best position after a desired number of 
iterations yield the optimized weights for the ANN.  
The following PSO parameters were used. Twenty 
particles were used for 100 iterations. The inertia 
weight was set at 0.529. Both local (c1) and global 
weights (c2) were set to 1.4944 
 
7.2.3. Training using ANN-Firefly algorithm 
In the ANN-Firefly algorithm we mapped the 
weights as the position of the fireflies. The flashing 
behaviour of the firefly indicates the prediction 
accuracy of the ANN using the position of the 
firefly as training weights. Thus an ANN with 
higher prediction becomes the most attractive firefly 
and other fireflies converge towards it. The 
parameters of an ANN-Firefly algorithm were taken 
after analyzing similar studies in the literature. The 
number of fireflies was taken as 20 and the 
iterations were kept at 100. Alpha, beta and gamma 
were taken as 0.5, 0.2 and 1.0. 
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 7.2.4. Training using ANN-ABC algorithm 
In ANN-ABC the weights of ANN are mapped to 
the food sources of ABC. The fitness values of the 
food source are measured with an objective 
function. The objective function provides the 
prediction accuracy through ANN. A colony size of 
40 was considered for the experiment out of which 
20 were employed bees tracking as many food 

sources. The improve limit was kept at 100. So, any 
employed bee, whose food source could not be 
improved after 100 trials, will become a scout and 
search for a new food source to track. The foraging 
cycle was kept at 100. 
 
 
 

Table 3 Statistical highlights of the data  

Metric Min 25Q Mean Median 75Q Max SD 

WMC 0 3 9.55 6 12 252 12.90 

DIT 0 1 1.88 1 3 6 1.23 

NOC 0 0 0.47 0 0 39 2.36 

CBO 0 3 9.75 6 11 448 18.13 

RFC 0 6 23.83 15 30 511 30.22 

LCOM 0 0 94.11 4 33 29258 654.13 

CA 0 1 4.72 1 4 446 17.19 

CE 0 0 4.68 3 7 76 6.26 

NPM 0 2 7.84 4 9 231 11.54 

LCOM3 0 0.58 1.10 0.85 2 2 0.70 

LOC 0 21 167.69 63 171 7956 355.01 

DAM 0 0 0.61 1 1 1 0.48 

MOA 0 0 0.74 0 1 24 1.50 

MFA 0 0 0.36 0 0.82 1 0.41 

CAM 0 0.30 0.49 0.44 0.67 1 0.26 

IC 0 0 0.35 0 1 4 0.58 

CBM 0 0 0.66 0 1 21 1.76 

AMC 0 4.5 14.14 8.86 16.33 894.5 24.88 

MAX_CC 0 1 2.68 1 3 95 4.13 

AVG_CC 0 0.67 1.02 0.96 1.14 10 0.73 

FAULTS 0 0 0.39 0 0 28 1.36 
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7.2.5. Training using ANN-ACO algorithm 
In ANN-ACO the ant trail maps the weights of 
ANN. The fitness of the trail is evaluated based on 
the performance of ANN. The pheromone effect 
helps the ANN-ACO from getting caught in local 
optima. The algorithm takes 100 ants with 200 stops 
for each ant. The pheromone evaporation time was 
fixed at 20 iterations. 

 
7.2.6. Results 
The comparison results of ANN-GD and ANN-
Swarm intelligence algorithms have been listed in 
Table 4 and Table 5.  
 

 

 
Table 4 indicates the prediction accuracy of the 
various algorithms for different input and Table 5 
lists the time taken. ANN-GD has an average fault 
prediction accuracy of 55.75% at an average of 
21.038 seconds per run. All the four models trained 
using swarm intelligence algorithms perform better 
than ANN-GD. ANN-Firefly has an average fault 

prediction improvement percentage of 18.559% 
over ANN-GD and the average time taken is 22.796 
seconds. ANN-ACO has fault prediction accuracy 
better than ANN-GD by 28.606% and the average 
time taken is 5.568 seconds. ANN-ABC has an 
improvement of 38.852% with average time of 
56.339.   

 

Table 4 Prediction Accuracy 

Project ANN-GD ANN-PSO ANN-Firefly ANN-ABC ANN-ACO 

Arc 67.521 87.606 88.462 88.462 85.043 

Camel 1.0 94.395 96.165 95.575 96.165 96.165 

Camel 1.2 19.079 64.474 43.750 52.467 37.665 

Camel 1.4 33.028 83.372 46.560 77.523 74.427 

Camel 1.6 26.218 80.518 20.725 53.264 34.715 

Intercafe 81.482 85.185 81.482 85.185 85.185 

Tomcat 68.532 91.026 86.131 88.811 88.695 

Table 5 Time Taken (in seconds) 

Project ANN-GD ANN-PSO ANN-Firefly ANN-ABC ANN-ACO 

Arc 6.133 1.793 1.693 0.971 4.998 

Camel 1.0 9.562 2.212 1.133 1.579 7.181 

Camel 1.2 4.446 5.052 54.609 138.24 3.446 

Camel 1.4 16.875 11.069 46.198 157.49 5.874 

Camel 1.6 53.591 14.167 47.163 88.857 13.206 

Intercafe 0.002 0.033 0.355 1.396 1.109 

Tomcat 56.661 2.319 8.421 5.84 3.167 
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The ANN-PSO provides the best fault prediction 
accuracy average of 84.04. This is a 50.75% 
improvement over ANN-GD. The time taken by 
ANN-PSO is also the least among the models 
considered, at an average of 5.235 seconds  
 
7.3. Comparison with parameters used by 
existing ANN-Swarm Intelligence systems 

In the second study we compared ANN-PSO and 
ANN-ABC with parameters used in existing 
systems. The motivation behind the study was to 
understand the impact of modifying the algorithm 
parameters based on an existing study. For ANN-
PSO a study by Ardil & Sandhu [7] was considered. 
They had employed ANN-PSO for modelling 
severity of faults in software systems. Parameters 
from this system is denoted as ANN-PSORef in the 
Table 6 below, while the parameters used in the first 
study are retained as ANN-PSO. 

Table 6 ANN-PSO parameters 

Parameter ANN-PSO ANN-PSORef 

Number of Particles 20 25 

Number of iteration 100 2000 

Inertia Weight 0.529 0.9 

Local weight (c1) 1.4944 2 
  
 Similar to ANN-PSO, we considered an existing 
system for ANN-ABC. The parameters were taken 
from an existing ANN-ABC study by Jin and Shu 
[26] and named as ANN-ABCRef. The reference 
system has more number of bees in the colony and 
hence more food sources. The foraging cycle or 
algorithm iterations in the reference system is 2000 
compared to the 100 that we had for our ANN-ABC 
system.  

Table 7 ANN-ABC parameters 

Parameter ANN-ABC ANN-ABCRef 

Colony size 40 50 

No of food sources 20 25 

Improve limit 100 100 

Foraging cycle 100 2000 
 

This would help us to compare the prediction 
accuracy and time taken between these two sets of 
values. The parameters are listed in Table 7 
 
7.3.1. Results 

The parameters for the ANN-PSO and ANN-ABC 
models given in the section above mainly differs in 
the size of the colony and the iterations. ANN-
PSORef has 5 more particles and iterations increase 
from 100 to 2000 compared to ANN-PSO. Similarly 
ANN-ABCRef has 10 additional bees and the 
foraging cycle increases from 100 to 2000. Table 8 
indicates the prediction accuracy and time taken for 
the ANN-PSO and ANN-PSORef models. Table 9 
indicates the prediction accuracy and time taken in 
seconds for ANN-ABC and ANN-ABCRef models. 

 It can be seen from the results that in most 
cases the prediction accuracy of ANN-PSORef and 
ANN-ABCRef increases marginally or stays the 
same compared to ANN-PSO and ANN-ABC 
respectively. Minor improvments in prediction 
accuracy comes at a huge cost in time taken. The 
average prediction accuracy of ANN-PSORef  
increases by 0.312% compared to ANN-PSO. In 
case of ANN-ABCRef it is an increase of 8.763%. 
However the the time taken increases by an average 
of 16 seconds for ANN-PSORef   and by 1300 
seconds for ANN-ABCRef. In the dataset Camel 1.2 
ANN-ABCRef increases from 52.467 to 64.638, an 
increase of 23.19%. For the same dataset, the time 
taken increases by 2268.158%. This is because, in 
general, swarm intelligence algorithm converge 
faster to a candidate solution. Further increase in the 
number of interations or organisms gives only minor 
improvements.  Even the ANN- PSORef and ANN- 
ABCRef models converge in 100 iterations to the 
same level of accuracy as ANN-PSO and ANN-
ABC modes. In further iterations it keeps trying to 
improve the accuracy. The time taken is logged only 
if the accuracy improves. Since the iterations are 
huge minor improvements are achieved but after 
significant number of iterations and hence the time 
taken increases drastically. So the parameters which 
are considered for the study based on literature 
review holds well and can be considered appropriate 
for the data sets chosen. They provide a good 
balance between prediction accuracy and time 
taken.  
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8 Limitations and Future Work 
A subset of the available swarm intelligence 
algorithms has been considered for this study. 
Including other swarm intelligence algorithms could 
yield precise fault prediction or faster convergence. 
This study also focuses on weight optimization of 
ANN. There are other parameters of ANN that can 
be optimized using swarm intelligence algorithms. 
Even combinations of swarm intelligence algorithm 
can be attempted according to the parameters 
chosen for optimization. The projects considered for 
this study have been taken from NASA public 
dataset. Future work could include data from open 
source projects for a fair comparison. 
 

9 Summary and Concluding remarks 
In this paper we have investigated the influence of 
Swarm Intelligence Algorithms in improving the 
prediction accuracy of Artificial Neural Network 
based fault prediction models on NASA public 
datasets. Our analysis confirms that Swarm 
Intelligence Algorithms considerably improve the 
fault prediction capability of ANNs. We have 
considered four swarm intelligence algorithms for 
the comparison – particle swarm optimization, fire 
fly algorithm, artificial bee colony optimization and 
ant colony optimization. We also compared the 
various Swarm Intelligence Algorithms for the time 
taken to converge on the solution. We find that the 
Particle Swarm Optimization technique has better 

Table 8 Comparison of ANN-PSO and ANN-PSORef models 

Project ANN-PSO ANN-PSORef ANN-PSO ANN-PSORef 

Arc 87.606 88.462 1.793 10.150 

Camel 1.0 96.165 96.165 2.212 2.587 

Camel 1.2 64.474 65.132 5.052 63.122 

Camel 1.4 83.372 83.372 11.069 27.153 

Camel 1.6 80.518 80.725 14.167 31.655 

Intercafe 85.185 85.185 0.033 0.303 

Tomcat 91.026 91.142 2.319 17.603 

     

Table 9 Comparison of ANN-ABC and ANN-ABCRef models 

Project ANN-PSO ANN-PSORef ANN-ABC ANN-ABCRef 

Arc 88.462 88.462 0.971 1.186 

Camel 1.0 96.165 96.165 1.579 2.429 

Camel 1.2 52.467 64.638 138.24 3273.742 

Camel 1.4 77.523 83.372 157.49 413.754 

Camel 1.6 53.264 80.518 88.857 654.411 

Intercafe 85.185 85.185 1.396 2.864 

Tomcat 88.811 91.026 5.84 5142.351 
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prediction accuracy and efficiency in time taken to 
arrive at the solution compared to the other swarm 
intelligence algorithms considered. We also 
compared the algorithm parameters arrived at from 
literature survey with parameters taken from 
existing study on ANN-PSO and ANN-ABC 
models. We find that there is a marginal 
improvement with the parameters from existing 
study at huge cost in time taken for execution. This 
confirms that the parameters taken after rigorous 
literature review is appropriate. 
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