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Abstract: - In present scenario various tools like firewalls, anti-virus tool, network security tools, malware removal 

tools, monitoring tools etc, are being used for providing security to computer systems. Computer security tools 

available in present era need to be updated and monitored regularly. If any computer users do not regularly update 

the security tools, such systems will be vulnerable to virus and other attacks. Through this paper a learning system 

is being proposed to identify the operating system processes as Self and Non-Self, using the concepts of Decision 

Tree Learning. ID3 algorithm has been used to construct a Decision Tree after calculating the Entropy and 

Information Gain. Initially Decision Trees are generated using training examples and then these constructed 

Decision Trees are tested with test data. Further, it has been inferred through experimental results that the Decision 

Tree Learning approach will provide better security through effective identification of Self and Non-Self 

processes.  

 
Key-words: - Self and Non Self Process, Process-Parameters, Decision Tree, ID3 (Iterative Dichotomiser 3), 
Entropy, Information Gain. 
 
1  Introduction 

In the present era of computer information security, 
Cyber Security and Computer Security are vital issue 
[4]. For providing the highest possible extent of 
computer security, implementation of an efficient and 
secure operating system is a necessity [5]. Some 
operating system developers provide a secure 
operating system and security tools which works to 
identify the unauthorized access of the system. Lots of 
hardware and software based security tools are made 
available by various vendors as Computer Security 
Tool [6].  
    Many operating systems and computer security 
tools cannot provide the maximal level of computer 
security due to its deign constraints. For providing the 
maximum security for a computer system major 
change in the design of an operating system is 
required. Through this paper a methodology will be 
proposed for providing  the maximum security by 
identification of Self and Non-Self process [1,2,3] 
using concepts of the Decision Tree and machine 

learning [7,9,10]. The operating system processes can 
be categorized into two parts, Self and Non-Self. Self 
are those processes which is not harmful to the system 
like system process, Microsoft application’s processes 
etc. The processes which are generated by viruses, 
worms etc can be classified as Non-Self. Main 
Objective of this paper is to identify these Non-Self 
processes.      
    Machine learning is a fast growing field of 
Artificial Intelligence and Computer Science. Tom M. 
Mitchell [7] has provided a widely quoted, formal 
definition: "A computer program is said to learn from 
experience `E` with respect to any class of tasks `T` 
and performance measure ‘P’, if its performance of 
tasks in ‘T’ , as measured by ‘P’, improves with 
experience E”. Machine learning deals with the 
development of such computer programs which 
automatically improves their performance and gain 
experience.   
    There are various learning concepts which can be 
used to provide security like Concept Learning, 
Decision Tree Learning, Learning through ANN, 
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Bayesian Learning, Instance-Based Learning, Genetic 
Algorithm, and Analytical Learning etc [7]. Through 
this paper a methodology is being proposed in which 
Decision Tree Learning will be used to provide the 
security of a computer system. 
    In a Decision Tree Learning the learned target 
function is specified by  Decision Tree which 
provides learning, decision through root to a leaf 
node. Decision Tree Learning [14] method is used for 
approximation of discrete-valued target function. ID3, 
ASSISTANT and C4.5 algorithms [12, 13] are used to 
provide learning in the Decision Tree. Decision Tree 
categorizes the examples of sorting from top root 
node to bottom leaf node. Each node in the tree is a 
test of the attributes of the example. In the proposed 
approach, the ID3 algorithm has been used along with 
the concept of Information Gain and Entropy.  
 
2  Proposed Methodology    
A process is the basic unit of execution in an 
operating system. During the execution of a program 
the Operating System generates many processes to 
complete the task. If a computer system is affected by 

worms and virus or has been attacked, then operating 
system also generates its processes. Proposed 
approach works on the processes and its parameters to 
identify the process generated by viruses or attacks. 
These processes will be identified as Non-Self by 
using the concepts of Decision Tree Learning. 
    A process has many attributes like ProcessID, 
Priority, Product name, Version, Description, 
Company, Window Title, File size, File Created Date, 
File Modified Date, File Name, Base Address, 
Created On, Visible Windows, Hidden Windows, 
User Name, Memory Usage, Memory Usage Peak, 
Page Faults, Pagefile Usage, Pagefile Peak Usage and 
File Attributes etc.  

Initially the parameters of a process which has 
NOT NULL values will be identified. By using the 
Curprocess tool [8] initially five process attributes 
Process ID, File size, Memory Peak Usage, Page 
Faults and Page File Peak Usage will be used. More 
attributes can be added to get better security.  

Figure 1 shows  the  screen  shoot  of  CurrProcess 
tool window.    

 

 
Fig.1: Screenshot of CurrProcess tool

3  Range of the parameters 
By using the Currprocess tool process parameter’s 
range has been identified as shown in Table 1. The 
process parameters which have their minimum and  

 
maximum range as shown in Table 1. The range of 
these parameters is according to their measure unit. 
(i.e. Bytes, K Bytes, a natural number, etc). 
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Table 1: Process Parameters and its minimum and maximum range. 
 
 
 
 
 
 
 
 
 
 
 
 

3.1  Range for Learning 

Initially for the proposed approach, five parameters of 
processes are used to identify the Self and Non-Self 
processes. Better security can be achieved by using 
more parameters and dividing parameter ranges into 
small parts. After analyzing various processes 
initially, five parameters Process ID (divided into 
three ranges, low, medium and high), File Size 
(divided into three ranges, low, medium and high), 
Memory Peak Usage (divided into five ranges very 
low, low, medium, high  and very high), Page Fault 
(divided into five ranges very low, low, medium, high  
and very high), Page File Peak Usage divided into 
three ranges low, medium and high. These ranges 
have been divided into different parts as mentioned 
below-  
    Process ID /DID range has been divided into three 
parts - 
   Low   – 1938 and Below 
   Medium -  1939 to 3163 
   High  -  3164 and Above 
 
File Size /DFS range has been divided into three parts 
- 
   Low   – 314688 and Below 
   Medium -  314689 to 4375625 
   High  -  4375626 and Above 
 
Memory Peak Usage / DMPU range has been divided 
into five parts - 
   Very Low   - 10490 and below  
   Low   – 10491 to 31302 
   Medium -  31303 to 78172 
   High  -  78173 to 109391 
   Very High   - 109392 and above 
 
Page Faults /DPF range has been divided into five 
parts - 
  Very Low   -  2274 and below  

   Low   –  2275 to 5358 
   Medium -  5359 to 25001 
   High  -  25002 to 43750 
   Very High   -  43751 and above 
 
    Page File Peak Usage /DPFPU range has been 
divided into three parts - 
   Low   – 5008 and below 
   Medium -  5009 to 31269 
   High  -  31270 and above 
 
    The range of these process parameters can be 
changed according to the system architecture & 
organization along with operating system running on 
the computer system.  
 
4  Training Examples 

For application of Decision Tree Learning approach 
of Machine Learning a set of training examples has 
been used. This set has both positive and negative 
examples as shown in Table 2. There are 14 training 
examples in which 9 are positive and 5 are negative. 
The values of parameters are converted as per the 
above section into Very Low (VL), Low (L), Medium 
(M), High (H) and very High (VH) to make the easy 
calculation and understanding. The abbreviations VL, 
L, M, H and VH are used instead of actual values. 
These training examples are taken after various 
running conditions on various workloads of a 
Computer System. The system was virus infected 
during these observations. Fourteen different 
processes are identified as training set. In these 14 
training examples, nine examples are positive 
examples and treated as Self processes (system and 
some application processes) and five examples are 
negative examples and treated as Non- Self processes 
(generated by viruses and warms).

 

Parameter Range Min - Max 
Process ID 000-9999 
File Size  00000 – 9999999 (Bytes) 
Base Address  0x00000000 – 0x99900000 
Hidden Windows  0 -999 
Memory Usage  000 – 999999 (K) 
Memory Peak Usage  000 – 999999 (K) 
Page Faults  0000 – 9999999 
Page File Usage  000 – 999999 (K) 
Page File Peak Usage  000 – 999999 (K) 
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Table 2: Training Examples 
 

 
 

 
5  Decision Tree Learning 

Decision Tree Learning is a technique for 
reminiscent of discrete-valued target functions, in 
which the learned function, has been represented by a 
Decision Tree. In general, Decision Tree characterize 
a disjunction and conjunction of constraints on the 
attribute values of instances. Algorithms such as ID3, 
ASSISTANT and C4.5 are generally used in 
Decision Tree Learning [12, 13].  
    Decision Tree categorizes instances by sorting 
them down the tree from the root to any leaf node, 
which provides the categorization of the instances. 
Each and every node in the tree specifies a test of 
some attribute of the instance, and each branch 
descending from that node corresponds to one of the 
possible values for this attribute. An instance is 
classified by sorting at the root node of the tree, 
testing the attribute specified by this node, then 
moving down the tree branch consequent to the value 
of the attribute in the given example. This method is 
then repeated for the sub-tree rooted at the new node.   
    For providing the learning to the proposed 
approach, using the Decision Tree Method ID3 
algorithm has been used. The vital choice in the ID3 
algorithm is selection of attribute to test at each node 
in the tree. The attribute which is most helpful in 
classifying examples will be selected. For construct a 
Decision Tree a statistical property called 
Information Gain [7,15]  and Entropy [7] is used to 

classify the attributes. By using theses concepts, it 
becomes easy to select the root node and the nodes 
comes under the root node.  ID3 uses this 
Information Gain for selection among the candidate 
attributes at each step while mounting the tree.  
 
5.1 Information Gain and Entropy 
Information Gain is clearly related to a measure 
commonly used in information theory, called 
Entropy [7], that characterizes the purity (and 
impurity) of a random collection of examples. Given 
a collection S, having some positive and some 
negative examples of some target perception, the 
Entropy S relative to this Boolean classification is- 
Entropy (S) = - (P+ log2 P+) – (P- log2 P-)…….. .(1) 
    Where P+ is the proportion of positive examples in 
S and P-  is the proportion of negative examples in a 
given collection S. In all calculation involving 
Entropy 0log0 has been assumed as 0.  
    As in Table 2 there are a collection of 14 examples 
of processes of operating system. These examples are  
two types, Self or Non-Self. So these  examples are 
satisfied the  Boolean concepts. Boolean concept 
which have 9 positive and 5 negative examples 
(adopt the notation [9+, 5-]). Then the Entropy of S 
(given examples in Table 2) relative to this Boolean 
classification by using equation (1) is: 
Entropy ( [9+ , 5-] )  =  - ( 9/14 ) log2 ( 9/14 ) –                 
                                           ( 5/14 ) log2  ( 5/14 )  
                                 =    0.940 
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Entropy is 0 if all the members of given collection S 
belong to same class i.e. having all positive or all 
negative examples. Entropy is 1 when the collection 

contains the equal number of positive and negative 
examples. Figure 2 shows the how the Entropy 
function varies between 0 and 1. 

 
 
                                 1.0 
                       
 
       Entropy (S)        0.5 
 
 
                                
                                      0.0                               0.5                                  1.0 
                                          P+   

Fig.2: The Entropy function relative to a Boolean classification, as the proportion, P+  , of positive example 
varies between 0 and 1.  

 
     Given Entropy computes the impurity in a 
collection of training examples. Further, the 
usefulness of an attribute in classifying the training 
data called Information Gain has been calculated. 
Information Gain is just the expected decrease in 
Entropy caused by partitioning the example 
according to this attribute. The Information Gain 
“Gain (S, A)” of an attribute A, relative to a 
collection of example S, has been defined as- 
Gain (S, A) = Entropy (S)  
        -    ∑                  |Sv|   Entropy (Sv)……...….. (2) 
      v Є Values (A)       |S| 
 
Where Values (A) are the set of all possible values 
for attribute A, and Sv is the subset of S for which 
attribute A has value v (i.e. Sv = { s  Є  S | A (s)  = v 
}). Gain (S, A) is the expected reduction in Entropy 
caused by knowing the value of attribute A.  
For the given training example (S) there is an 
attribute Process ID (DID) which have the values 
Low (L), Medium (M) and High (H). For the 14 
examples [9+,5-] given in Table 2, five Process Id 
values are  Low (L), three are Medium (M) and six 
are High (H).    
For Low(L) value of Process ID there are 4 positive 
and 1 negative examples. 
For Medium(M) value of Process ID there are 2 
positive and 1 negative examples. 
For High(H) value of Process ID there are 3 positive 
and three negative. 
The Information Gain due to sorting the original 14 
examples by the attribute Process ID- 
Values (Process ID) = Low, Medium, High 
  S            =   [9+,5-]  
                        Slow        =   [4+,1-]  
             SMedium       =   [2+,1-]             
                        SHigh       =   [3+,3-] 
 

Using the equation (2) the Information Gain has been 
calculated by the Process ID as:  
Gain (S, Process ID)  
    = Entropy (S) – (5/14) Entropy (Slow) – (3/14) 
Entropy (S Medium)   – (6/14) Entropy (S High) 
   = 0.940 – (5/14)* 0.721 – (3/14)* 0.918 – (6/14)*1 
   = .059 
Using the equation (2) the Information Gain by the 
other parameters has also been calculated and valued 
are mentioned below:  

Gain (S, Process ID) = 0.059 
Gain (S, File Size) = 0.021 
Gain (S, MPU) = 0.263 
Gain (S, Page Faults) = 0.401 
Gain (S, PFPU) = 0.272 
 

It is clear from the above values of the Information 
Gain that the “Page Fault” attribute has the 
maximum value, so it provides the greatest 
prediction of the target learn function. So “Page 
Fault” is chosen as the decision attribute of the root 
node To build a Decision Tree following ID3 
algorithm [7] has been used: 
 
5.2 ID3 Algorithm  
ID3 (Examples, Target_attribute, Attributes) 
[Examples are the training examples. 
Traget_attribute is the attribute whose value is to be 
predicated by the tree. Attributes are a listing of 
attributes that may be tested by the learned Decision 
Tree. Returns a Decision Tree that correctly 
classifies the given examples.] 
 

• Create a ROOT node in the Decision Tree. 
 

• If all the Examples are positive, Return the 
single-node tree ROOT, with label = + 
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• If all the Examples are negative, Return the 
single-node tree ROOT, with label = - 
 

• If Attributes are empty, Return the single-
node tree ROOT, with label = most common 
value of Target_Attribute in Examples 
 

• Otherwise Begin 
 
 A        the attribute from Attributes that 

best* classifies Examples. 
 

 The decisionattributese for ROOT       A  
 For each possible value, Vi of A. 

 
» Add a new tree branch below ROOT, 

corresponding to the test A = Vi 
 

» Let Examples_Vi be the subset of 
Examples that have value Vi for A 

 
» If Example_Vi is empty 

 

• Then, under this new branch add a 
leaf node with label = most 
common value of Target_Attribute 
in Examples   
 

• Else below this new branch add 
the subtree. 

   
ID3(Examples,Target_attribute, Attributes – {A}) 

• End 
• Return Tree 

 
    On the basis of above algorithm a Decision Tree 
has been constructed. 
 

 
                                                           
               
 
 
 
Process:                      {P3}              {P1,P2,P4,P9,P11}  {P6,P7,P8,P12}   { P5,P10,P13}          {P14} 
 [+,-]                        [0+,1-]                  [3+,2-]                 [4+,0-]                 [2+,1-]               [0+,1-] 
 [+],[-]                      [-]                                                        [+]                                                [-] 
 

Fig.3: Partial Decision Tree after Applying ID3 on the training example given in Table 2. 

 

5.3 Construction of the Decision Tree  
To construct the Decision Tree, Information Gain 
calculated in section 5.1 is used. Page Fault has the 
maximum value of Information Gain so “Page Fault” 
attribute becomes the root node as shown in Figure 3.  
The “Page Fault” parameter has been divided into 
five parts as very low, low, medium, high and very 
high. These are becomes the branches of root node.   
    In Table 2 there is only one training example P3 
which has the ‘very low’ value of Page Fault. As 
according to the ID3 algorithm if any node has only 
positive (or all negative) examples then this node 
will become the leaf node. This shows that if any 
process, has very low “Page Fault” this process may 
be non-Self process (shown as [-] as shown in Figure 
3). In Table 2 there are five training example 
P1,P2,P4,P9 and P11 which has the ‘low’ value of 
Page Fault. P1, P2 and P4 are positive example and 
P9 and P11 are negative example. As according to 
the ID3 algorithm if any node has both positive and 
negative examples then for this node again apply the 

ID3 on P1,P2,P4,P9 and P11 with remaining 
parameters.  
    Now, the training examples P6, P7, P8, P12 of 
Table 2 has the ‘medium’ value of “Page Fault”. It 
has been observed these four examples are positive 
example.  This shows that if the process has the 
medium “Page Fault” it may be a Self process. Now 
ensuring the training example of Table 2 for the high 
value of “Page Fault” 2 positive (P10, P13) and 1 
negative (P5) example has been obtained. By 
evaluating the training example of Table 2 for the 
very high value of “Page Fault” 1 negative (P14) 
example has been obtained.  
     In Figure 3 very low (Non-Self), medium (Self) 
and very high (Non-Self) becomes the leaf node of 
the Decision Tree. Other low and high value will 
have a sub-tree.  Now the Information Gain of the 
remaining parameters Process Id, File Size, Memory 
Peak Usage and Page File Peak Usage of training 
examples of P1, P2, P4, P9, P11 for low values of 
“Page Fault” and P5, P10, P13 for high values of 
“Page Fault” have been calculated using equation 2. 

 Page Fault 

Very Low Low Medium Very High High 
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It has been observed that “Page File Peak Usage” 
will become the node of the low value of “Page 
Fault” and “File Size” will become the node of the 
high value of “Page Fault” as shown in Figure 4.  
 
Page File Peak Usage has three possible values,  
Low, Medium and High. According to the training 
example of  Table 2, P11 has the Low value of Page 
File Peak Usage and it is a negative example (Non-
Self). P4 has the High value of Page File Peak Usage 

and it is a negative example (Non-Self), P1, P2, P9 
[2+, 1-] has the Medium value of Page File Peak 
Usage.  
 
File Size has three possible values Low, Medium and 
High rom the training examples of Table 2, P13 has 
the Low value of File Size and it is a positive 
example (Self), P10 has the Medium value of File 
Size and it is a positive example (Self),   P5 has the 
High value of File Size positive example (Self).             

{P1, P2, …. P14}
[9+,5-]

Very Low                                                                 Very High
Low                 Medium High

{P1,P2,P4,P9,P11}                                                                                       {P5,P10,P13}
[3+,2-]                                                                                                       [2+,1-]

{P11}          {P1,P2,P9}               {P4}        
[0+,1-]             [2+,1-]                   [1+,0-]          {P13}             {P10}                 {P5}

[-]                                                   [+]              [1+0-]             [1+0-]           [0+1-]
[+]                    [+]     [-]

Page Fault

Non Self

File SizeSelfPage File 
Peak Usage

Non Self

Low Medium High Low Medium High

 
    Fig.4: After Applying ID3 on the training example P1, P2, P4, P9, P11for low value and P5, P10, P13 for 

high value on training examples of Table 2. 

 
After the execution of ID3 Algorithm and performing 
all the calculations, the final Decision Tree has been 
generated on the basics of the training example of 
Table 2. 
Figure 5 show the final decision tree constructed by 
implementing the ID3 Algorithm on the training 
examples of Table 2.  Different Decision Trees are 
constructed by using different training examples. 
Between these different Decision Tress, select one 
which will give better results on test data.  

  The final Decision Tree shown in Figure 5 has been 
tested with test data of Table 3. Table 3 shows the 
test result also in the last column. Final Decision 
Tree of Figure 5 identifies all the Self process 
correctly, but processes P12is identified as a Self 
(incorrectly).  
 
The final Decision Tree of Figure 5 now is tested 
with test data of Table 4. Table 4 shows the test 
result also in the last column. Final Decision Tree of 
Figure 5 identifies process P3 and P14 incorrectly. 
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{P1, P2, …. P14}
[9+,5-]

Very Low                                                       Very High
Low     Medium    High

{P1,P2,P4,P9,P11}                                                                                  {P5,P10,P13}
[3+,2-]                                                                                                         [2+,1-]

Low  Medium        High            Low    Medium            High

VL        L         M         H      VH                        

Page Fault

Non Self

File SizeSelfPage File 
Peak Usage

Non Self

Non Self Memory Peak 
Usage/ Pro ID

Self Self Self Non Self

Self Self Non Self

 
 Fig.5: Final Decision Tree generated by ID3 Algorithm on training data of Table 2  

 
Table 3: Test data and result by final Decision Tree of Figure 3. 

 

 
Process 

ID  
File 
Size 

Mem Usage 
Peak 

Page 
Faults   

Pagefile Peak 
Usage 

Self/Non-
Self 

Identified 
As  

P1 H M M M M Yes Self 

P2 M M L M M Yes Self 

P3 M H M M M Yes Self 

P4 M M M M M Yes Self 

P5 M H M M M Yes Self 

P6 H H L M M Yes Self 

P7 H M L M M Yes Self 

P8 H M VL L M Yes Self 

P9 H H M M H Yes Self 

P10 M M VL VL L No Non-Self 

P11 M H VH L M No Non-Self 

P12 L L L M M No Self 
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Table 4: Test data and result of final Decision Tree of Figure 3. 

 
 

6  Experimental   Results   and 
Comparisons 
After analyzing the result of Table 3 and Table 4, it as 
been observed that Decision Tree can play an 
important role to provide the security to a computer 
system.  
    As Decision Tree is constructed by adding new 
nodes by ID3 Algorithm, the accuracy of the tree 
measured over the training examples increases 
monotonically. However, when measured over a set 
of test examples independent of the training 
examples, accuracy first increases, then decreases. It 
has been clear from the Figure 6 when to stop the tree 
growing in other words how many process 
parameters are sufficient to provide a decision on Self 
and Non-Self processes. It has been observed from 
the graph of Figure 6, that near about ten to fifteen 
parameters will be sufficient to get a better result. 
It has been observed from the Figure 7, as the 
numbers of nodes (parameters) in the Decision Tree 
increase the security also increases. It has been 
observed from the graph of Figure 7 that when the 
number of nodes increases in the Decision tree after 
fifteen nodes, the security remain constant. It has 
been observed from the Figure 8, as the numbers of 
nodes (parameters) in the Decision Tree increases 
there is a degradation in system performance. It is has 

been observed from the graph of Figure 8 that when 
the nodes increases after fifteen then the system 
performance decreases very rapidly. As processes and 
its parameter are used in the proposed approach for 
making the decision. During the security check by the 
Decision Tree the process remains ideal. So the 
overall system performance has been decreased by 
the proposed approach. If a process is identified as 
Non-Self by the proposed approach, user’s action will 
be required. User can suspend its execution or delete 
this process from the system.    
The proposed approach is compared some existing 
security approach as shown in Table 5. As shown in 
table it is clear that the proposed approach is better. 
Existing security approaches scan all the files and 
folders of the system but the proposed approach scan 
only the processes. It takes very less time to find out 
the Non-Self processes as other approaches scan all 
the files and data. Accuracy and detection rate is very 
high in comparison to existing anti-virus tool. As the 
proposed approach scans all processes so the system 
will become slow. The proposed approach is free 
from signature as required in existing approaches, 
proposed approach works on parameter’s value not 
on any signature.  No regular update is required in the 
proposed approach as it is required in anti-virus tools; 
new Decision Tress may be generated by new 
training examples. The disadvantage of the proposed 

 
Process 

ID 
File 
Size 

Mem 
Usage 
Peak 

Page 
Faults 

Pagefile Peak 
Usage Self 

Identified 
As 

P1 L M M M H Yes Self 

P2 H M VL L M Yes Self 

P3 M L VL VL L Yes Non-Self 

P4 M M M M M Yes Self 

P5 M M L M M Yes Self 

P6 M L H H H Yes Self 

P7 L M L L M Yes Self 

P8 H L H M H Yes Self 

P9 H L VL H L Yes Self 

P10 H L L L M Yes Self 

P11 H L L VH M No Non-Self 

P12 L M M VH M No Non-Self 

P13 H M VL VL L No Non-Self 
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approach is that the Decision Tree constructed by 
various training example may be different, but these 
different trees may give the same result. To show the 
working of proposed approach five process 
parameters has been used, more parameters can be 

added to improve the security. By adding more 
parameters different Decision Tree will be 
constructed.   
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Fig.6: Accuracy of Decision Tree on training and test data 
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Figure 7: Security level of Decision Tree with increasing of number nodes. 
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Fig.7: System Performance lag due to Decision Tree with respect to number node 
 

Table 5: Comparison of Proposed Approach with Some Antivirus tools

Parameters 

 

Antivirus 

Scan Time Accuracy 
Detection 

Rate 

Performance 

Lag 

Signature 

based 

Detection 

Regular 

Updating 

Required 

AVG antivirus High High Normal Yes Yes Yes 

Norton antivirus High High High Yes Yes Yes 

Avast antivirus High Medium Normal Yes Yes Yes 

Microsoft Security 

Essentials 
Average High High Yes Yes Yes 

Proposed 

Approach 
Low Very High Very High Yes No No 
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7.  Conclusion and Future work  
 Various approaches and tools are used in the current 
scenario to provide security, but these approaches are 
not sufficient to provide best security level to a 
computer system. A better approach is required to get  
security.  
    Through this paper an approach based on Decision 
Tree is proposed to provide better security. Decision 
Tree learning plays an important role to provide better 
security to the computer system. The Decision Tree 
approach used in this paper provides  
better result over the current approach.  
    Decision Tree provides the best result to provide a 
learning system for identification of Non-Self 
processes. By using the various training and test data 
sets on ID3 algorithm a better learn system will be 
developed. Different tree can be constructed as 
according to training data. By using a large number of 
examples in training data a correct Decision Tree can 
be formed and it better works on test data. 
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