
Decision Tree based Learning Approach for Identification of Operating
System Processes

AMIT KUMAR, SHISHIR KUMAR

Department of Computer Science and Engineering
Jaypee University of Engineering and Technology

A.B. Road, Raghogarh, Guna
INDIA

amitrathi10@yahoo.co.in http://www.juet.ac.in/Department/faculty.php?id=42483894&dep=cse,
dr.shishir@yahoo.com http://www.juet.ac.in/Department/faculty.php?id=45652778&dep=cse

Abstract: - In present scenario various tools like firewalls, anti-virus tool, network security tools, malware removal

tools, monitoring tools etc, are being used for providing security to computer systems. Computer security tools

available in present era need to be updated and monitored regularly. If any computer users do not regularly update

the security tools, such systems will be vulnerable to virus and other attacks. Through this paper a learning system

is being proposed to identify the operating system processes as Self and Non-Self, using the concepts of Decision

Tree Learning. ID3 algorithm has been used to construct a Decision Tree after calculating the Entropy and

Information Gain. Initially Decision Trees are generated using training examples and then these constructed

Decision Trees are tested with test data. Further, it has been inferred through experimental results that the Decision

Tree Learning approach will provide better security through effective identification of Self and Non-Self

processes.

Key-words: - Self and Non Self Process, Process-Parameters, Decision Tree, ID3 (Iterative Dichotomiser 3),
Entropy, Information Gain.

1 Introduction

In the present era of computer information security,
Cyber Security and Computer Security are vital issue
[4]. For providing the highest possible extent of
computer security, implementation of an efficient and
secure operating system is a necessity [5]. Some
operating system developers provide a secure
operating system and security tools which works to
identify the unauthorized access of the system. Lots of
hardware and software based security tools are made
available by various vendors as Computer Security
Tool [6].
 Many operating systems and computer security
tools cannot provide the maximal level of computer
security due to its deign constraints. For providing the
maximum security for a computer system major
change in the design of an operating system is
required. Through this paper a methodology will be
proposed for providing the maximum security by
identification of Self and Non-Self process [1,2,3]
using concepts of the Decision Tree and machine

learning [7,9,10]. The operating system processes can
be categorized into two parts, Self and Non-Self. Self
are those processes which is not harmful to the system
like system process, Microsoft application’s processes
etc. The processes which are generated by viruses,
worms etc can be classified as Non-Self. Main
Objective of this paper is to identify these Non-Self
processes.
 Machine learning is a fast growing field of
Artificial Intelligence and Computer Science. Tom M.
Mitchell [7] has provided a widely quoted, formal
definition: "A computer program is said to learn from
experience `E` with respect to any class of tasks `T`
and performance measure ‘P’, if its performance of
tasks in ‘T’ , as measured by ‘P’, improves with
experience E”. Machine learning deals with the
development of such computer programs which
automatically improves their performance and gain
experience.
 There are various learning concepts which can be
used to provide security like Concept Learning,
Decision Tree Learning, Learning through ANN,

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 277 Volume 13, 2014

mailto:amitrathi10@yahoo.co.in
mailto:dr.shishir@yahoo.com

Bayesian Learning, Instance-Based Learning, Genetic
Algorithm, and Analytical Learning etc [7]. Through
this paper a methodology is being proposed in which
Decision Tree Learning will be used to provide the
security of a computer system.
 In a Decision Tree Learning the learned target
function is specified by Decision Tree which
provides learning, decision through root to a leaf
node. Decision Tree Learning [14] method is used for
approximation of discrete-valued target function. ID3,
ASSISTANT and C4.5 algorithms [12, 13] are used to
provide learning in the Decision Tree. Decision Tree
categorizes the examples of sorting from top root
node to bottom leaf node. Each node in the tree is a
test of the attributes of the example. In the proposed
approach, the ID3 algorithm has been used along with
the concept of Information Gain and Entropy.

2 Proposed Methodology
A process is the basic unit of execution in an
operating system. During the execution of a program
the Operating System generates many processes to
complete the task. If a computer system is affected by

worms and virus or has been attacked, then operating
system also generates its processes. Proposed
approach works on the processes and its parameters to
identify the process generated by viruses or attacks.
These processes will be identified as Non-Self by
using the concepts of Decision Tree Learning.
 A process has many attributes like ProcessID,
Priority, Product name, Version, Description,
Company, Window Title, File size, File Created Date,
File Modified Date, File Name, Base Address,
Created On, Visible Windows, Hidden Windows,
User Name, Memory Usage, Memory Usage Peak,
Page Faults, Pagefile Usage, Pagefile Peak Usage and
File Attributes etc.

Initially the parameters of a process which has
NOT NULL values will be identified. By using the
Curprocess tool [8] initially five process attributes
Process ID, File size, Memory Peak Usage, Page
Faults and Page File Peak Usage will be used. More
attributes can be added to get better security.

Figure 1 shows the screen shoot of CurrProcess
tool window.

Fig.1: Screenshot of CurrProcess tool

3 Range of the parameters
By using the Currprocess tool process parameter’s
range has been identified as shown in Table 1. The
process parameters which have their minimum and

maximum range as shown in Table 1. The range of
these parameters is according to their measure unit.
(i.e. Bytes, K Bytes, a natural number, etc).

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 278 Volume 13, 2014

Table 1: Process Parameters and its minimum and maximum range.

3.1 Range for Learning

Initially for the proposed approach, five parameters of
processes are used to identify the Self and Non-Self
processes. Better security can be achieved by using
more parameters and dividing parameter ranges into
small parts. After analyzing various processes
initially, five parameters Process ID (divided into
three ranges, low, medium and high), File Size
(divided into three ranges, low, medium and high),
Memory Peak Usage (divided into five ranges very
low, low, medium, high and very high), Page Fault
(divided into five ranges very low, low, medium, high
and very high), Page File Peak Usage divided into
three ranges low, medium and high. These ranges
have been divided into different parts as mentioned
below-
 Process ID /DID range has been divided into three
parts -
 Low – 1938 and Below
 Medium - 1939 to 3163
 High - 3164 and Above

File Size /DFS range has been divided into three parts
-
 Low – 314688 and Below
 Medium - 314689 to 4375625
 High - 4375626 and Above

Memory Peak Usage / DMPU range has been divided
into five parts -
 Very Low - 10490 and below
 Low – 10491 to 31302
 Medium - 31303 to 78172
 High - 78173 to 109391
 Very High - 109392 and above

Page Faults /DPF range has been divided into five
parts -
 Very Low - 2274 and below

 Low – 2275 to 5358
 Medium - 5359 to 25001
 High - 25002 to 43750
 Very High - 43751 and above

 Page File Peak Usage /DPFPU range has been
divided into three parts -
 Low – 5008 and below
 Medium - 5009 to 31269
 High - 31270 and above

 The range of these process parameters can be
changed according to the system architecture &
organization along with operating system running on
the computer system.

4 Training Examples

For application of Decision Tree Learning approach
of Machine Learning a set of training examples has
been used. This set has both positive and negative
examples as shown in Table 2. There are 14 training
examples in which 9 are positive and 5 are negative.
The values of parameters are converted as per the
above section into Very Low (VL), Low (L), Medium
(M), High (H) and very High (VH) to make the easy
calculation and understanding. The abbreviations VL,
L, M, H and VH are used instead of actual values.
These training examples are taken after various
running conditions on various workloads of a
Computer System. The system was virus infected
during these observations. Fourteen different
processes are identified as training set. In these 14
training examples, nine examples are positive
examples and treated as Self processes (system and
some application processes) and five examples are
negative examples and treated as Non- Self processes
(generated by viruses and warms).

Parameter Range Min - Max
Process ID 000-9999
File Size 00000 – 9999999 (Bytes)
Base Address 0x00000000 – 0x99900000
Hidden Windows 0 -999
Memory Usage 000 – 999999 (K)
Memory Peak Usage 000 – 999999 (K)
Page Faults 0000 – 9999999
Page File Usage 000 – 999999 (K)
Page File Peak Usage 000 – 999999 (K)

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 279 Volume 13, 2014

Table 2: Training Examples

5 Decision Tree Learning

Decision Tree Learning is a technique for
reminiscent of discrete-valued target functions, in
which the learned function, has been represented by a
Decision Tree. In general, Decision Tree characterize
a disjunction and conjunction of constraints on the
attribute values of instances. Algorithms such as ID3,
ASSISTANT and C4.5 are generally used in
Decision Tree Learning [12, 13].
 Decision Tree categorizes instances by sorting
them down the tree from the root to any leaf node,
which provides the categorization of the instances.
Each and every node in the tree specifies a test of
some attribute of the instance, and each branch
descending from that node corresponds to one of the
possible values for this attribute. An instance is
classified by sorting at the root node of the tree,
testing the attribute specified by this node, then
moving down the tree branch consequent to the value
of the attribute in the given example. This method is
then repeated for the sub-tree rooted at the new node.
 For providing the learning to the proposed
approach, using the Decision Tree Method ID3
algorithm has been used. The vital choice in the ID3
algorithm is selection of attribute to test at each node
in the tree. The attribute which is most helpful in
classifying examples will be selected. For construct a
Decision Tree a statistical property called
Information Gain [7,15] and Entropy [7] is used to

classify the attributes. By using theses concepts, it
becomes easy to select the root node and the nodes
comes under the root node. ID3 uses this
Information Gain for selection among the candidate
attributes at each step while mounting the tree.

5.1 Information Gain and Entropy
Information Gain is clearly related to a measure
commonly used in information theory, called
Entropy [7], that characterizes the purity (and
impurity) of a random collection of examples. Given
a collection S, having some positive and some
negative examples of some target perception, the
Entropy S relative to this Boolean classification is-
Entropy (S) = - (P+ log2 P+) – (P- log2 P-)…….. .(1)
 Where P+ is the proportion of positive examples in
S and P- is the proportion of negative examples in a
given collection S. In all calculation involving
Entropy 0log0 has been assumed as 0.
 As in Table 2 there are a collection of 14 examples
of processes of operating system. These examples are
two types, Self or Non-Self. So these examples are
satisfied the Boolean concepts. Boolean concept
which have 9 positive and 5 negative examples
(adopt the notation [9+, 5-]). Then the Entropy of S
(given examples in Table 2) relative to this Boolean
classification by using equation (1) is:
Entropy ([9+ , 5-]) = - (9/14) log2 (9/14) –
 (5/14) log2 (5/14)
 = 0.940

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 280 Volume 13, 2014

Entropy is 0 if all the members of given collection S
belong to same class i.e. having all positive or all
negative examples. Entropy is 1 when the collection

contains the equal number of positive and negative
examples. Figure 2 shows the how the Entropy
function varies between 0 and 1.

 1.0

 Entropy (S) 0.5

 0.0 0.5 1.0
 P+

Fig.2: The Entropy function relative to a Boolean classification, as the proportion, P+ , of positive example
varies between 0 and 1.

 Given Entropy computes the impurity in a
collection of training examples. Further, the
usefulness of an attribute in classifying the training
data called Information Gain has been calculated.
Information Gain is just the expected decrease in
Entropy caused by partitioning the example
according to this attribute. The Information Gain
“Gain (S, A)” of an attribute A, relative to a
collection of example S, has been defined as-
Gain (S, A) = Entropy (S)
 - ∑ |Sv| Entropy (Sv)……...….. (2)
 v Є Values (A) |S|

Where Values (A) are the set of all possible values
for attribute A, and Sv is the subset of S for which
attribute A has value v (i.e. Sv = { s Є S | A (s) = v
}). Gain (S, A) is the expected reduction in Entropy
caused by knowing the value of attribute A.
For the given training example (S) there is an
attribute Process ID (DID) which have the values
Low (L), Medium (M) and High (H). For the 14
examples [9+,5-] given in Table 2, five Process Id
values are Low (L), three are Medium (M) and six
are High (H).
For Low(L) value of Process ID there are 4 positive
and 1 negative examples.
For Medium(M) value of Process ID there are 2
positive and 1 negative examples.
For High(H) value of Process ID there are 3 positive
and three negative.
The Information Gain due to sorting the original 14
examples by the attribute Process ID-
Values (Process ID) = Low, Medium, High
 S = [9+,5-]
 Slow = [4+,1-]
 SMedium = [2+,1-]
 SHigh = [3+,3-]

Using the equation (2) the Information Gain has been
calculated by the Process ID as:
Gain (S, Process ID)
 = Entropy (S) – (5/14) Entropy (Slow) – (3/14)
Entropy (S Medium) – (6/14) Entropy (S High)
 = 0.940 – (5/14)* 0.721 – (3/14)* 0.918 – (6/14)*1
 = .059
Using the equation (2) the Information Gain by the
other parameters has also been calculated and valued
are mentioned below:

Gain (S, Process ID) = 0.059
Gain (S, File Size) = 0.021
Gain (S, MPU) = 0.263
Gain (S, Page Faults) = 0.401
Gain (S, PFPU) = 0.272

It is clear from the above values of the Information
Gain that the “Page Fault” attribute has the
maximum value, so it provides the greatest
prediction of the target learn function. So “Page
Fault” is chosen as the decision attribute of the root
node To build a Decision Tree following ID3
algorithm [7] has been used:

5.2 ID3 Algorithm
ID3 (Examples, Target_attribute, Attributes)
[Examples are the training examples.
Traget_attribute is the attribute whose value is to be
predicated by the tree. Attributes are a listing of
attributes that may be tested by the learned Decision
Tree. Returns a Decision Tree that correctly
classifies the given examples.]

• Create a ROOT node in the Decision Tree.

• If all the Examples are positive, Return the
single-node tree ROOT, with label = +

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 281 Volume 13, 2014

• If all the Examples are negative, Return the
single-node tree ROOT, with label = -

• If Attributes are empty, Return the single-
node tree ROOT, with label = most common
value of Target_Attribute in Examples

• Otherwise Begin

 A the attribute from Attributes that

best* classifies Examples.

 The decisionattributese for ROOT A
 For each possible value, Vi of A.

» Add a new tree branch below ROOT,

corresponding to the test A = Vi

» Let Examples_Vi be the subset of
Examples that have value Vi for A

» If Example_Vi is empty

• Then, under this new branch add a
leaf node with label = most
common value of Target_Attribute
in Examples

• Else below this new branch add
the subtree.

ID3(Examples,Target_attribute, Attributes – {A})

• End
• Return Tree

 On the basis of above algorithm a Decision Tree
has been constructed.

Process: {P3} {P1,P2,P4,P9,P11} {P6,P7,P8,P12} { P5,P10,P13} {P14}
 [+,-] [0+,1-] [3+,2-] [4+,0-] [2+,1-] [0+,1-]
 [+],[-] [-] [+] [-]

Fig.3: Partial Decision Tree after Applying ID3 on the training example given in Table 2.

5.3 Construction of the Decision Tree
To construct the Decision Tree, Information Gain
calculated in section 5.1 is used. Page Fault has the
maximum value of Information Gain so “Page Fault”
attribute becomes the root node as shown in Figure 3.
The “Page Fault” parameter has been divided into
five parts as very low, low, medium, high and very
high. These are becomes the branches of root node.
 In Table 2 there is only one training example P3
which has the ‘very low’ value of Page Fault. As
according to the ID3 algorithm if any node has only
positive (or all negative) examples then this node
will become the leaf node. This shows that if any
process, has very low “Page Fault” this process may
be non-Self process (shown as [-] as shown in Figure
3). In Table 2 there are five training example
P1,P2,P4,P9 and P11 which has the ‘low’ value of
Page Fault. P1, P2 and P4 are positive example and
P9 and P11 are negative example. As according to
the ID3 algorithm if any node has both positive and
negative examples then for this node again apply the

ID3 on P1,P2,P4,P9 and P11 with remaining
parameters.
 Now, the training examples P6, P7, P8, P12 of
Table 2 has the ‘medium’ value of “Page Fault”. It
has been observed these four examples are positive
example. This shows that if the process has the
medium “Page Fault” it may be a Self process. Now
ensuring the training example of Table 2 for the high
value of “Page Fault” 2 positive (P10, P13) and 1
negative (P5) example has been obtained. By
evaluating the training example of Table 2 for the
very high value of “Page Fault” 1 negative (P14)
example has been obtained.
 In Figure 3 very low (Non-Self), medium (Self)
and very high (Non-Self) becomes the leaf node of
the Decision Tree. Other low and high value will
have a sub-tree. Now the Information Gain of the
remaining parameters Process Id, File Size, Memory
Peak Usage and Page File Peak Usage of training
examples of P1, P2, P4, P9, P11 for low values of
“Page Fault” and P5, P10, P13 for high values of
“Page Fault” have been calculated using equation 2.

 Page Fault

Very Low Low Medium Very High High

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 282 Volume 13, 2014

It has been observed that “Page File Peak Usage”
will become the node of the low value of “Page
Fault” and “File Size” will become the node of the
high value of “Page Fault” as shown in Figure 4.

Page File Peak Usage has three possible values,
Low, Medium and High. According to the training
example of Table 2, P11 has the Low value of Page
File Peak Usage and it is a negative example (Non-
Self). P4 has the High value of Page File Peak Usage

and it is a negative example (Non-Self), P1, P2, P9
[2+, 1-] has the Medium value of Page File Peak
Usage.

File Size has three possible values Low, Medium and
High rom the training examples of Table 2, P13 has
the Low value of File Size and it is a positive
example (Self), P10 has the Medium value of File
Size and it is a positive example (Self), P5 has the
High value of File Size positive example (Self).

{P1, P2, …. P14}
[9+,5-]

Very Low Very High
Low Medium High

{P1,P2,P4,P9,P11} {P5,P10,P13}
[3+,2-] [2+,1-]

{P11} {P1,P2,P9} {P4}
[0+,1-] [2+,1-] [1+,0-] {P13} {P10} {P5}

[-] [+] [1+0-] [1+0-] [0+1-]
[+] [+] [-]

Page Fault

Non Self

File SizeSelfPage File
Peak Usage

Non Self

Low Medium High Low Medium High

 Fig.4: After Applying ID3 on the training example P1, P2, P4, P9, P11for low value and P5, P10, P13 for

high value on training examples of Table 2.

After the execution of ID3 Algorithm and performing
all the calculations, the final Decision Tree has been
generated on the basics of the training example of
Table 2.
Figure 5 show the final decision tree constructed by
implementing the ID3 Algorithm on the training
examples of Table 2. Different Decision Trees are
constructed by using different training examples.
Between these different Decision Tress, select one
which will give better results on test data.

 The final Decision Tree shown in Figure 5 has been
tested with test data of Table 3. Table 3 shows the
test result also in the last column. Final Decision
Tree of Figure 5 identifies all the Self process
correctly, but processes P12is identified as a Self
(incorrectly).

The final Decision Tree of Figure 5 now is tested
with test data of Table 4. Table 4 shows the test
result also in the last column. Final Decision Tree of
Figure 5 identifies process P3 and P14 incorrectly.

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 283 Volume 13, 2014

{P1, P2, …. P14}
[9+,5-]

Very Low Very High
Low Medium High

{P1,P2,P4,P9,P11} {P5,P10,P13}
[3+,2-] [2+,1-]

Low Medium High Low Medium High

VL L M H VH

Page Fault

Non Self

File SizeSelfPage File
Peak Usage

Non Self

Non Self Memory Peak
Usage/ Pro ID

Self Self Self Non Self

Self Self Non Self

 Fig.5: Final Decision Tree generated by ID3 Algorithm on training data of Table 2

Table 3: Test data and result by final Decision Tree of Figure 3.

Process

ID
File
Size

Mem Usage
Peak

Page
Faults

Pagefile Peak
Usage

Self/Non-
Self

Identified
As

P1 H M M M M Yes Self

P2 M M L M M Yes Self

P3 M H M M M Yes Self

P4 M M M M M Yes Self

P5 M H M M M Yes Self

P6 H H L M M Yes Self

P7 H M L M M Yes Self

P8 H M VL L M Yes Self

P9 H H M M H Yes Self

P10 M M VL VL L No Non-Self

P11 M H VH L M No Non-Self

P12 L L L M M No Self

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 284 Volume 13, 2014

Table 4: Test data and result of final Decision Tree of Figure 3.

6 Experimental Results and
Comparisons
After analyzing the result of Table 3 and Table 4, it as
been observed that Decision Tree can play an
important role to provide the security to a computer
system.
 As Decision Tree is constructed by adding new
nodes by ID3 Algorithm, the accuracy of the tree
measured over the training examples increases
monotonically. However, when measured over a set
of test examples independent of the training
examples, accuracy first increases, then decreases. It
has been clear from the Figure 6 when to stop the tree
growing in other words how many process
parameters are sufficient to provide a decision on Self
and Non-Self processes. It has been observed from
the graph of Figure 6, that near about ten to fifteen
parameters will be sufficient to get a better result.
It has been observed from the Figure 7, as the
numbers of nodes (parameters) in the Decision Tree
increase the security also increases. It has been
observed from the graph of Figure 7 that when the
number of nodes increases in the Decision tree after
fifteen nodes, the security remain constant. It has
been observed from the Figure 8, as the numbers of
nodes (parameters) in the Decision Tree increases
there is a degradation in system performance. It is has

been observed from the graph of Figure 8 that when
the nodes increases after fifteen then the system
performance decreases very rapidly. As processes and
its parameter are used in the proposed approach for
making the decision. During the security check by the
Decision Tree the process remains ideal. So the
overall system performance has been decreased by
the proposed approach. If a process is identified as
Non-Self by the proposed approach, user’s action will
be required. User can suspend its execution or delete
this process from the system.
The proposed approach is compared some existing
security approach as shown in Table 5. As shown in
table it is clear that the proposed approach is better.
Existing security approaches scan all the files and
folders of the system but the proposed approach scan
only the processes. It takes very less time to find out
the Non-Self processes as other approaches scan all
the files and data. Accuracy and detection rate is very
high in comparison to existing anti-virus tool. As the
proposed approach scans all processes so the system
will become slow. The proposed approach is free
from signature as required in existing approaches,
proposed approach works on parameter’s value not
on any signature. No regular update is required in the
proposed approach as it is required in anti-virus tools;
new Decision Tress may be generated by new
training examples. The disadvantage of the proposed

Process

ID
File
Size

Mem
Usage
Peak

Page
Faults

Pagefile Peak
Usage Self

Identified
As

P1 L M M M H Yes Self

P2 H M VL L M Yes Self

P3 M L VL VL L Yes Non-Self

P4 M M M M M Yes Self

P5 M M L M M Yes Self

P6 M L H H H Yes Self

P7 L M L L M Yes Self

P8 H L H M H Yes Self

P9 H L VL H L Yes Self

P10 H L L L M Yes Self

P11 H L L VH M No Non-Self

P12 L M M VH M No Non-Self

P13 H M VL VL L No Non-Self

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 285 Volume 13, 2014

approach is that the Decision Tree constructed by
various training example may be different, but these
different trees may give the same result. To show the
working of proposed approach five process
parameters has been used, more parameters can be

added to improve the security. By adding more
parameters different Decision Tree will be
constructed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

Training
Data

Test Data

Size of Tree (Number of Nodes/Parameters)

Accuracy

Accuracy on the scale of 1

Fig.6: Accuracy of Decision Tree on training and test data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Security

Security

Size of Tree (Number of Nodes/Parameters)

Value on
Scale 1

Figure 7: Security level of Decision Tree with increasing of number nodes.

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 286 Volume 13, 2014

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

System Performance Lag

System
Performance
Lag

Size of Tree (Number of Nodes/Parameters)

Value on
Scale 1

Fig.7: System Performance lag due to Decision Tree with respect to number node

Table 5: Comparison of Proposed Approach with Some Antivirus tools

Parameters

Antivirus

Scan Time Accuracy
Detection

Rate

Performance

Lag

Signature

based

Detection

Regular

Updating

Required

AVG antivirus High High Normal Yes Yes Yes

Norton antivirus High High High Yes Yes Yes

Avast antivirus High Medium Normal Yes Yes Yes

Microsoft Security

Essentials
Average High High Yes Yes Yes

Proposed

Approach
Low Very High Very High Yes No No

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 287 Volume 13, 2014

7. Conclusion and Future work
 Various approaches and tools are used in the current
scenario to provide security, but these approaches are
not sufficient to provide best security level to a
computer system. A better approach is required to get
security.
 Through this paper an approach based on Decision
Tree is proposed to provide better security. Decision
Tree learning plays an important role to provide better
security to the computer system. The Decision Tree
approach used in this paper provides
better result over the current approach.
 Decision Tree provides the best result to provide a
learning system for identification of Non-Self
processes. By using the various training and test data
sets on ID3 algorithm a better learn system will be
developed. Different tree can be constructed as
according to training data. By using a large number of
examples in training data a correct Decision Tree can
be formed and it better works on test data.

References:-
[1] J. K. Percus, O. E. Percus and A. S. Perelson,

“Probability of Self-Non-self discrimination” in
Theoretical and Experimental Insights into
Immunology, Volume 66, 1992, pp 63-70.

[2] S. Forrest, S. A. Hofmeyr, A. B. Somayaji and T.
A. Longstaff, “A sense of self for UNIX
processes”, in Proceedings of IEEE Symposium
on Computer Security and Privacy,
http://www.cs.unm.edu/~immsec/publications/ieee
-sp-96-unix.pdf, 1996

[3] Stephanie forrest, Alan S Perelson, 1994,”Self
non-self discrimination in a computer”, In
Proceedings of the IEEE Symposium on Research
in Security and Privacy, Los Alamitos, CA: IEEE
Computer Society Press,
http://www.cs.unm.edu/~immsec/publications/viru
s.pdf

[4] Rossouw von Solms,Johan Van Niekerk, ” From
information security to cyber security” Elsevier’s
Computer & Security, Volume 38, 2013, pp 97–
102.

[5] Cui-Qing Yang, “Operating System Security and
Secure Operating Systems”, version 1.4b, option
for GSEC, Global Information Assurance
Certification Paper.

http://www.giac.org/paper/gsec/2776/operating-
system-security-secure-operating-systems/104723,
2003

[6] http://www.cyberwarzone.com/massive-cyber-
security-tools-list-2013

[7] Tom M. Mitchell, 1997, “Machine Learning”,
McGraw-Hill International Editions, Computer
Science Series, 1997.

[8] CurrProcess v1.13 - Freeware Process Viewer,
Copyright (c) Nir Sofer,
http://www.nirsoft.net/utils/cprocess.html, 2003-
2008

[9] Haoyong Lv, Hengyao Tang, “Machine Learning
Methods And Their Application Research”, IEEE
International Symposium on Intelligence
Information Processing and Trusted Computing,
2011, pp 108 – 110.

[10] Wang Hua, MA Cuiqin, Zhou Lijuan, “A Brief
Review of Machine Learning and its Application”,
IEEE Information Engineering and Computer
Science, ICIECS, 2009, pp 1-4.

[11] Olcay Taner Yıldız and Ethem Alpaydın,
“Omnivariate Decision Trees” IEEE Transactions
on Neural Networks, Volume 12, No. 6, 2001, pp
1539-1546.

[12] Hua Ding, Xiu-Kun Wang, “Research on
Algorithm of Decision tree induction”,
Proceedings of the First International Conference
on Machine Learning and Cybernetics, Beijing,
2002, pp 1062-1065.

[13] Chi Qingyun, “Research on Incremental Decision
Tree Algorithm”, International Conference on
Electronic & Mechanical Engineering and
Information Technology, 2011, pp 303-306.

[14] Abdelhalim, A.; Traore, “A New Method for
Learning Decision Trees from Rules” International
Conference on Machine Learning and
Applications,ICMLA.
http://www.uvic.ca/engineering/ece/isot/publicatio
ns/by-area/rule-based-decision-tree/index.php,
2009

[15] Yang Yu-zhen ,Liu Pei-yu ,Zhu Zhen-fang ,QIU
Ye , “The Research of an Improved Information
Gain Method Using Distribution Information of
Terms”, IT in Medicine & Education, ITIME '09.
IEEE International Symposium, Volume 1, 2009,
pp 938-941.

WSEAS TRANSACTIONS on COMPUTERS Amit Kumar, Shishir Kumar

E-ISSN: 2224-2872 288 Volume 13, 2014

http://www.nirsoft.net/utils/cprocess.html

