
 

 

Objective quality assessment for stereoscopic images based on 
structure-texture decomposition 

 
Kemeng Li, Shanshan Wang, Qiuping Jiang, Feng Shao* 

Faculty of Information Science and Engineering 
Ningbo University 

Ningbo 315211 
CHINA 

KemngLi@gmail.com 
 
 
Abstract: - We present a novel quality assessment index for stereoscopic images based on structure-texture 
decomposition. To be more specific, we decompose a stereoscopic image pair into its structure and texture 
components. Then, gradient magnitude similarity (GMS) and luminance-contrast similarity (LCS) indexes are 
used to measure the qualities of structure components and texture components, respectively. Finally, the quality 
score is obtained by combining the above quality scores in a non-fixed manner. Experimental results on two 
publicly available 3D image quality assessment databases demonstrate that, in comparison with the related 
existing methods, the proposed technique achieves high consistency alignment with subjective assessment. 
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1 Introduction 
Currently, high-quality assessment for 3D media has 
a huge market demand. However, assessing the 3D 
image/video quality is still a challenging issue 
because it is affected by the factors from 2D image 
quality, depth perception and visual experience 
[1,2]. Therefore, understanding of the binocular/3D 
vision perception is particularly important in 
designing 3D image quality assessment (3D-IQA) 
metric.  

Many well-known 2D image quality assessment 
(2D-IQA) approaches has been proposed over the 
last several decades, such as Structural SIMilarity 
(SSIM) [3], multi-scale SSIM (MS-SSIM) [4], UQI 
(universal quality index) [5], VIF (visual 
information fidelity) [6], etc. Among those metrics, 
structure degradation has been employed for IQA in 
different ways. Gu et al. combined structural 
degradation model into no-reference IQA metric [7]. 
Li et al. proposed an IQA metric that separately 
evaluates detail losses and additive impairments [8]. 
Wu et al. measured image quality by considering 
spatial distribution of structure [9]. Many such 
metrics can be found in literatures [10-11]. 
However, 3D-IQA is still a less investigated 
problem due to lack of understanding of 3D visual 
perception. 

The most direct way of applying state-of-the-art 
2D-IQA methods to 3D-IQA is to evaluate the two 
views of the stereoscopic images, disparity/depth 

image separately using the existing 2D-IQA metrics, 
and then combined into an overall score. Boev et al. 
[12] combined monoscopic and stereoscopic quality 
components from the ‘Cyclopean’ image and 
disparity map respectively. Benoit et al. [13] 
computed quality scores of both stereo-pair and the 
disparity map by 2D quality metrics, and then 
combined them to produce a final score. You et al. 
[14] investigated ten common 2D quality evaluators 
on a stereo-pair and on its disparity map, and found 
the optimal combination which can yield the best 
performance. Hewage et al. [15] investigated the 
effectiveness of three 2D metrics (PSNR, VQM and 
SSIM) to predict the perceived quality of 
compressed color plus depth 3D video. However, 
for effective 3D evaluation, we cannot assess the 
perceived depth perception directly using 2D–IQA 
methods. 

For measuring the perceived quality of 
stereoscopic images, several metrics have been 
proposed by more closely with 3D perceptual 
properties. Hwang et al. [16] devised a visual 
attention and depth assisted stereo image quality 
assessment by fusing the impact of stereo attention 
predictor, depth variation and stereo distortion 
predictor. Bensalma et al. [17] devised a Binocular 
Energy Quality Metric (BEQM) by modeling the 
complex cells responsible for the construction of the 
binocular energy, and evaluated the similarity 
between the binocular energy maps of the original 
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and the distorted stereo-pairs. Chen et al. [18] 
constructed a “Cyclopean” view from the stereo-pair 
and depth information by modeling the influence of 
binocular rivalry, and evaluated the ‘Cyclopean’ 
view by 2D quality metrics. De Silva et al. [19] 
proposed a stereoscopic video quality metric to 
measure the perceptual quality of symmetrically and 
asymmetrically compressed stereoscopic video by 
extracting features that quantify the compression 
artifacts. 

In this paper, we proposed an objective quality 
assessment index for stereoscopic images based on 
structure-texture decomposition. The motivation for 
the proposed structure-texture decomposition is that 
distortions on the two components have different 
impacts toward the perceptual quality. The main 
contributions of this paper are as follows: 1) we 
decompose a stereoscopic pair into its structure and 
texture components by region covariance matrices; 
2) we measure the quality of structure components 
by using gradient magnitude similarity (GMS) index; 
3) we measure the quality of texture components by 
using luminance-contrast similarity (LCS) index; 4) 
We conduct a non-fixed quality combination for the 
above scores to get a total quality score. The rest of 
the paper is organized as follows. Section II presents 
the proposed IQA for stereoscopic images. The 
experimental results are given and discussed in 
Section III, and finally conclusions are drawn in 
Section IV. 
 
 
2 Proposed stereoscopic image quality 
assessment metric 
The framework of the proposed quality assessment 
metric is illustrated in Fig.1. Given the original and 
distorted stereoscopic images (case of left and right 

images), they are firstly decomposed into their 
structure and texture components, respectively, and 
GMS and LCS indexes are used to measure the 
qualities of these structure and texture components, 
respectively. Finally, the two quality scores are 
combined to get a total quality score.  
 
 
2.1 Structure-texture decomposition 
Covariance of features is an effective means to 
describe the compactness of regions [20]. A region 
R containing n pixels can be represented with a d×d 
covariance matrix CR of the feature points  

T
R

1

1 ( )( )
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where 1,2, ... ,{ }i i n=f  denotes the d-dimensional feature 
points inside R, and μ being the mean vector of 
these points. 

In our implementation, we use simple features, 
namely intensity, orientation and coordinate so that 
a pixel can be represented with a 7-dimensional 
feature vector 
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where I(x,y) is the intensity at pixel (x,y). Thus, the 
covariance descriptor of an image patch is computed 
as a 7×7 matrix. The design of the covariance matrix 
is based on the work in [21]. However, even though 
the covariance matrix can effectively represent the 
second-order statistics, first-order statistics also play 
an important role in feature description. To remedy 
this issue, the covariance matrix CR is first 
decomposed using the Cholesky decomposition, and 
first-order statistics is incorporated to this 
representation. Thus, a (2d+1)-dimensional feature 

 
 

Fig.1. The framework of the proposed quality assessment metric. 
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vector S(CR) is obtained. The details of the 
procedure can refer to [21]. 

Then, we compute the structure component of a 
pixel p as 

( )
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where I(p) is the intensity at pixel p, ωpq represents 
the similarity between two pixels p and q based on 
the similarity between patches centered on these 
pixels, and N(p) denotes the neighborhood centered 
at p. The ωpq is defined as  

2
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where Cp and Cq denote the covariance matrixes 
extracted from the patches centered at pixel p and q, 
respectively, and σ denotes standard deviation of 
Gaussian function. In this work, the size of the patch 

is set to 9×9, the size of the neighborhood is set to 
21×21 centered at a pixel, and σ is set to 0.06. 

The texture component can be easily obtained by 
subtracting the structure component from the image 

( ) ( ) ( )T I S= −p p p                                              (5) 
Here, we present one example to illustrate the 
structure-texture decomposition results. The first 
row of Fig.2 shows: (a) Gaussian blurred left image 
of ‘Newspaper’ test sequences from NBU 3D IQA 
database, and the corresponding structure and 
texture components in (b)~(c). The second row of 
Fig.2 shows the H.264 compressed image in (d) and 
the corresponding structure and texture components 
in (e)~(f). The third row of Fig.2 shows the JPEG 
compressed   image   in (g)   and   the corresponding 
structure and texture components in (h)~(i). The 
difference mean opinion scores (DMOS) values for 
the Gaussian blurred, H.264 compressed and JPEG 
compressed stereoscopic images are 20.739, 18.391 
and 21.217, respectively, that is, the subjective 
measures for these distorted stereoscopic images are 

   
(a) (b) (c) 

   

(d) (e) (f) 

   
(g) (h) (i) 

Fig.2. Examples of quality degraded left images and the corresponding structure and texture components of 
‘Balloons’ test sequence. (a)~(d): (a) Gaussian blurred image; (b) structure component of (a); (c) texture 
component of (a); (d) H.264 compressed image; (e) structure component of (d); (f) texture component of (d); 
(g) JPEG compressed image; (h) structure component of (g); (i) texture component of (g). 
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similar. It is seen that structure is successfully 
separated from texture: the structure component 
preserve the main edge information, while the 
texture component contain some randomly and 
irregularly structured textures. It is obvious that 
different prediction methods should be conducted 
for these components. 
 
 
2.2 Quality assessment for structure 
component 
Observed from the Fig.1, the structure components 
preserve the main edges while smoothing some 
detail information (e.g., texture). Therefore, we 
compute 2D gradients on horizontal and vertical 
directions, and use the gradient magnitudes of the 
original and distorted images to measure the explicit 
distortions around edge regions. The gradient 
magnitude similarity (GMS) index is defined as [22] 

1
2 2

( , ) 1

2 ( , ) ( , )1
( , ) ( , )
o d

x y o d

m x y m x y C
N m x y m x y C

GMS ⋅ +=
+ +∑                  (6) 

where the parameter C1 is a constant to avoid the 
denominator being zero, N is the number of pixels in 
an image, mo(x,y) and md(x,y) are the gradient 
magnitudes for the structure components of the 
original and distorted images, which is defined as 
the root mean square of directional gradients along 
two directions 

2 2( , ) ( ) ( )o o
o x ym x y f f= ∇ + ∇                                (7) 

2 2( , ) ( ) ( )d d
d x ym x y f f= ∇ + ∇                               (8) 

In this paper, the GMS indexes for the structure 
components of the distorted left and right images are 
measured respectively. In order to facilitate the 

following analysis, the quality scores for the left and 
right structure components are defined as QL

str and 
QR

str. Finally, the quality score for the structure 
component is computed as 

(1 )str str
str s L s RQ w Q w Q= × + − ×                             (9) 

where ws is the weight assigned to the left structure 
component. 
 
 
2.3 Quality assessment for texture 
component 
For the texture components, the randomly and 
irregularly structured textures cannot be measured 
by the above GMS index. In this paper, the 
luminance-contrast similarity (LCS) index is 
defined as [23] 

( ) ( )
( ) ( )( ) ( ) ( )( )
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=

+ + + +
∑      

                                                                    (10) 
where the parameter C2 is a constant to avoid the 
denominator being zero, μo and μd are the mean 
intensities for the texture components of the original 
and distorted images respectively, and σo and σd are 
the corresponding standard deviations. 

In this paper, the LCS indexes for the texture 
components of the distorted left and right images are 
measured respectively. In order to facilitate the 
following analysis, the quality scores for the left and 
right structure components are defined as QL

tex and 
QR

tex. Finally, the quality score for the texture 
component is computed as 

(1 )tex str
tex t L t RQ w Q w Q= × + − ×                           (11) 

where wt is the weight assigned to the left texture 
component. 

Table 1 Performance of the proposed method and the other schemes on the two databases. 

IQA 
model 

NBU (312 images) LIVE I (365 images) average 

PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE 

PSNR 0.8852 0.9032 0.7182 7.9923 0.8355 0.8341 0.6297 9.0104 0.8603 0.8687 0.6740 8.5013 

SSIM 0.8111 0.9013 0.7202 10.0479 0.8766 0.8765 0.6791 7.8913 0.8439 0.8889 0.6997 8.9696 

MS-SSIM 0.8623 0.9275 0.7538 8.7010 0.9335 0.9276 0.7562 5.8792 0.8979 0.9275 0.7550 7.2901 

UQI 0.7678 0.7908 0.5844 11.2416 0.9418 0.9373 0.7722 5.5141 0.8548 0.8640 0.6783 8.3779 

VIF 0.7925 0.8636 0.6693 10.4779 0.9250 0.9200 0.7400 6.2323 0.8587 0.8918 0.7046 8.3551 

Benoit[13] 0.8645 0.8812 0.6956 8.6347 0.8927 0.8901 0.6947 7.3908 0.8786 0.8857 0.6952 8.0127 

You[14] 0.7190 0.7324 0.5333 11.9396 0.9339 0.9247 0.7496 5.8638 0.8264 0.8285 0.6414 8.9017 

Proposed 0.9173 0.9156 0.7404 6.8404 0.9411 0.9313 0.7644 5.5430 0.9292 0.9234 0.7524 6.1917 
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2.4 Final quality combination 
After having obtained the quality scores Qstr and 
Qtex, the next step is to combine the two quality 
scores into a final score. The direct way is to 
combine the quality scores Qstr and Qtex by average 
weighting. In this work, we use the similar means to 
combine the two quality scores 

(1 )str texQ w Q w Q= × + − ×                                (12) 
 
 
3 Experimental results 
 
 
3.1 Databases and performance measures 

In the experiment, two publicly available 3D IQA 
databases: NBU 3D IQA Database [24], and LIVE 
3D IQA Phase I Database [25], are used to verify 
the performance of the proposed metric for 
stereoscopic images. The NBU 3D IQA Database 
consists of 312 distorted stereoscopic pairs 
generated from 12 reference stereoscopic images. 
Five types of distortions, JPEG, JP2K, Gblur, WN 
and H.264, are symmetrically applied to the left and 
right reference stereoscopic images at various 
levels. The LIVE 3D IQA Phase I Database consists 
of 365 distorted stereoscopic pairs generated from 
20 reference stereoscopic images. Five types of 
distortions, JPEG, JP2K, Gblur, WN and FF, are 
symmetrically applied to the left and right reference 

  
Fig.3. Scatter plots of predicted quality scores against the subjective scores (DMOS) of the eight methods on 
the NBU 3D IQA Databases. 
 

 
Fig.4. Scatter plots of predicted quality scores against the subjective scores (DMOS) of the eight methods on 
the LIVE 3D IQA Phase I Databases. 
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stereoscopic images at various levels for the LIVE 
3D IQA Phase I Database. 

In the paper, four commonly-used performance 
indicators are used to benchmark the proposed 
metric against the relevant state-of-the-art 
techniques: Pearson linear correlation coefficient 
(PLCC), Spearman rank order correlation 
coefficient (SRCC), Kendall rank-order correlation 
coefficient (KRCC), and root mean squared error 
(RMSE), between the objective and subjective 
scores. For a perfect match between the objective 
and subjective scores, PLCC=SRCC=KRCC=1, and 

RMSE=0. For the nonlinear regression, we use the 
following five-parameter logistic function [26]: 

1 4 5
2 3

1 1
2 1 exp( ( ))pDMOS x

x
β β β

β β
⎛ ⎞

= ⋅ − + ⋅ +⎜ ⎟+ ⋅ −⎝ ⎠
 

(13) 
where β1, β2, β3, β4 and β5 are determined by using 
the subjective scores and the objective scores. 

In the experiment, the parameters ws, wt and w 
are trained by optimizing the PLCC values between 
the objective and subjective scores across the whole 
database. The parameter determination results is 
ws=0.980, wt=0.888 and w=0.882 for the NBU 3D 

Table 2 PLCC performance comparison for the eight schemes on each individual distortion type. 
 

Criteria PSNR SSIM MS-SSIM UQI VIF Benoit[13] You[14] Proposed 

N
BU

 

JPEG 0.8309 0.6899 0.9274 0.7215 0.8210 0.8279 0.7059 0.9307 

JP2K 0.8310 0.7511 0.9353 0.6203 0.7541 0.8507 0.6527 0.9153 

Gblur 0.9255 0.8678 0.9009 0.9400 0.9139 0.9345 0.8289 0.9686 

WN 0.9606 0.8819 0.8452 0.8558 0.9445 0.9386 0.8770 0.9486 

H.246 0.9078 0.7576 0.9445 0.7028 0.8333 0.8108 0.6637 0.9465 

LIV
E I 

JPEG 0.2276 0.4893 0.6848 0.7737 0.6813 0.5728 0.6333 0.6588 

JP2K 0.7878 0.8753 0.9346 0.9510 0.9374 0.8922 0.9410 0.9324 

Gblur 0.9160 0.9180 0.9446 0.9568 0.9654 0.9320 0.9549 0.9434 

WN 0.9352 0.9421 0.9481 0.9270 0.9309 0.9401 0.9351 0.9285 

FF 0.7007 0.6699 0.8102 0.8791 0.8619 0.7478 0.8592 0.8593 

 
Table 3 SRCC performance comparison for the eight schemes on each individual distortion type. 

 
Criteria PSNR SSIM MS-SSIM UQI VIF Benoit[13] You[14] Proposed 

N
BU

 

JPEG 0.8490 0.8993 0.9434 0.7551 0.9392 0.8889 0.7606 0.9436 

JP2K 0.8628 0.8882 0.9432 0.6641 0.9236 0.8951 0.6754 0.9179 

Gblur 0.9529 0.9431 0.9725 0.9351 0.9791 0.9304 0.8175 0.9613 

WN 0.9499 0.9492 0.8825 0.7513 0.9137 0.9278 0.8341 0.9311 

H.246 0.9048 0.9199 0.9436 0.7404 0.9257 0.8402 0.6685 0.9172 

LIV
E I 

JPEG 0.1212 0.4361 0.6244 0.7374 0.5807 0.4983 0.6008 0.6310 

JP2K 0.7993 0.8584 0.8947 0.9077 0.9015 0.8730 0.9051 0.9012 

Gblur 0.9020 0.8793 0.9258 0.9274 0.9341 0.8802 0.9300 0.9344 

WN 0.9316 0.9379 0.9417 0.9255 0.9313 0.9369 0.9403 0.9388 

FF 0.5875 0.5861 0.7496 0.8329 0.8042 0.6242 0.8030 0.8205 
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IQA Database, and ws=0.629, wt=0.503 and 
w=0.838 for the LIVE 3D IQA Phase I Database. It 
is clear that structure component is more important 
than texture component in measuring the quality 
degradation (i.e., w>0.5). 
 
 
3.2 Overall assessment performance 
In Table 1, we compare the competing 2D-IQA and 
3D-IQA metrics’ performance on the two databases 
in terms of PLCC, SRCC and RMSE. For the five 
2D-IQA metrics, they directly estimate the quality 
of each view separately and generate a weighted 
average score. The proposed scheme outperforms 
the five 2D-IQA schemes in the NBU 3D IQA 
Database, and outperforms the four 2D-IQA 
schemes in the LIVE 3D IQA Phase I Database 
expect for UQI scheme. For You et al.’s and Benoit 
et al.’s schemes, since they are the combination of 
2D image quality metrics for stereoscopic images 
and disparity maps, the performance of the two 
schemes is highly dependent on both the 2D image 
quality and the estimated disparity maps (stereo 
matching algorithm [27] is used in this paper). Since 
UQI always deliver the best performance on the 
LIVE 3D IQA Phase I Database (In agreement with 
the conclusion in [25]), this lead to the high 
performance of You et al.’s scheme promoted (UQI 

is used as IQM in the scheme). Fig.3 and Fig.4 show 
the scatter plots of predicted quality scores against 
subjective quality scores (in terms of DMOS) for the 
eight schemes on the two databases, respectively. 
Overall, the proposed scheme has an impressive 
consistency with human perception. 
 
 
3.3 Performance comparison on individual 
distortion types 
To more comprehensively evaluate the prediction 
performance of the proposed method, we compare 
the eight schemes on each type of distortion. The 
PLCC and SRCC results are listed in Table 2 and 
Table 3, where the top two metrics have been 
highlighted in boldface. One can see that the 
proposed scheme is among the top 2 metrics 5 times 
in terms of PLCC, the same with MS-SSIM and 
UQI schemes, and is among the top 2 metrics 4 
times in terms of SRCC, lower than MS-SSIM 
(among the top 2 metrics 5 times). However, the 
overall performance of MS-SSIM and UQI schemes 
do not perform significantly better than the 
proposed scheme on all the two databases. This 
validates that structure-texture decomposition can 
serve as an excellent processing for quality 
prediction. 
 

Table 4 Performance comparison for each component on the proposed scheme. 

 Criteria 
Structure component only Texture component only Proposed 

PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE 

N
BU

 

JPEG 0.8713 0.8880 0.7183 6.9911 0.7820 0.8275 0.6516 8.8783 0.9307 0.9436 0.7917 5.2084 

JP2K 0.9259 0.9245 0.7511 4.5280 0.6527 0.6752 0.4956 9.0808 0.9153 0.9179 0.7511 4.8268 

Gblur 0.9694 0.9639 0.8381 5.1760 0.8948 0.8994 0.7228 9.4156 0.9686 0.9613 0.8290 5.2412 

WN 0.9425 0.9438 0.7903 5.2236 0.7732 0.6940 0.5404 9.9093 0.9486 0.9311 0.7733 4.9440 

H.246 0.9540 0.9303 0.7766 4.2057 0.7859 0.8046 0.5988 8.6770 0.9465 0.9172 0.7523 4.5287 

All 0.8683 0.8714 0.6839 8.5222 0.6827 0.7355 0.5345 12.5523 0.9173 0.9156 0.7404 6.8404 

LIV
E I 

JPEG 0.3359 0.3374 0.2179 6.1592 0.5801 0.5609 0.3933 5.3265 0.6588 0.6310 0.4345 4.9194 

JP2K 0.8673 0.8768 0.6873 6.4465 0.8969 0.8457 0.6639 5.7292 0.9324 0.9012 0.7316 4.6818 

Gblur 0.9195 0.9317 0.7772 6.5398 0.7986 0.8028 0.6184 10.0134 0.9285 0.9388 0.7892 6.1774 

WN 0.9425 0.9327 0.7980 4.8371 0.8830 0.8555 0.6949 6.7933 0.9434 0.9344 0.7980 4.7991 

FF 0.8353 0.8094 0.6181 6.8320 0.7449 0.7072 0.5029 8.2896 0.8593 0.8205 0.6302 6.3563 

All 0.9013 0.9042 0.7220 7.1030 0.8429 0.8430 0.6425 8.8231 0.9411 0.9313 0.7644 0.7644 
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3.4 Impact of each components in the 
proposed scheme 
To demonstrate the impact of structure and texture 
components in the proposed scheme, we design a 
experiment for comparison by only measuring the 
quality score of structure or texture component with 
Eq.(9) or Eq.(11). The results are presented in Table 
4. From the table, we can see that the structure 
component always provide higher performance than 
the texture component. Especially, the structure 
component is more effective for Gblur and WN 
distortion types, but the overall performances of 
both schemes are lower than the proposed scheme. 
It means that the quality combination operation can 
highly promote the evaluation performance. 
 
 
4 Conclusion 
In this study, we devised quality assessment index 
for stereoscopic images. More specifically, we 
decompose stereoscopic images into structure and 
texture components, and evaluate them respectively 
by adopting gradient magnitude similarity and 
luminance-contrast similarity indexes. Compared 
with state-of-the-art 2D and 3D image quality 
assessment metrics, the proposed metric performs 
well in terms of both accuracy and efficiency on two 
publicly available databases. However, structure-
texture decomposition and quality assessment may 
suffer from large computational burdens. In the 
future work, we will consider how to speed-up the 
processing using GPGPUs. Furthermore, we will 
further explore how to model primary visual cortex 
receptive field into the metric. 
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