
Achieving Load Balance in a Hierarchical Peer-to-Peer Architecture

S.C. WANG, Y.H. SU, S.S. WANG*, K.Q. YAN*, S.F. CHEN
Chaoyang University of Technology

168, Jifeng E. Rd., Wufeng District, Taichung 41349
TAIWAN, R.O.C.

{scwang; s10033905; sswang*; kqyan*; s9514624}@cyut.edu.tw
*: Corresponding author

Abstract: - With the fast development of networking, the demands made of computers are greater than ever before.
Determining how to utilize the resources of networking to reach the objective of cooperative computing has remained an
important topic in recent years. In addition, with the great advances in technology of the Internet, Peer-to-Peer (or P2P)
computing has gradually become the mainstream of distributed applications; it not only provides enormous resources for
complicated computing that a single computer cannot solve, but also integrates resources more effectively. A P2P
architecture relies primarily on the computing power and bandwidth of the participants in the network rather than
concentrating the work in a relatively limited number of servers. P2P architectures typically are used for connecting nodes
via large-scale connections. The topology is useful for many purposes. Furthermore, every joint in a P2P computing
system has its own resources. Determining how to take the different characteristics of every joint set into consideration for
loading assignments is an important topic. However, in this study, a three-phase scheduling algorithm under P2P
architecture is advanced. The proposed scheduling algorithm is composed of BTO (Best Task Order), TOLB (Threshold-
based Opportunistic Load Balancing) and TLBMM (Threshold-based Load Balance Min-Min) scheduling algorithm that
can better utilize executing efficiency and maintain the load balancing of system.

Key-Words: - Distribution system, Peer-to-Peer computing, Scheduling, Load balance

1 Introduction
In recent years, as technology advances and
develops, the complexity and scale of problems to
be solved via computing become increasingly.
However, some issues may be too complicated for a
single computer, a PC cluster, or even a specially
designed supercomputer to handle. Main function of
the network is to connect many computers or
resources in the various geographical locations and
to play as the communication pipeline between
these computers or resources [1].

When suffer from insufficient computing ability,
problem solving of large-scaled issues would have
to resort to a distributed systems. This approach is
usually facilitated by integrating various systems (or
nodes) to complete a related network application or
duplication of files. There are several options for the
establishment of distributed system; among them,
cluster system and distributed system are the most
frequently used [2].

The cluster system integrates several personal
computers or workstations via high-speed network
within a certain region into a computing
environment of high-performance. However, the
most significant weakness of cluster system is the
limitation within a fixed area, hampering the
flexibility of the system [3].

The distributed system can be divided into two
categories: client/server system and P2P computing
[4]. The client/server system has a central server
that can provide service such as varied information,
e-mail or information search etc. However, the
weakness of client/server system is that when the
server breaks down, the whole system should be
crashed. P2P computing utilizes the network to
integrate resources available on many nodes
scattered in every region to facilitate a distributed
application. P2P computing is a kind of internet
technology and also called symmetric internet
technology. P2P computing executes applications
via computing ability of all members of network and
each node can act as client or server [5,6].

Moreover, the usage of network has granted P2P
computing with more and more attention. P2P
computing is better than conventional distributed
systems or client/server system in that the former
provides large-scaled resource sharing, enhances
resource utilization, and facilitates application over
remote or distant network connection. Thus,
limitation of space confronting conventional
distributed and client/server systems can be
overcome, achieving cross-platform operation and
thorough exploitation of the abundant.

Thus, using P2P architecture can avoid the
burden of server too heavy while only one central

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 107 Volume 13, 2014

server is provided in traditional client/server system.
Moreover, the P2P system can also improve the
computing and storing capability of the traditional
client/server system. Otherwise, the distributed
resource in each node can be used to collaborate
completing a massive computation or application.

Therefore, how to utilize the advantage of P2P
computing and make each task to obtain the
required resources in the shortest time is an
important topic. However, in this study, a three-
phase load-balancing scheduling algorithm that
composes of BTO, TOLB and TLBMM scheduling
algorithm is proposed. Moreover, the agent
mechanism is used to collect the related information
of node to achieve efficient utilization resource and
to enhance work efficiency. The rest of this paper is
organized as follows. The literature review is
discussed in Section 2. The proposed three-phase
scheduling algorithm is presented in Section 3. The
simulations of the proposed scheduling algorithm
are shown in Section 4. Finally, the conclusions and
the future works are discussed in Section 5.

2 Related Works
In this section, the related studies on the topologies
of P2P computing and scheduling algorithms are
introduced.

2.1 P2P topology
In a P2P computing environment, a network
structure is constructed as long as nodes can connect
each other via communication media. However, the
shape of connection between each node is named
topology. The topology can be classified by the
node shape of align, such as start topology, ring
topology, and hierarchical topology [3].

A star topology is designed with each node
connected directly to a central node (server). Data
on a star network topology passes through the server
before continuing to its destination. The server
manages and controls some functions of the network
which continue provide service for each node.
However, this server cannot supply each node
directly data storage, it only provides the location of
the needed data.

There is only one server in star topology, thus the
service to client is limited. A ring topology can be
solved the problem through linked multi-server.
Namely each node connects to exactly two other
nodes, forms a circular pathway for signalling a
ring. Moreover, a ring topology provides only one
pathway between any two nodes; it may be

disrupted by a failure link. Therefore, the major
disadvantage of this topology is that if a lot of nodes
want to search information, all nodes connected to
that node would be overloaded.

Hierarchical system is used in the relevant
network application a long time, such as Domain
Name Server (DNS). A hierarchical network
includes a root sever to responsible verify
mechanism, each lower level node must be verified
by upper level node. The advantage is only record
location of heighten level, thus node data can be
reduced effectively [2].

In consequence of the properties of P2P
computing, a hierarchical topology is adopted to our
investigate framework.

2.2 Scheduling algorithm
Due to the different characteristics of each
scheduling algorithm, the characteristics and the
suitable applications of each scheduling algorithm
need to be visited [7,8].

Opportunistic Load Balancing (OLB) attempts to
make each node keep busy, therefore does not
consider the present workload of each node. The
advantage is simple and reaching load balance but
its shortcoming is never considering the expected
execution time of each task, therefore the whole
completion time (makespan) is very poor.

Minimum Completion Time (MCT) assigns each
task in arbitrary order to the nodes with minimum
expected completion time of the task. The
completion time is simply, but this is a much more
successful heuristic as both execution times and
node loads are considered.

Min-Min scheduling algorithm establishes the
minimum completion time for every unscheduled
task, and then assigns the task with the minimum
completion time to the node that offers it this time.
The minimum completion time for all tasks at each
round is considered by Min-Min scheduling
algorithm; hence, it can schedule the task that will
increase the overall makespan. In addition, the spirit
of Min-Min is that every composed of the best is all
minimum completion time for allocation resource.
However, the biggest weakness of Min-Min
scheduling algorithm is it only considers the
completion time of each task at the node but does
not consider the work loading of each node.

Because of OLB is simply and easy to implement
and each node often keep busy. In our research, the
OLB is improved to assign the task and balance the
load in P2P architecture. In addition, in order to
provide the working performance and load balance
of each node in the system, the Min-Min will be

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 108 Volume 13, 2014

http://fcit.usf.edu/network/glossary.htm#node�

improved in this investigates on which it expects to
reduce the execution time of each node efficiently.

3. Research Methods
In previous studies, P2P architecture, as related to
distributed network topology, included star, ring and
hierarchical topology [9]. However, the application
of a network is diversifying; the research results of
the past cannot fit the requirements [10]. Hence, a
topology of P2P is proposed in the study that can
satisfy the requirements of task and maintain a
stable network service by selecting manager and
clustering nodes.

In order to guarantee that each task entering into
the system can be completed quickly, the node
resources are allocated to each task in order to
achieve load balance; this research proposes a three-
phase load-balancing scheduling algorithm. In the
first phase, the Best Task Order (BTO) is used to
provide the best order for the task that entering into
the system by evaluating the demand and priority
grade of each task. In the second phase, the
Threshold-based Opportunistic Load Balancing
(TOLB) uses a threshold value mechanism to
allocate the task equally. In the third phase, the
Threshold-based Load Balance Min-Min (TLBMM)
is involved to choose the node that will complete the
task in the shortest time, in order to enhance the
performance of a system and to reach the load
balance effectively. The proposed scheduling
algorithm is described in detail in the following
subsections.

3.1 Peer-to-Peer topology
In the initial state of a P2P network, each node is
geographically distributed in a random fashion. This
may cause a flooding phenomenon when the
network fills with sensing data. A hierarchical P2P
topology is proposed in the study that can avoid the
flooding phenomenon. However, two mechanisms
are proposed to construct the topology: capability
value function and dynamic adjust mechanism.

In the capability value function, the properties of
task to be processed are comprised of decision
variables such as bandwidth, CPU capability, and
memory capability. The relative value of each
decision variable can be derived using equations or
figure correspondence tables. To search for a node
that can best meet the demands of task, various
weight values are provided to the nodes in
accordance with the level of preference for the task.
By the progression, the capability value of each
node can be determined. The capability function is

shown as equation (1).

Vj = =w1f(x1,j)+w2f(x2,j)+…+wnf(xi,j)

(1)

=w1+ w2+…+wn =1；1≤j≤N; 0≤f(xi,j)≤1

Whereas
f(xi,j): The value of the decision variable i in node j.
Vj: The function value of node j.
i: The decision variable i adopted in this

capability function with n decision variables.
j: The node j in this P2P environment and there

are N nodes in this P2P environment.
wi: The weight of each decision variable i.

In equation (1), the capability value of each node

can be calculated, and the node with the highest
capability value is elected as manager. The objective
of the capability function is used to elect the
manager.

In a three-level P2P topology, the executive
nodes in Level 3 are used to execute the subtasks.
The Level 2 holds the sub-managers employed to
divide the task into logical independent subtasks
while the Level 1 consists of a manager that assigns
the task to a suitable sub-manager. A three-level
P2P topology is shown in Fig. 1.

Fig. 1 Three-level P2P topology

Due to the varying requirements of each task,

some tasks require the highest processing speed
while others require a high rate of bandwidth and
transmission. Therefore, according to the properties
of the nodes, some nodes are formed as a group via
a clustering mechanism. There are three steps of the
clustering mechanism:

Step (1) In the initial stage, the capability value of

each node is computed; the selected
decision variables are depended on the
requirements of each application.
However, the value of the decision
variable for each node is normalized and
the value is set between 0 and 1.

Step (2) According to the capability value of each
task, the nodes are clustered as a group.

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 109 Volume 13, 2014

For instance, if the capability value of
node is more than 0.8, the node will be
allocated to the first group; if the
capability value of node is less than 0.6
and more than or equal to 0.4, the node
will be allocated to the second group, and
so on.

Step (3) After each node is clustered into a group,
the node with the mean value of all nodes’
capability values in the same group will be
elected as the sub-manager of the group.

After clustering, the sub-managers in the Level 2

will be connected with the manager in the Level 1 to
build a hierarchical framework by data transmission.
Then, the relationship between the higher and the
lower levels will be obtained. In other words, the
objective of the message transmission mechanism is
to establish the entire hierarchical framework
through message exchanges.

3.2 Three-phase load balancing scheduling
algorithm
In order to reach the load balance and reduce the
execution time of each node in the P2P
environment, a three-phase load-balancing
scheduling algorithm is proposed in this study. In
the first phase, the BTO scheduling algorithm is
used to determine the execution order of each task.
In the second phase, the TOLB scheduling
algorithm is used to assign a suitable sub-manager
for allocation of the executive node. In the third
phase, the TLBMM scheduling algorithm is used to
guarantee that a suitable executive node will be
assigned to execute the task in the minimum
execution time.

In the first phase, the best order of task
executed will be arranged by the BTO scheduling
algorithm. According to the characteristics of each
task, an execution order is given and stored in job
queue by manager (root node). Therefore, in this
study, both job demand and service property of each
task are considered and the shouldering algorithm is
name BTO (Best Task Order), thereby ensuring that
a suitable order for the tasks is assigned by BTO.
(1) Job demand. In a P2P environment, a node is
assigned to execute tasks Ti ={T1, T2, T3, …, Tm}
that enter into system. However, the limited
capability of the node may not properly address the
task assigned. In order to allow each task to allocate
fairly and execute quickly, the execution
requirements of a task are considered. In addition,
the execution requirements of each task have been

stored in the job queue. However, according to the
execution requirements that include bandwidth,
transmission rate, CPU capability and memory
capability, as shown in equation (2), the job demand
(JDi) for each task is calculated. Because each
decision variable considered in this research has a
different unit in the actual environment, the decision
variables need to be normalized. Equation (3) shows
an instance of memory normalization.

JDi={Bandwidthi, Transmission ratei, CPU
capabilityi, Memory capabilityi, …},

0<JDi≤1, 1≤i≤m (2)

Memory capabilityi=Memory capability of task Ti
required/ Memory capability of max,

 0<Memory capability≤1, (3)

In a real environment, there are many tasks need

to be executed. In this study, a task with the highest
job demand (JD) is executed first; then the waiting
time of the entire system can be reduced. In
addition, each task is completed simultaneously
when scheduled in parallel.
(2) Service property. The consideration of this
study is not only the requirements of tasks, but also
the service property of each task. In many related
applications, the response time is one of the most
important factors for QoS (Quality of Service).
Many related applications for pervasive computing
are real-time tasks that must obey a limited response
time. Otherwise, the results of the execution will be
futile. On the other hand, the related applications of
non-real time tasks will not strictly the response
time, although the results are still useful when tasks
exceed the time limit [1].

Therefore, in this study, a higher priority is given
to real time tasks, while the lower priority is given
to non-real time tasks. According to the application
of tasks, task priority is divided into four grades:
Best Effort service (BE), Non-Real-Time Polling
Service (nrtPS), Real-Time Polling Service (rtPS),
and Unsolicited Grant Service (UGS) [11]. As the
fourth grade, a UGS task is very strict with time and
has the highest priority. The Priority (Pi) grade for
each task can be calculated by equation (4).

Pi=The priority of task Ti /4(grades),

0<Pi≤1, 1≤i≤m (4)

In brief, a task with both the highest job demand

and the highest priority is severed first. Hence, the
order value (Oi) determines the entering sequence of
a task The order value is determined by job demand
(JDi) and priority (Pi) grade. The order value (Oi) is

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 110 Volume 13, 2014

shown in equation (5). After calculating the order
value of each task, the task with the maximum order
value ({ }mOOOMax ,...,, 21) can enter into system
first. In short, the tasks are dispatched to the system
from higher to lower order.

mi, PJDO iii ≤≤1*= (5)

By using the BTO scheduling algorithm, the

most suitable order is obtained in accordance to the
job demand and the service priority of each task.
Thus, the waiting time of each task can be reduced..
However, the performance of the entire system can
be promoted.

In the second phase, the Threshold-based OLB

(TOLB) is proposed in the study that integrates a
traditional OLB and a sub-manager threshold
mechanism.
(1) OLB scheduling algorithm. Traditional OLB
assigns tasks to the nodes in an arbitrary order. For
instance, to carry out the task, an m-by-n matrix of
two-dimensions is employed where m is the total
number tasks Ti ={T1, T2, T3, …, Tm} and n is the
total number of nodes Nj ={N1, N2, N3, …, Nn}. In
the m-by-n matrix, task Ti is assigned in free order
to execute at present node Nj, which is usable by the
OLB scheduling algorithm. The OLB scheduling
algorithm allows each node to keep busy. In other
words, the load balance of each node is considered
by OLB [12]. However, it has several shortcomings:

 The execution time of each task in node

cannot be forecasted.
 The complete time will be extended when

system loading is high.
 The suitable between the capability of tasks

and nodes does not be considered.

In this research, the OLB scheduling algorithm

will be used to assign tasks to nodes in order to
reach load balance. However, there are different
requirements for each task. The task may not be
executed continuously if the node assignment is
unsuitable. Therefore, a sub-manager threshold is
used to filter the adaptive sub-manager in order to
guarantee the quality of service.
(2) Sub-manager threshold. The sub-manager
threshold is used to evaluate the capability of each
sub-manager. Because the computing complexity of
each task is different, it is important to avoid a
situation in which a complex task is assigned to a
node where the capability is poor. This will result in
a situation that an unsuitable sub-manager is chosen

and the performance of the system is reduced.
Therefore, the decision variables according to the
complexity of the task need to be considered.
Specifically, the decision variables should be based
on the resources required of the task to maintain
system performance.

In this study, the assumptions of the computing
capability of a node and the execution time of task
in each node are given. In addition, the storage
capability of a node is addressed, too. The decision
variables can be defined as follows:

V1 = CPU capability;
V2 = Memory capability.

After evaluating the capability of node with a

sub-manager threshold, the sub-manager with
sufficient resource capability to support the tasks is
numbered in k, { }ik TNNNN,, 321

, in order to
address the problem that some tasks do not need be
supported by a node with high capability that these
tasks are actually supported by a higher capability
node to carry out.

Therefore, this study selects all nodes that can
carry out a task (Ti). Among these nodes, the node
with the lowest capability is elected to carry out task
Ti, { }ik TNNNNMin,, 321 . Using this method,
the nodes with better capability will be reserved for
the more complex tasks. Each task will be assigned
to the proper node to enhance system performance.
The tasks are dispatched to several clusters
according to the requirements of CPU capability and
memory capability. For easy clustering, each task is
given a job demand value (JD) as calculated by
equation (2). Through normalization, the values
ranged between zero and one. For example, the
value of cluster 1 is more than 0.8 while the value of
cluster 2 is ranged from 0.6 and 0.8, and so on. In
addition, the task is assigned to cluster 3 if the task
requirements matched the restricted conditions.

However, the restricted condition for each task is
not the same. Because of the necessary restricted
condition depends on the application of tasks.
Therefore, the different restricted condition of each
task based on the different applications need to be
considered.

The TOLB scheduling algorithm is proposed that
combines the traditional OLB and the proposed sub-
manager threshold. The TOLB scheduling
algorithm not only dispatches the task to the most
suitable sub-manager according to the property of
task requiring execution, but also maintains the
advantage of traditional OLB to reach the load
balance.

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 111 Volume 13, 2014

In the third phase, a Threshold-based Load

Balance Min-Min (TLBMM) algorithm is proposed
that combines a Load Balance Min-Min (LBMM)
scheduling algorithm [2] and an executive-node
threshold that will guarantee the task is assigned a
suitable node to carry out the minimum execution
time. The LBMM and the executive-node threshold
are explained as follows.
(1) LBMM scheduling algorithm. The Load
Balance Min-Min (LBMM) scheduling algorithm
takes the characteristics of a Min-Min scheduling
algorithm. However, an LBMM scheduling
algorithm addresses the shortcomings created by the
load unbalance of a Min-Min. The objective of a
LBMM algorithm is to obtain the shortest
completed time for each task and the load balance of
each node.

Hence, the LBMM algorithm can improve the
Min-Min load unbalance and effectively reduce
execution time. The idea behind an LBMM
scheduling algorithm is to distribute subtasks among
each sub-manager to be executed in a suitable
executive node, and to allow each node to keep
busy. Initially, the sub-manager is used to divide the
task Ti into some logical independent subtasks (Ti1,
Ti2, …Tij, …) where Tij is the subtask of Ti, 1≤j≤m
and m is the total number of subtasks of Ti. An m-
by-n matrix with m subtasks and n nodes is created
by LBMM scheduling algorithm; the matrix value
considers the execution time of each subtask at each
executive node. The execution time of each subtask
at different executive nodes is evaluated by agent.
According to the information gathering by the agent,
each sub-manager chooses the executive node with
the shortest execution time to execute various
subtasks and record them into the Min-Time ser.
Finally, the Min-Time ser for each subtask will be
recorded; this is a set of minimal execution time on
certain executive nodes. In the meantime, the sub-
manager chooses the executive node from the Min-
time ser. This means the αth subtask on the
executive node γ is performed first. Therefore, the
subtask α will be distributed to executive node γ.
Since the subtask α has been distributed to the
executive node γ to be performed, the subtask α will
be deleted from the subtask queue. Meanwhile, the
Min-Time ser will be rearranged and the executive
node γ put last in the Min-Time ser, allowing the
node without a task to be prioritized. The
progression of the LBMM scheduling algorithm is
shown in Table 1.

Table 1 The progression of LBMM scheduling

Step 1 The execution time of each subtask in
different executive node is determined by
an agent.

Step 2 According to the requirements of a
subtask, the executive node with minimal
execution time is chosen as a Min-Time
executive node, and recorded into the
Min-Time set.

Step 3 To select the executive node γ from the
Min-time set in which executive node γ
has the shortest execution time, 1≤γ≤n.

Step 4 Assign subtask αth to executive node γ.
Step 5 Remove the subtask α that has been

executed completely from the required
executed task set.

Step 6 Rearrange the Min-Time set, and the
executive node γ is placed in the last
order.

Step 7 Repeat Step 1 to Step 6, until all subtasks
execute completely.

In accordance with the abovementioned steps for

the LBMM algorithm, each subtask is dispatched to
a suitable executive node to execute, but the
capability value of each node is different. While
some nodes can complete tasks quickly because
they have good capability, other nodes require
longer execution times to perform tasks, which
results in longer completion times for the entire
system. In order to solve the problem, an executive-
node threshold is proposed as discussed below.
(2) Executive-node threshold. In a P2P
environment, the composition of nodes is dynamic:
each node can enter a busy state at any time, thus
increasing its execution time and lowering its
performance level. Thus, the “threshold of executive
node” is used to choose the best executive node. The
progression is divided into four steps as follows:

Step 1: To compute the average execution time in

different executive node for each subtask.
Step 2: If the required execution for a subtask with

a minimal execution time in the Min-Time
set is less than or equal to the average
execute time of a subtask at all executive
nodes, then carry out the subtask to execute
normally.

Step 3: If the required execution time of a subtask
with a minimal execution time in a Min-
Time ser is greater than the average execute
time of a subtask at all executive nodes, then
the executing time is set to ∞ (in this case

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 112 Volume 13, 2014

the execution time is too long and cannot to
be considered). The executive nodes that
have been executed subtasks completely
will re-enter the system to participate in the
execution of the subtask.

Step 4: Repeat Step 1 to Step 3 until all subtasks
have been completely executed.

Setting the executive-node threshold can remove

an executive node that has taken too long to execute.
If the executive node has poor capability, a weaker
executive node cannot execute the subtask.

However, in the third phase, the TLBMM
scheduling algorithm is used to choose the best
executive node and then the executive-node
threshold is used to guarantee that the executive
node carries out the task in the shortest time. Thus,
the job can be allocated effectively and the best
resource allocation is provided.

The three-phase load-balancing algorithm is
employed in the P2P hierarchical topology. The
proposed scheduling algorithm can schedule the task
according to the task demand. Thus, each task can
be completed effectively and quickly in the P2P
topology.

4. Experiment
In our experiment, the network simulation (Network
Simulation 2, NS2) designed by the
Telecommunications Industry Association is used to
simulate the network environment [13]. Besides
NS2, other tools such as nsBench and Jbuilder are
employed to assist in the experiment.

To create a real-like P2P environment, the
following assumptions are made in advance:

1. The requirement of each task is normally
distributed. That is, the tasks will not always be
dispatched to the same group with the highest
or lowest capability ensuring that some groups
are not always idle.

2. Each independent and dismembered task is
divided into several subtasks and they are
completed independently.

3. The necessary execution time of a task can be
forecasted. In addition, the task has a different
execution time at different nodes.

4. The requirements of all tasks can be processed
by the nodes. In other words, all tasks can be
carried out if they enter into the system.

5. The capability of each node is normally
distributed, namely that each task can be
supported in different nodes.

However, NS2 is employed to simulate the
network environment of fifty nodes and fifty tasks.

The node attributes include Node_ID, Bandwidth,
CPU capability, memory capability, and
transmission rate. In addition, each task has a
priority grade, and the priority grade identifies the
order of tasks for entering the system.

Equation (1) is used to calculate the capability
value of the fifty nodes. Through a procedure of
normalization, the capability value for each node is
in the range between 0 and 1. The node that has the
highest capability value becomes the manager.
Then, these nodes are divided into five groups
according to the node capability value. The sub-
manager is elected that has the mean of capability
value.

In this experiment, we assumed that the most
important resources for a P2P network application
are CPU capability and memory capability. Thus,
the nodes are divided into five groups according to
these capabilities. The nodes with the highest
capability value are clustered in Group 1; in
particular, the capability values of CPU and memory
must be bigger than or equal to 0.8. The nodes with
lower capability value are assigned to Group 2; the
capability values of CPU and memory must be
larger than 0.6 and less than 0.8. In addition, Group
3 has nodes with capability value of the CPU and
memory in a range between 0.4 and 0.6, and so on.

Distributed scheduling algorithms such as OLB
or Min-Min (MM) are widely employed in
researches. In our experiment, a TOLB and
TLBMM scheduling algorithm with an OLB and
Min-Min (MM) scheduling algorithm are compared.
The design of experiment is shown in Table 2.
However, the tasks are assigned to the nodes based
on the three scripts. Each script is combined with
two scheduling algorithms, i.e. Script 1 is combined
with OLB and MM.

Table 2 The experiment design

Scheduling
Script design

Sub-manager of
second phase

Executive-node of
third phase

Script 1 OLB MM
Script 2 TOLB MM
Script 3 TOLB TLBMM

The OLB scheduling algorithm and the proposed

TOLB scheduling algorithm is used to dispatch the
tasks by the manager in the Level 1 to the sub-
manager in the Level 2, respectively. Then the MM
and the proposed TLBMM is employed in order to
assign the subtasks by the sub-manager in the Level
2 to the executive-node in the Level 3. For instance,
in Script 1, the OLB scheduling algorithm is
employed to allocate the tasks of a sub-manager in

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 113 Volume 13, 2014

advance. Then, the MM scheduling algorithm is
used to assign the subtasks to the executive-node. In
the experimental design, the script for combining
OLB and TLBMM is not considered. In this case,
we cannot find a fit executive node to carry out the
subtask, which will result in an endless loop.
Therefore, this study only considers the
combinations of scheduling algorithms shown in
Table 2.

In the simulation, the effectiveness of the
proposed method is evaluated by load balance and
makespan. These factors will assist in proving the
usefulness of the scheduling algorithm.

Load balance: The experiment results are shown in
Fig. 2~6.

Fig. 2 shows the state of a load for each node in
Group 1 and the results of three kinds of scripts
mentioned in Table 2 are compared. The y-axis of
the figure represents the makespan: the total
execution time for all subtasks in Group 1. The x-
axis of the figure represents the assigned identifier
for each node in the network topology: the order
from the left side to the right side base on the
capability value of node from highest to lowest. In
particular, node N37 has the highest capability to
support subtasks that enter into the system, while
node N3 has the lowest capability in Group 1. The
figure block shows three script types combined with
various scheduling algorithms. The first script
combines OLB with MM. The second script
combines TOLB with MM, while the third script
combines TOLB with TLBMM.

In Fig. 2, the load balance for each node using
the three scripts mentioned above is similar. In
addition, the tasks aggregate to the left of the y-axis.
The main reason is that the nodes with the lowest
capability (i.e., N35, N23 and N3), cannot satisfy the
requirements of tasks that require higher execution
capability value. Because the executive nodes with
the best capability value are clustered in Group 1,
the tasks that require higher execution capabilities
are also assigned to Group 1. In this situation, the
worst capability node may not execute any tasks
resulting in all tasks aggregating to the left of the y-
axis. On the other hand, because of subtask is
divided randomly in this study, when the number of
subtasks is not large, the subtasks will be executed
by the executive nodes with the shortest execution
time (such as N37, N13, N9…). Therefore, the load of
the nodes with higher capability value will be
heavy.

0

50

100

150

200

250

N37 N13 N9 N24 N17 N28 N12 N35 N23 N3
Node ID

Makespan
OLB+MM TOLB+MM
TOLB+TLBMM

Fig. 2 The comparison of load balance in Group 1

Fig. 3 shows the state of load balance for each

node in Group 2. Here, the second script
(TOLB+MM) has the worst load state when load
gap is used as the evaluated factor that the highest
load and the lowest load of each executive node is
compared. The load gap for the second script is 130
(147-17). The next worse load state is the first script
which combines OLB with MM. Here, the load gap
is 122 (139-17). The third script (TOLB+TLBMM)
has a better load for each node with a load gap (81-
34=47). Because of the TOLB is combined with
MM scheduling algorithm. The TOLB scheduling
algorithm chooses the sub-manager with the lowest
capability value for carrying out a task by using the
sub-manager threshold. In some cases, the selected
sub-manager might just slightly exceed the
threshold capability value. Thus, the subtask is
dispatched to the group without the best capability
value by the sub-manager threshold. The subtask
may not be executed in the executive node with the
shortest time because it may not employ the
executive-node threshold to remove the
inappropriate subtask in the MM scheduling
algorithm. The above problem will lead to a
situation with the worst load balance.

0

20

40

60

80

100

120

140

160

N5 N32 N29 N31 N7 N19 N30 N16 N2 N39 N26 N46

Node ID

Makespan

OLB+MM TOLB+MM
TOLB+TLBMM

Fig. 3 The comparison of load balance in Group 2

Fig. 4 shows the state of load balance for each

node in Group 3. In the figure, the first script shows

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 114 Volume 13, 2014

the worst load state with a load gap (317-38=279).
The next worse load state is the second script that
combines TOLB with MM. The load gap is 222
(260-38). The third script has the best load for each
node with a load gap (161-38=123). On the other
hand, the nodes N48, N36, and N8 have no subtasks to
execute when using the scheduling algorithm of the
first and second script. There are not any subtask is
assigned to node N8 by the third script. The main
reason for the bad result of the first and second
script is that both of them use the MM scheduling
algorithm. Thus, all subtasks will select the node
(N45, N42) with the highest capability to execute.
This situation will leave the nodes (N48, N36, N8) of
worse capability are idle. In the case of the third
script, there is only one node will be idle. It can be
concluded that the third script has the best load
balance according to the comparison results of
Group 3.

0

50

100

150

200

250

300

350

N45 N42 N11 N49 N15 N10 N48 N36 N8

Node ID

Makespan

OLB+MM TOLB+MM TOLB+TLBMM

Fig. 4 The comparison of load balance in Group 3

Fig. 5 shows the state of load balance for each

node in Group 4. In Group 4, each node has a better
load balance because the executive nodes in Group
4 have lower capability value. A subtask entered
into the system simply needs a lower execution
requirement. Therefore, the node N34 with the lowest
capability could also execute the subtask. In Group
4, the first script combining OLB with MM has the
best load balance because the OLB scheduling
algorithm dispatches a task to the sub-manager
randomly. Therefore, the task may be assigned to a
group that has the best capability to carry out the
task quickly. However, this situation is not arisen in
every case.

0

10

20

30

40

50

60

70

80

N43 N38 N40 N4 N47 N50 N20 N34
Node ID

Makespan

OLB+MM TOLB+MM TOLB+TLBMM

Fig. 5 The comparison of load balance in Group 4

Fig. 6 shows the state of load balance for each

node in Group 5. The first script, which combines
OLB with MM, has the worst load balance and the
load gap is 382(409-27). The next worse load state
is the second script that combines TOLB with MM.
Here, the load gap is 87 (114-27). The load gap for
the third script is 13 (74-61) .The third script
displays a perfect circumstance. To compare the
result of Group 5 and Group 4, it obvious that the
first script is an unreliable scheduling algorithm.
The first script sometimes presents a nice situation
for the load balance (such as in Group 4) while it
can also display the worst load balance (such as in
Group 5).

0

50

100

150

200

250

300

350

400

450

N22 N25 N44 N1 N41
Node ID

Makespan

OLB+MM TOLB+MM TOLB+TLBMM

Fig. 6 The comparison of load balance in Group 5

The above experimental results for load balance

in the five groups show that the proposed third
script surpasses the other two in every assumed
situation. In other words, the proposed scheduling
algorithm can assign each task to a suitable node
and reach a better load balance than other two
scripts.

Makespan: The comparison of makespan: the total
execution time for all subtasks of each script is
shown in Fig. 7.

The y-axis of the figure represents the makespan,
while the x-axis of the figure represents the scripts

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 115 Volume 13, 2014

of the scheduling algorithm composed of various
scheduling, and displayed in Table 2. In Fig. 7, the
makespan of the first script combining OLB with
MM is 409 unit time. The makespan of the second
script combining TOLB with MM is 260 unit time.
In addition, the makespan of the third script
combining TOLB with TLBMM proposed in this
study is 205 unit time.

409

260
205

OLB+MM TOLB+MM TOLB+TLBMM
Fig. 7 The comparison of complete time (Makespan)

in each scheduling

In the comparison of makespan for the three

scripts, (TOLB+TLBMM) is faster than the
(OLB+MM) with 55 unit time and faster than the
(TOLB+MM) with 204 unit time. The main reason
is that the (TOLB+TLBMM) not only considers the
load balance for each node but also employs the
threshold necessary to remove the unsuitable nodes.
How to decide the threshold value is a big challenge
for this research. If the threshold value is set too
low, then resources may be wasted. If the threshold
value is set too high, then the subtask cannot to be
executed. Therefore, in our study, the threshold
value is designed by the following rules:

(1) If the executive node will finish the working
subtask in the shortest time, then the subtask
that needs to be executed is waiting.

(2) If the executive node needs cost too much
time to execute the subtask that needs to be
executed, then the executive node is filtered.

By employing the proposed algorithm, the

system can reach the highest execution performance
and achieve the load balance of nodes.

The simulation results for the three scripts in the
two designed experiments have been evaluated that
the scheduling method combining TOLB with
TLBMM is more effective than other scheduling
approaches for reducing the completion time of a
task (i.e. current OLB and MM that have been
extensively used to calculate the minimum value). It
is superior in the load balance of nodes, the
makespan of all subtasks, and at enhancing the
execution performance of the system.

5. Conclusion
In the topology of P2P, to ensure that each task
entering the P2P system can be completed on time
and the resource can be allocated quickly, the
topology of a hierarchical P2P is constructed by
using a capability calculation mechanism and a
dynamical adjusting mechanism in this study.
Moreover, the three-phase scheduling algorithm is
integrated that included BTO, TOLB and TLBMM
scheduling algorithm. The allocation of tasks was
based on the related information from nodes
collected by the agent. The experiment results of the
makespan showed that the proposed script
combining TOLB with TLBMM obviously could
enhance the performance of a system. In other
words, the load balance of nodes is reorganized and
the entire execution performance of a system is
enhanced by the proposed scheduling algorithm.

In this study, the executive-node threshold is set
by the average execution time. It is not the best
solution for setting threshold. Thus, in the future,
the ideal executive-node threshold will be
determined by simulating the ideal situation for the
execution performance of a system. In the
meantime, the clustering method of P2P network
and the number of nodes within the clusters will be
discussed continuously.

References:
[1] E.A. Sanchez, “Future Convergent

Telecommunications Services: Creation,
Context, P2P, QoS, and Charging,” IEEE
Communications Magazine, Vol. 49, Issue 1
2011, pp. 58-59.

[2] K.Q. Yan, S.C. Wang, S.F. Chen, S.S. Wang,
“Reaching Efficient Load Balancing by Two-phase
Scheduling in Three-level Peer-to-peer Network,”
18th Annual Conference International Information
Management Association (IIMA), Beijing, China,
Oct. 16-19, 2007, 1-13.

[3] N. Olifer, V. Olifer, Computer Network:
Principles, Technologies and Protocols for
Network Design, 2006, John Wiley & Sons.

[4] L.Y. Tseng, Y.H. Chin, S.C. Wang, “A
Deadline-based Task Scheduling with
Minimized Makespan,” International Journal of
Innovative Computing, Information and Control,
Vol. 5, No 6, June 2009, pp. 1665-1679.

[5] G. Muneeswari, K.L. Shunmuganathan, “Agent
Based Load Balancing Scheme using Affinity
Processor Scheduling for Multicore
Architectures,” WSEAS Transactions on
Computers, Vol. 10, Issue 7, 2011, pp. 247-
258.

[6] E.L. Silva, P. Linington, “A P2P based

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 116 Volume 13, 2014

Scheduler for Home Grids,” Communications
in Computer and Information Science, Vol. 162,
Part 3, 2011, pp. 325-336.

[7] H.C. Hsiao, H. Liao, S.T. Chen, K.C. Huang,
“Load Balance with Imperfect Information in
Structured Peer-to-Peer Systems,” IEEE
Transactions on Parallel and Distributed
Systems, Vol. 22, Issue 4, 2011, pp. 634-649.

[8] M.L. Pinedo, Scheduling Theory, Algorithms,
and Systems, 2011, Springer.

[9] M. Tripathy, C.R. Tripathy, “A Distributed
Shared Memory Cluster Architecture with
Dynamic Load Balancing,” WSEAS
Transactions on Computers, Vol. 11, Issue 5,
2012, pp. 121-130.

[10] G. Xu, J. Pang, X. Fu, “ A Load Balancing
Model based on Cloud Partitioning for the
Public Cloud,” Tsinghua Science and
Technology, Vol. 18, Issue 1, 2013, pp. 34-39.

[11] C.H. Jiang, T.C. Tsai, “Token Bucket based
CAC and Packet Scheduling for IEEE 802.16
Broadband Wireless Access Networks.”
Proceedings of Conference on Consumer
Communications and Networking (CCNC
2006), 2006, Vol. 1, pp. 183-187.

[12] M. Tripathy, C.R. Tripathy, “A Distributed
Shared Memory Cluster Architecture with
Dynamic Load Balancing,” WSEAS
Transactions on Computers, Vol. 11, Issue 5,
2012, pp. 121-130.

[13] L. Breslau, D. Estrin, K. Fall, S. Floyd, J.
Heidemann, A. Helmy, P. Huang, S. McCanne, K.
Varadhan, Y. Xu, H. Yu, “Advances in Network
Simulation.” IEEE Computer, 2000, Vol. 33, No. 5,
pp. 59-67.

WSEAS TRANSACTIONS on COMPUTERS S. C. Wang, Y. H. Su, S. S. Wang, K. Q. Yan, S. F. Chen

E-ISSN: 2224-2872 117 Volume 13, 2014

