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Abstract: - This paper aims at identifying the optimal Multicore processor configuration for cryptographic 
applications. The RSA encryption algorithm has been taken as a case study and a comprehensive design 
space exploration (DSE) has been performed to obtain the optimal processor configuration that can serve as 
either a standalone or a coprocessor for security applications. The DSE was based on four figures of merit 
that include: performance, power consumption, energy dissipation and lifetime reliability of the processor. A 
parallel version of the RSA algorithm has been implemented and used as an experimentation workload. 
Direct program execution and full-system simulation have been used to evaluate each candidate processor 
configuration based on the aforementioned figures of merit. Our analysis was based on commodity 
processors in order to come up with realistic optimal processor configuration in terms of its clock rate, 
number of cores, number of hardware threads,  process technology and cache hierarchy. Our results indicate 
that the optimal Multicore processor for parallel cryptographic algorithms must have a large number of 
cores, a large number of hardware threads, small feature size and should support dynamic frequency scaling. 
The execution of our parallel RSA algorithm on the identified optimal configuration has revealed a set of 
observations. First, the parallel algorithm has achieved a 79% performance improvement as compared to the 
serial implementation of the same algorithm. Second, running the optimal configuration at the highest 
possible clock rate has achieved 40.13% energy saving as compared to the same configuration with the 
lowest clock rate. Third, running the optimal configuration at the lowest clock rate has achieved a 19.7 % 
power saving as compared to the same configuration with the highest clock rate. Fourth, the optimal 
configuration with low clock rate has achieved 109.85 % higher mean time to failure (MTTF), on average, as 
compared to the high-frequency configuration. Consequently, the optimal configuration has always the same 
number of cores, hardware threads, and process technology but the clock rate should be adjusted 
appropriately based on the design constraints and the system requirements.  

Key-Words:- RSA, performance, power, energy, lifetime reliability, optimal configuration.

1. INTRODUCTION 
Cloud computing has recently become an attractive 
computing infrastructure for both individual users 
and governmental organizations. It typically 
consists of networked resources and provides 
subscription-based services that allow users to 
obtain storage space and computing resources [1]. 
The cloud alleviates the need for users to be in the 
same physical location as the hardware resources 
they are using. Hence, its use via mobile and 
handheld devices has gained a widespread among  

 
 
 
computer users. Admittedly, data security is one of 
the major critiques against the services provided by 
the cloud; the ability of the cloud service providers 
to secure user’s data is of questionable value from 
user’s perspective. Therefore, users see an 
inevitable responsibility to protect their data before 
storing it on the cloud. This goal can be achieved by 
using cryptographic algorithms such that data can 
be encrypted before being stored, on the cloud, and 
decrypted when retrieved. The security level 
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provided by any cryptographic algorithm is 
proportional to the amount of processing performed 
by that algorithm. On the other hand, energy 
efficiency and battery life of mobile and handheld 
devices have a great deal of importance for both 
users and hardware designers. This valuable 
requirement could potentially be overwhelmed by 
the high processing demand of cryptographic 
algorithms. Consequently, a new algorithm design 
and a careful hardware configuration should be 
attained in order for users to satisfy the requirement 
of high security and an extended battery lifetime of 
their mobile devices. From software perspective; 
cryptographic applications have a large amount of 
data-level parallelism. From hardware viewpoint, 
today’s mobile devices have been equipped with 
Multicore processors that can execute multiple 
software threads simultaneously. This paper makes 
the case that a parallel cryptographic algorithm that 
runs on a Multicore processor with a particular 
power settings, such as clock frequency, would 
provide the same security level, achieve a higher 
performance and consume less energy as compared 
to a sequential version of the same algorithm 
running on a single core processor with the same or 
even higher power settings. This paper takes the 
RSA algorithm [2, 3, 4] as a case study and makes 
the following twofold contributions. First, a parallel 
version of the RSA algorithm has been 
implemented using the OpenMP parallel 
programming model [5]. Second, a comprehensive 
design space exploration has been performed to 
figure out the optimal Multicore processor 
configuration that best fits the processing 
requirements of cryptographic algorithms and 
maintains the optimum trade-off between four 
important figures of merit including performance, 
power, energy and lifetime reliability of the 
processor. Each processor configuration is a 3-tuple 
including the number of hardware threads, clock 
frequency and the process technology used to 
implement the underlying transistors. In order to 
obtain realistic processor configurations, the design 
space has been limited to those designs that 
resemble commercially available commodity 
processors.  The rest of this paper is organized as 
follows: section 2 discusses some preliminaries, 
section 3 briefly summarizes the related work, 
section 4 describes our methodology, section 5 
shows our results and analysis and section 6 
summarizes and concludes this work. 
 
 
 

2. Preliminaries  
This section is an introductory framework that 
explains the basic operation of the RSA algorithm 
and the OpenMP programming model.  

2.1 RSA Cryptography 
The RSA algorithm follows the concept of public 
key cryptography (PKC) [6, 7, 8]. The PKC is a 
cryptographic paradigm in which two keys i.e. an 
encryption key and a decryption key are used to 
govern the encryption and decryption processes. 
The encryption and decryption in PKC are very 
compute-intensive and time-consuming processes 
due to the large number of mathematical operations 
involved. These mathematical operations include 
modular exponentiation and reduction techniques 
[9].The RSA include three main phases: Key 
Generation in which public and private keys are 
generated, Data Encryption which is used to hide a 
plain text in a cipher text and Data Decryption 
where plain text is retrieved from the cipher text. 
  
2.1.1 Key Generation  
The key generation phase is a very crucial part of 
the RSA algorithm. It consists of the following 
steps: 

1. Pick two large random prime numbers p 
and q whose bit size is at least equal to 512 
bits. 

2. Find the modulus (m) = p × q.  
3. Find phi = (p-1) × (q-1). 
4. Pick an integer value e that falls in the 

range (1, phi) such that GCD (e, phi) =1 
where GCD stands for the Greatest 
Common Divisor. In RSA, e is known as 
the public or encryption exponent.   

5. Find an integer value d that falls in the 
range (1, phi) such that e × d = 1 mod phi. 
In RSA, d is referred to as the private or 
decryption exponent.   

According to the RSA operation, the public key 
consists of m and e while the private key consists of 
m and d.  

2.1.2 Data Encryption 
The encryption process works according to the 
following equation: 

                        mMC e mod=                            (1) 

Such that: 

      - C is the cipher text  

                - M is the plain text.  
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Eq. (1) illustrates the basic operation of encryption 
in which the plain text (M) is raised to the power e 
and divided by the modulus m. The remainder of the 
division operation is taken as the cipher text (C). 
While a normal division operation can be used for 
small values of p and q, a more complex operation 
such as modular exponentiation and reduction [9] 
should be used for large numbers. The use of 
modular exponentiation makes Data Encryption a 
very time-consuming part of the RSA. 

   
2.1.3 Data Decryption  
The decryption process works according to the 
following equation: 

                   mCM d mod=                                 (2) 

Eq. (2) depicts the basic operation of decryption in 
which the cipher text (C) is raised to the power d 
and divided by the modulus m. The remainder of 
division yields the plain text (M). The Data 
Decryption phase with large values of p and q 
requires the use of modular exponentiation and 
reduction technique to perform the decryption 
process which means that Data encryption is also a 
time-consuming part of the RSA.   

2.2 OpenMp  
OpenMP is a portable Application Programming 
Interface (API) that can be used to create shared-
memory parallel programs. It has recently gained a 
widespread among computer programmers; it 
allows programmers to write implicitly 
multithreaded applications that can efficiently 
utilize the ever-increasing abundance of processor 
cores on a Multicore processor. In general, 
Programs written using OpenMp depends on  
Thread-Level Parallelism (TLP), in which several 
execution threads are distributed among the 
available cores, to achieve high performance as 
compared to sequential programs which depend on 
Instruction-Level Parallelism (ILP) only. OpenMP 
consists of a group of compiler directives that tells 
the complier that a particular region of a program 
(typically the most time-consuming loops) should 
be divided into a number of simultaneous threads. 
The number of created threads in by default equal to 
the number of cores, however, the user can set the 
number of threads to any particular value via the 
numerous interfaces provided by the OpenMP. 
Moreover, OpenMP provides the user with the 
ability to choose the thread’s scheduling policy that 
will be used during program execution.  

3. Related Work  
This section summarizes previous research efforts 
that directly relates to our work in both parallel 
algorithm implementation and optimal hardware 
design.  
 
3.1 Processor Design 
Optimal hardware configuration of both general and 
special purpose architectures is an active area of 
research. In [10], an exhaustive design space 
exploration (DSE) has been performed to identify 
the optimal parameters i.e. branch prediction, 
instruction-window size and cache size of a general 
purpose superscalar processor. Their work targets a 
single-core processor design and has focused on 
processor performance without taking into account 
other parameters such as energy and reliability. On 
the other hand, DSE has been widely used to figure 
out the optimal design of embedded or special 
purpose processors. In [11-19], DSE has been used 
to study performance/energy tradeoffs in the design 
of embedded/special purpose processors. However; 
their work differs from ours in two main aspects. 
First, their work targets single core processor design 
only without considering Multicore designs. 
Second, cache memory design was the only 
parameter of interest without taking into account 
other parameters such clock frequency and process 
technology. In [20], the impact of TLP on the 
performance of optimum single-core embedded 
processor design has been investigated. However, 
their work did not consider Multicore processors 
and did not take into account other parameters such 
as energy and reliability.  
 
In [21, 22], the efficiency of the DSE process has 
been addressed and some mechanisms were 
proposed to improve its speed. In the context of 
Multicore processors, [23, 24, 25, 26, 27] have used 
DSE to study performance/energy tradeoffs of 
Multicore special purpose processors. However; our 
work differs from theirs in four main aspects. First, 
their analysis was cache-based only without taking 
into account other parameters such as clock 
frequency and the number of hardware threads. 
Second, they have focused on dynamic energy only 
without considering leakage energy. Third, they 
have overlooked the impact of technology scaling 
on processor energy. Fourth, their analysis was 
based on multiprogramming workloads while our 
analysis is based on a multithreaded workload. In 
[28], a regression-based analysis has been 
performed to identify the most important factors 

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 56 Volume 13, 2014



that affect the power consumption of Multicore and 
multithreads processor chips. 
  
3.2 Algorithm Design 
With the advent of Multicore processors, parallel 
algorithm implementation has become an appealing 
programming paradigm due to its performance 
advantages over sequential implementations. 
However, only few research efforts have focused on 
cryptographic algorithms. In [29], the 
parallelization of the AES algorithm has been 
presented and its performance has been evaluated. 
However, their study was performance-centric 
without taking into account the energy and 
reliability implications of the algorithm on 
Multicore processor design .On the other hand, [30] 
has studied the performance advantages of parallel 
RSA implementation. However, they did not take 
into account other parameters such as power 
consumption and processor reliability. Moreover, 
they did not shed light on which hardware 
configuration was used to run the algorithm. Hence, 
their work did not focus on workload-architecture 
interactions. Moreover, [31] has investigated an 
FPGA-based implementation of the RSA. While 
FPGA-based implementations can provide 
comparable performance levels as Multicore 
processors, its power consumption is very high that 
it cannot be employed in battery-operated devices 
such as mobile and handheld devices. In summary, 
our work represents a comprehensive study in 
which a novel parallel algorithm design has been 
presented and its performance, energy and lifetime 
reliability implications have been investigated based 
on some figures of merit that captures the current 
trends in processor design. 
 
4. Methodology 
The experimental work conducted towards this 
research consists of three main steps including: 
RSA parallelization and performance evaluation, 
power consumption and energy dissipation 
estimation and lifetime reliability analysis. Each 
step will be thoroughly explained in the following 
sub-sections.  
 
4.1 Automatic parallelization of RSA 
This step was mainly inspired by Amdahl’s law 
which is commonly used to measure the overall 
speedup that can be achieved by parallelizing a 
particular portion of an algorithm [32].  Amdahl’s 
law is given by equation 3.  

             
nff

Speedup
/)1(

1
−+

=                   (3)                                                         

In Eq. 3, f is the time spent executing the serial 
portion of the parallelized algorithm and n is the 
number of processor cores. The first corollary of 
Amdahl’s law states that: decreasing the serialized 
portion of an algorithm by increasing the 
parallelized portion is of greater importance than 
adding more processor cores [33]. For example, if 
30-percent of an algorithm can be parallelized on a 
dual-core system, doubling the number of processor 
cores reduces the execution time from 85% of the 
serial time to 77.5%, whereas doubling the amount 
of parallelized code reduces the execution time 
from 85% to 70%. Consequently, implementing a 
parallel version of RSA has been adopted as an 
extremely important part of this work. Given a 
number of messages to be encrypted 
(NUM_MSGS), the RSA encryption algorithm is 
straight forward and can be written as shown in 
Fig.1. Where MSGS and EMSGS are the arrays in 
which plain and cipher messages are stored 
respectively. The RSA main loop does not have any 
true data dependences. On the other hand, anti and 
output dependences can be avoided by the 
privatization of loop induction variables. 

{ }
 End

m; mod ) e ^(MSGS[i]  EMSGS[i]  do   
NUM_MESGS to 0  i for   

Begin
EMSGS; :Output

 MSGS;:Input
NUM_MSGS; :Input

(SeRSA) RSA   Serial

←
←

:4.1.1 Algorithm

 

Fig.1: Serial RSA (SeRSA) pseudo-code. 

The OpenMP parallelization technique was based 
on the following two steps: 
i. Creating a parallel region using the #pragma 

directive. The appropriate clauses (i.e. shared 
and private clauses) should also be set 
accordingly.  

ii. Using the #pragma omp for directive to 
specify the loop whose iterations should be 
executed in parallel.      

The new automatically parallelized RSA algorithm 
is given by pseudo-code depicted by Fig.2.  
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{ }

 End
              
                 

 m; mod ) e ^(MSGS[i]  =EMSGS[i]  do                 
1-NUM_MSGS to 0  i for                  

                 
 for omp pragma#                

             
(i) private  MSGS)(EMSGS, shared parallel omp pragma#  

Begin
EMSGS; :Output

 MSGS;:Input
NUM_MSGS; :Input

(PaRSA) RSA Parallel  

}
}

{

{

←

:4.1.2 Algorithm

Fig.2: Parallel RSA (PaRSA) pseudo-code. 

The same parallelization procedure can be applied 
on the decryption part of the RSA. For the rest of 
this paper, the serial and parallel versions of the 
RSA will be denoted as SeRSA and PaRSA 
respectively. Both SeRSA and PaRSA have been 
implemented using the C++ programming language 
and compiled using the GCC compiler on Fedora 19 
[34]. They have been run on four different Intel 
Multicore processors [35]. Each processor 
configuration is defined in terms of four different 
parameters including: number of cores, number of 
threads per core, clock frequency and on-chip cache 
hierarchy. Processor configurations are summarized 
in table 1. In case of PaRSA, OpenMP allows the 
programmer to set the number of threads that the 
complier can create. From performance perspective, 
the number of created threads should be less than or 
equal to the number of hardware threads per 
processor chip. Table 2 illustrates the number of 
threads supported by each processor.  A PaRSA 
with 1 thread is equivalent to SeRSA. The used 
processors (Table 1) support CPU frequency 
scaling. Frequency scaling can be done either 
dynamically or manually. Dynamic frequency 
scaling is done by the Operating System based on 
workload demands while manual scaling can be 
done by userspace applications based on 
performance or power constraints. In this paper, 
CPU frequency scaling has been done manually 
using the CPUFreqUtils package provided by the 
Linux operating system [36].For both SeRSA and 
PaRSA, several working set sizes i.e. NUM_MSGS 
have been tested. The working set include {100, 
200, 300, 400 and 500} million messages. For each 
possible working set size all possible combinations 
of the 2-tuple (no. of threads, clock frequency) have 

been experienced. In case of SeRSA, the no. of 
threads was always set to 1. Therefore, each 
experiment in this part represents one possible 
combination of the 3-tuple (working set size, no. of 
threads, clock frequency). 

Table 1: Processor Configurations. 

Processor 
Cores 

per 
Processor 

Threads 
per 

Core 

Available 
Frequencies in 

GHz 

Core2Duo 2 1 0.8,1.6,2.13,2.8 

Core i3 2 2 1.6, 2.1, 2.7, 3.3 

Core i5 4 1 1.2,1.5,1.8,2.1,2.4 

Core i7 4 2 1.2,1.5,1.8,2.1,2.4 

Cache Hierarchy 

 Level-1 Level-2 Level-3 

Core2Duo 
IL1: 32KB 

DL1:32 KB 

6 MB 

shared 
N/A 

Core i3 
IL1: 32KB 

DL1:32 KB 

256 KB 

Private 

3 MB 

Shared 

Core i5 
IL1: 32KB 

DL1:32 KB 

256 KB 

Private 

3 MB 

Shared 

Core i7 
IL1: 32KB 

DL1:32 KB 

256 KB 

Private 

3 MB 

Shared 

 

Table 2: Possible number of Threads per Processor. 

Processor Supported no. of Threads 

Core 2 Duo 1,2 

Core i3 1,2,4 

Core i5 1,2,4 

Core i7 1,2,4,8 
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4.2 Power Consumption Estimation. 
 

Power consumption is an extremely important 
parameter in the design space of modern processors. 
Fig.3 illustrates our power analysis framework. 
McPAT [37] has been used to obtain the power 
consumption of the RSA on the processor 
configurations shown in Table 1. McPAT is an 
integrated power, area and timing modelling 
framework that supports extensive design space 
exploration for Multicore processors ranging from 
90nm to 22 nm and beyond. Power readings include 
both dynamic and leakage power. It models power, 
area and timing for the device types forecast in the 
ITRS roadmap [38]. 
 

 XML Interface 

Architecture Specifications & 
Optimization Target

Machine 
Statistics

Performance Simulation 
using Multi2simUser Inputs

McPAT

Chip Representation Optimizer

Results

Timing Area Power

Dynamic, Leakage and 
Short circuit

 Fig.3: Power Analysis Framework 
 
 McPAT has a flexible XML-based interface that 
allows it to accept both user inputs and performance 
simulator’s statistics.   McPAT uses user inputs and 
performance simulator’s statistics in order to report 
power, area and timing of the modelled processor 
architecture. All these inputs can be passed via the 
XML interface. User inputs include architecture 
parameters, circuit’s parameters, technology 
parameters and optimization target. Simulation 
statistics include hardware utilization, activity 
factors and the usage of power management 

techniques such as P- and C- states. On the other 
hand, multi2sim [39] has been used to obtain the 
necessary resource utilization information that 
McPAT requires in order to estimate the total power 
consumption of the processor. Multi2sim is a full-
system simulation environment that allows 
hardware designers to simulate superscalar, 
multithreaded and Multicore processor based on the 
x86 instruction set architecture (ISA). The RSA has 
been simulated on multi2sim using processor 
models the closely resembles the configurations 
shown in Table 1. Multi2sim has been chosen since 
it supports the X86 ISA used by the processor 
configuration in Table 1. Therefore, the same binary 
can be used for both direct execution (section 4.1) 
and performance simulation without any 
modifications which allows hardware designer to 
obtain identical results from the two evaluation 
methods i.e. direct execution and performance 
simulation.  The power consumption of each 
processor configuration (Table 1) has been 
estimated at all possible clock frequencies and 
process technologies. 

 
4.3 Lifetime Reliability Analysis 
Admittedly, integrating a large number of 
transistors on a single chip and running them on a 
very high clock rates have resulted into an 
incredible power density levels. Increasing power 
densities has a negative effect on the long-term life-
time reliability of the processor [40-42].  
Therefore, designing efficient processor chips 
should take into account lifetime reliability besides 
other metrics such as performance and power 
consumption. In this work, the RAMP model [40-
42] has been used to estimate the lifetime reliability 
of processor chips based on the RSA workload. 
RAMP is an analytical model that provides 
reliability estimates for a workload running on a 
processor chip implemented using a specific process 
technology. In order to choose an appropriate 
reliability metric, the proposed processor 
architecture is assumed to work according to a 
particular Service Level Agreement (SLA) [43]. 
With respect to an SLA, the processor alternates 
between two states of service: 

a. Service accomplishment in which the 
service is delivered as specified. 

b. Service interruption in which the delivered 
service is different from the SLA. 

Failures cause transitions between these two states 
(from state 1 to 2) while restorations leads to 
transition from state 2 to 1. This work takes into 
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account irreparable faults only; only failures are 
taken into account. In other words, the used 
reliability metric should take failures into account 
while overlooking system restorations. Therefore, 
system reliability becomes a measure of the 
continuous service accomplishment (or 
equivalently, of the time to failure) from a reference 
initial instant. Thus, the mean time to failure 
(MTTF) is an appropriate reliability measure.  

RAMP estimates long-term processor MTTF of a 
given workload based on four failure mechanisms 
including electromigration (EM), stress migration 
(SM), time-dependent dielectric breakdown 
(TDDB) and thermal cycling (TC). It provides a 
micro-architectural structure level implementation 
(e.g. caches, ALUs, branch predictor, etc) of the 
failure mechanisms for a particular technology 
generation. The following paragraphs summarize 
each of these failure mechanisms assuming that the 
processor operates in the steady state at a fixed 
operating point. 

Electromigration (EM) is a well-understood 
failure mechanism in the field of material science 
and semiconductor technology. It appears in 
processor interconnects and is caused by the mass 
transport of the conductor metal atoms in those 
interconnects [44, 45]. Two destructive scenarios 
can be caused by EM. First, increased resistance 
and open circuits appear at the sites of metal atoms 
depletion. Second, extrusions can form at the sites 
of metal atom pile up which leads to shorts between 
adjacent metal lines [44, 45]. 

The EM-induced MTTF, MTTFEM, is given by the 
following formula [39-41]:  

                    kT
E

n
EMa

eJ −= )(MTTFEM                  (4)                        
Such that J is the current density in the 
interconnects of the processor, 

EMaE is EM’s 
activation energy, k is Boltzmann’s constant and T 
is the processor temperature in Kelvin. 

EMaE  and n 
are interconnect-dependent constants. For the 
copper interconnects modelled in RAMP [40-42], 
the values of 0.9 and 1.1 have been used 
respectively.  

Stress Migration (SM) is a failure mechanism in 
which the metal atoms in the processor 
interconnects migrate due to mechanical stress. SM 
is mainly caused by thermo-mechanical stresses 

which are caused by differing thermal expansion 
rates of different materials in the device [44].  

The SM-induced MTTF, MTTFSM, is given by the 
following formula [40-42, 44]: 

              kT
E

m
SM

SMa

eTTMTTF −−= )( 0                 (5)                     

Where T0 is the stress-free temperature in Kelvin, T 
is the absolute processor temperature in Kelvin, m 
and EaSM are material-dependent constants and have 
been set to 2.5 and 0.9 for the copper interconnects 
modelled in RAMP [40-42]. 

Time-Dependent Dielectric Breakdown (TDDB) 
is another failure mechanism that can be 
encountered in the semiconductor devices. It is also 
known as gate oxide breakdown. The dielectric (or 
the gate oxide) breaks down with time and fails 
when a conductive path is formed in the dielectric 
[40, 46]. The TDDB-induced MTTF modelled by 
RAMP [40-42] is based on the experimental work 
performed by Wu et al. at IBM [47] and is given by 
the following formula: 

             kt

zT
T
yx

bTa
TDDB e

V
MTTF

++

−= )1(               (6)                     

Such that T is the absolute processor temperature, V 
is the supply voltage, a, b, x, y and z are fitting 
parameters. Table 3 shows the fitting parameters 
used by RAMP Based on the experimental data 
published in [47].  

Table 3: RAMP TDDB parameters [47] 

Parameter Value 

A 78 

B -0.081 

X 0.759 ev 

Y -66.8 evk 

z -8.37 x 10-4  ev/k 

Thermal Cycling (TC) is a well-known failure 
mechanism in the semiconductor industry. It is 
mainly caused by thermal cycling in the processor. 
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Thermal cycles can be classified into two main 
types: large cycles which occur at a low frequency 
(powering up and down) and small cycles which 
happen at a much higher frequency due to changes 
in application behaviour. RAMP [40-42] takes into 
account large thermal cycles only due to the lack of 
validated models that captures the impact of small 
thermal cycles on device reliability [44]. The TC-
induced MTTF modelled in RAMP [40-42] is based 
on the Coffin-Manson equation [44] and is given by 
the following formula: 

             q

ambientaverage
TC TT

MTTF )1(
−

=              (7)                     

Where Tambient is the ambient temperature and 
(Taverage - Tambient) is the average large thermal cycle 
a processor chip encounters during workload 
execution and q is the Coffin-Manson exponent 
which is a material-dependent, empirically 
determined constant. RAMP uses a q of 2.35 [40-
42].  

As shown in the formulas given by equations 4-7, 
the extent to which a particular workload can 
influence the lifetime reliability of the processor 
depends on the amount of heat dissipated during 
program execution. In other words, since the 
switching activity and the total power consumed by 
the processor depends on the running workload, the 
actual operating temperature and current densities in 
the processor interconnects also depends on the 
running workload [42]. Consequently, in order 
estimate the impact of the RSA workload on the 
MTTF of the processors shown in Table 1, 
processor temperature under the RSA workload 
should be determined. The flow chart shown in 
Fig.4 summarizes our reliability analysis procedure. 
As shown in Fig.4, clock frequency was the only 
parameter of interest during our reliability analysis. 
All frequencies supported by a particular processor 
configuration have been tested and its 
corresponding temperature and MTTF values have 
been observed. The reliability analysis consists of 
five main steps. First, the clock frequency of the 
processor is changed using the CPUFreqUtils. 
Second, the RSA workload is run using appropriate 
input parameters that can aggressively stress the 
processor chip. Third, the processor temperature is 
observed using the psensor utility [48].  Psensor is a 
graphical hardware temperature monitor for Linux. 
It provides temperature measurements by accessing 
the sensors installed on the processor chip. Fourth, 

processor temperature, obtained by psensor, is used 
as inputs for the RAMP model. Fifth, the MTTF 
values from the RAMP model are used to judge the 
RSA impact on the lifetime reliability of the 
processor taking into account the four different 
failure mechanisms modelled by RAMP [40-42].  

        

Start

Change CPU 
Frequency Using 

CPUFreqUtils

Run RSA 

Observe CPU 
Temperature Using 

psensor Utility

Send CPU 
Temperature to 

RAMP

Obtain MTTF 
Estimates

All 
Frequencies  

Tested ?

No

End

Yes

 

Fig.4: Reliability Analysis Flow Chart 

5. Results and Analysis 
This section summarizes the results that have been 
obtained based on the research methodology 
outlined in the previous section. Each subsection 
provides a comparison between the processor 
configurations shown in Table 1 in terms of one 
particular parameter or figure of merit. The optimal 
processor configuration is determined based on its 
performance, power consumption, energy 
dissipation and lifetime reliability. In other words, 
the processor that achieves the best tradeoffs 
between the aforementioned parameters is said to be 
the optimal processor configuration for the 
cryptographic algorithms. 
 
5.1 Performance Analysis 
In this part, an extensive performance-centric 
analysis has been performed in order to study the 
impact of software parallelization on RSA’s 
performance and identify the best processor 
configuration to run such a parallel workload. The 
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best processor configuration is the one on which the 
RSA achieves its highest performance as compared 
to other processor configurations. Two main steps 
have to be performed as a prerequisite to the 
aforementioned goals: 
a.   Workload selection: the goal of this step is to 

pick an appropriate working-set size for 
performance evaluation. 

b.   Scheduling policy section: this step aims at 
identifying the best threads scheduling policy 
that minimizes contention between threads and 
leads to the highest possible performance using 
OpenMP.  

Fig.5 depicts the impact of working-set size (i.e. the 
number of RSA input messages) on the 
performance of the parallelized RSA. It shows the 
speedup that parallel RSA (PaRSA) can achieve 
over serial RSA (SeRSA) at all possible working-
set sizes. PaRSA-n indicates a PaRSA running with 
n threads. The values on the x-axis indicate the 
working-set size while the y-axis shows the speedup 
the PaRSA-n can achieve as compared to SeRSA. It 
can be observed that PaRSA-n almost always 
achieves the same speedup, as compared to SeRSA, 
at all working-set sizes. In other words, it can be 
concluded that the working-set size has a negligible 
impact on PaRSA’s performance. Therefore, one 
particular working-set size can be used for the sake 
of performance evaluation. For the rest of this work, 
a working-set size of 200 million messages will be 
used. The other intermediate step was to evaluate 
the impact of different scheduling techniques on the 
performance of the PaRSA. OpenMP provides three 
main scheduling schemes: static, dynamic and 
guided [33]. Static scheduling partitions the loop 
iterations into equal-sized chunks or as nearly equal 
as possible in the case where the number of loop 
iterations is not evenly divisible by the number of 
threads multiplied by the chunk size. When chunk 
size is not specified, the iterations are divided as 
evenly as possible, with one chunk per thread [33]. 
Dynamic scheduling uses an internal work queue to 
give a chunk-sized block of loop iterations to each 
thread as it becomes available. When a thread is 
finished with its current block, it retrieves the next 
block of loop iterations from the top of the work 
queue. By default, chunk size is set to 1. It has extra 
overhead as compared to other scheduling schemes 
[33]. Guided scheduling is similar in spirit to 
dynamic scheduling, but the chunk size starts off 
large and shrinks in an effort to reduce the amount 
of time threads have to go to the work queue to get 
more work. When guided scheduling is used, the 

optional chunk parameter specifies the minimum 
size chunk to use, which, by default is 1 [33]. 

 

Fig.5: Impact of working-set size on 
performance. 

 In this work, the three scheduling schemes have 
been evaluated on PaRSA with eight threads 
(PaRSA-8). PaRSA-8 has been run on a data-set 
size of 200 million messages. Fig.6 shows the 
execution time of PRSA-8 with different scheduling 
techniques as the chunk size increases from 1 up to 
100. As illustrated in Fig.6, PaRSA-8 with guided 
scheduling and PaRSA-8 with static scheduling 
have maintained an almost constant execution time 
regardless of the chunk size. On the other hand, the 
execution time of PARSA-8 with dynamic 
scheduling was higher than that of other scheduling 
techniques when the chunk size is less than 20; as 
the chunk size decreases, the overhead associated 
with retrieving work from the shared work queue 
will increase which in turn can degrade the 
performance of PARSA-8 with dynamic scheduling. 
It can be observed from Fig.6 that the guided 
scheduling policy always outperforms the other 
scheduling policies due to its minimal thread 
contention. Consequently, the guided scheduling 
policy has been used throughout this paper. Having 
obtained the optimal OpenMp settings, both SeRSA 
and PaRSA have been directly executed on the 
processor configurations shown in Table 1 and their 
performance has been observed at different clock 
frequencies and thread numbers. Fig.7 shows the 
execution time of SeRSA and PaRSA on Intel 
Core2Duo [35]. Intel Core2Duo supports two 
hardware threads at a time; therefore, only PaRSA-2 
has been evaluated on this processor. It supports 
four different frequency levels that include 800, 
1600, 2130 and 2800 MHz. Both SeRSA and 
PaRSA have been executed at all frequency levels 
and their execution time has been observed. 
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Fig.6: the impact of OpenMP scheduling policy 
on performance. 

As depicted in Fig.7, increasing the clock frequency 
can always reduce the execution time of SeRSA 
while increasing the number of threads and/or clock 
frequency can always reduce the execution time of 
PaRSA-2; both SeRSA and PaRSA-2 have achieved 
their optimal performance at 2800 MHz. PaRSA-2 
achieves approximately 47% performance 
improvement, as compared to SeRSA,   at all clock 
frequencies. On the other hand, doubling the clock 
frequency (from 800 MHz to 1600 MHz) has 
achieved a 50 % performance improvement for both 
SeRSA and PaRSA-2. In other words, doubling the 
clock frequency on Intel Core2Duo can yield more 
performance improvement than doubling the 
number of threads. However, doubling the number 
of threads at low clock frequencies is more 
beneficial from power consumption perspective as 
will be shown in the next subsection. Fig.8 
illustrates the performance results of SeRSA and 
PaRSA on Intel Core i3 [35]. Intel Core i3 has two 
cores with each core supporting two hardware 
threads. In other words, it supports four concurrent 
software threads. Consequently, both PaRSA-2 and 
PaRSA-4 have been evaluated on this processor. It 
can run at 1600, 2100, 2700 and 3300 MHz. Several 
observations can be made based on Fig.8. First, the 
execution time of both SeRSA and PaRSA is 
inversely proportional to the clock rate of the 
processor. Second, the execution time of PaRSA 
decreases as the number of threads increases at all 
clock rates. 
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Fig.7: Performance of SeRSA and PaRSA-2 on 
Intel Core2Duo. 

Third, PaRSA-2 and PaRSA-4 achieve a 47 % and 
65 % performance improvement, as compared to 
SeRSA, respectively. Fourth, for SeRSA, PaRSA-2 
and PaRSA-4, increasing the clock frequency from 
1600 MHz to 3300 MHz has resulted in 52 % 
approximately. In other word, as the number of 
threads beyond 2 can lead to more performance 
improvement that increasing the clock frequency of 
the processor.  
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Fig.8: Performance of SeRSA and PaRSA on 
Intel Core i3. 

Fig.9 shows the performance result of SeRSA and 
PaRSA on Intel Core i5 [35]. Intel Core i5 has four 
cores with each core supporting a single thread 
leading to a processor chip that can support four 
simultaneous software threads; only PaRSA-2 and 
PaRSA-4 have been studied on this processor.  It 
can run at 1200, 1500, 1800, 2100 and 2400 MHz. 
The observations that can be drawn from Fig.9 are 
almost identical to that of Fig.8. However, by 
comparing the two processor at the 2100 clock rate 
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(i.e. the common clock rate), it can be observed that 
Intel Core i5 slightly outperforms Intel Core i3 
when running PaRSA-2 and PaRSA-4; this due to 
the fact that Intel Core i5 has four different cores 
with each core supporting a single running thread in 
contrast to Intel Core i3 where each pair of threads 
runs on the same core. 
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Fig.9: Performance of SeRSA and PaRSA on 
Intel Core i5. 

In other words, when PaRSA runs on Intel Core i5, 
the running threads will encounter minimal inter-
thread contention which results in a lower execution 
time as compared to Intel Core i3. Fig.10 
summarizes the results of running SeRSA and 
PaRSA on Intel Core i7 [35]. Intel Core i7 consists 
of four cores with each core supporting two 
hardware threads which results in a processor chip 
that can support up to 8 simultaneous software 
threads. Consequently, PaRSA-8 has been evaluated 
on this processor in addition to PaRSA-2 and 
PaRSA-4. Similar to Intel Core i5, Intel Core i7 can 
run at 1200, 1500, 1800, 2100 and 2400 MHz. The 
results shown in Fig.10 confirm the results that have 
been depicted in Fig.8 and Fig.9 in all aspects. The 
most important observation that can be made is that 
increasing the number of threads can be more 
advantageous that increasing the clock frequency 
from performance perspective. Whereas increasing 
the clock frequency from 1200 to 2400 MHz leads 
to almost 50% performance improvement for 
SeRSA, PaRSA-2, PaRSA-4 and PaRSA-8, 
increasing the number of threads from 1 to 8 yields 
a 79% performance improvement at all clock rates. 
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Fig.10: Performance of SeRSA and PaRSA on 
Intel Core i7. 
In summary, the performance of RSA can be 
improved by either increasing the clock frequency 
for the same number of threads or increasing the 
number of threads for the same clock rate. 
However, the results shown in this section 
illustrates that increasing the number of threads can 
achieve more performance improvement than 
increasing the clock rate. In addition, our results 
indicate that, from performance perspective, the 
best processor configuration for cryptographic 
algorithms is a Multicore processor with a large 
number of hardware threads and a high clock 
frequency. However, this observation should be 
further investigated from power consumption and 
reliability perspectives as will be shown in the next 
subsections. 

  
5.2 Power Consumption Analysis 
This section shows the power consumption of 
PaRSA-n on the processor configurations shown in 
Table 1. For each configuration, n was set to the 
number of hardware threads supported by that 
processor.  Both dynamic and leakage powers have 
been obtained for each processor configuration. The 
leakage power consists of gate leakage and sub-
threshold leakage [37].The ultimate goal of this 
section is to determine the most power-efficient 
Multicore processor configuration for the RSA. Our 
power analysis was based on processor’s clock 
frequency and its underlying process technology. 
Table 4 summarizes the power consumption of 
PaRSA-2 on Intel Core2Duo at all clock 
frequencies and process technologies. PD is the 
dynamic power while PL is the leakage power which 
consists of gate leakage (PLG) and sub-threshold 
leakage (PLST). PLST_PG is the sub-threshold leakage 
when power gating is employed. It also shows the 
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processor’s chip area at each process technology. 
Several observations can be made based on the 
results shown in Table 4. First, as the process 
technology scales down, the total processor area 
decreases by around 50%. This can be explained by 
Dennard scaling [49]. According to Dennard 
scaling, transistor’s dimensions decreases by around 
30% as process technology scales down. Therefore, 
the total area occupied by a single transistor and in 
turn the processor chip decreases by 50% with 
respect to the previous process technology. Second, 
increasing the clock frequency leads to an equal-
size increase in the dynamic power consumption of 
the processor under all process technologies. This 
can be explained by the following equation which 
shows how the power consumption of a CMOS can 
be calculated [50]: 

                 2VCfPD α=                                  (8) 

Where PD is the dynamic power consumption, ⍺ is 
the activity factor, f is the processor’s clock 
frequency, C is the load capacitance and V is the 
supply voltage. Eq. 8 indicates a direct 
proportionality between the clock frequency and the 
dynamic power consumption of the transistor and, 
in turn, the whole processor chip. Third, the total 
dynamic power of a processor decreases as the 
technology scales down. This can be explained by 
the scaling theory stated in [49]. According to [49], 
the load capacitance and the supply voltage 
decrease as the process technology scales leading to 
a power saving that approaches 50% as compared to 
the previous process technology. Fourth, the 
leakage power constitutes a significant portion of 
the total power consumption at lower process 
technologies especially when the processor runs at 
low clock rates. For example, when the Intel 
Core2Duo is implemented using the 22nm process 
technology and runs at 800 MHz, the leakage power 
constitutes approximately 74% of the total power 
consumption of the processor.    This fact 
necessitates the use of power gating [37] in order to 
minimize the sub-threshold leakage which forms the 
majority of the leakage power of the processor as 
the technology scales down. In the previous 
example, the use of power gating reduces the 
leakage power by 47% and the total power by 
35%.Based on Table 4, it can be observed that 
PaRSA-2 achieved its lowest power consumption 
when Intel Core2Duo is implemented using the 22 
nm process technology and runs at 800 MHz. In 
other words, the most power-efficient dual-core 

processor for PaRSA-2 is a processor implemented 
at low process technology and runs at a low clock 
frequency. By considering the Intel Core2Duo 
(90nm, 800 MHz) as a reference case, the power-
efficient configuration can achieve 75% power 
saving approximately. On the other hand, the 
power-efficient configuration can achieve a 91% 
power saving as compared to the Intel Core2Duo 
(90 nm, 2800 MHz).  
On the other hand, Table 5 depicts the power 
consumption of PaRSA-4 on Intel Core i3 
processor. It also shows the total processor area at 
each process generation. The observations that can 
be made from Table 5 are fourfold. First, the 
processor becomes more area-efficient as the 
process technology scales down. This can be 
explained by the scaling theory provided by [49]. 
Second, there is a significant increase in the total 
dynamic power as the clock frequency increases. 
The aforementioned observation can be explained 
by Eq. 8. Third, the dynamic power of the processor 
decreases as the process technology shrinks due to 
the same reasons provided for the Intel Core2Duo 
processor [49].Fourth, leakage power becomes the 
major source of power consumption as we move 
towards lower feature sizes. However, its effect can 
be minimized by using power gating techniques 
[37].  In summary, the most power-efficient Intel 
Core i3 configuration for PaRSA-4 is the 
configuration that is implemented using the 22 nm 
process technology, running at 1600 MHz and is 
using the power gating techniques to minimize 
leakage power consumption. Taking the Intel Core 
i3 (90 nm, 1600 MHz) as the base case, the power-
efficient configuration i.e. Intel core i3 (22 nm, 
1600 MHz) can achieve 80% power savings. On the 
other hand, the power-efficient configuration can 
achieve around 92.7% saving as compared to Intel 
core i3 (90 nm, 3300 MHz). Similarly, Table 6 
summarizes the power consumption of PaRSA-4 on 
Intel core i5 processor. It also shows the total 
processor area under all process technologies. 
Several observations can be made based on the 
results shown in Table 6. First, Intel Core i5 
becomes more area-efficient as the feature size 
thinks. This point can be explained by the scaling 
theory provided by [49]. Second, the dynamic 
power consumption of the processor is directly 
proportional to the clock frequency of the processor 
under all process technologies. This point can be 
directly noticed from Eq. 8. Third, the processor 
consumed less dynamic power as its feature size 
scales down. This point agrees with the scaling 
theory in [49]. Fourth, when the processor is 
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implemented at small feature sizes, leakage power 
becomes the major source of power consumption 
which necessitates the use of leakage-aware design 
methodologies such power gating [37]. 

 

 

Table 4: Power Consumption of PaRSA-2 on Intel Core2Duo. 
 

Process Technology: 90 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

800 338.68 27.6 11.78 0.86 10.91 5.62 
1600 338.68 54.59 11.78 0.86 10.91 5.62 
2130 338.68 72.47 11.78 0.86 10.91 5.62 
2800 338.68 95.07 11.78 0.86 10.91 5.62 

Process Technology: 65 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

800 186.87 15.63 14.66 1.34 13.32 6.89 
1600 186.87 30.75 14.66 1.34 13.32 6.89 
2130 186.87 40.76 14.66 1.34 13.32 6.89 
2800 186.87 53.42 14.66 1.34 13.32 6.89 

Process Technology: 45 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

800 90.96 8.23 12.24 0.67 11.57 6.03 
1600 90.96 16.04 12.24 0.67 11.57 6.03 
2130 90.96 20.21 12.24 0.67 11.57 6.03 
2800 90.96 27.75 12.24 0.67 11.57 6.03 

Process Technology: 32 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

800 59.36 4.65 15.8 0.78 15.02 7.81 
1600 59.36 8.97 15.8 0.78 15.02 7.81 
2130 59.36 11.84 15.8 0.78 15.02 7.81 
2800 59.36 15.46 15.8 0.78 15.02 7.81 

Process Technology: 22 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

800 29.45 2.56 7.28 0.01 7.27 3.82 
1600 29.45 4.84 7.28 0.01 7.27 3.82 
2130 29.45 6.36 7.28 0.01 7.27 3.82 
2800 29.45 8.27 7.28 0.01 7.27 3.82 
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Table 5: Power Consumption of PaRSA-4 on Intel Core i3. 

Process Technology: 90 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1600 302.22 48.6 10.99 0.9 10.09 5.01 
2100 302.22 63.73 10.99 0.9 10.09 5.01 
2700 302.22 81.76 10.99 0.9 10.09 5.01 
3300 302.22 99.79 10.99 0.9 10.09 5.01 

Process Technology: 65 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1600 163.03 26.67 14.84 1.4 13.44 6.71 
2100 163.03 34.85 14.84 1.4 13.44 6.71 
2700 163.03 44.66 14.84 1.4 13.44 6.71 
3300 163.03 54.47 14.84 1.4 13.44 6.71 

Process Technology: 45 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1600 81.24 14.29 12.38 0.7 11.68 5.86 
2100 81.24 18.63 12.38 0.7 11.68 5.86 
2700 81.24 23.83 12.38 0.7 11.68 5.86 
3300 81.24 29.03 12.38 0.7 11.68 5.86 

Process Technology: 32 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1600 44.49 7.89 15.5 0.81 14.69 7.41 
2100 44.49 10.25 15.5 0.81 14.69 7.41 
2700 44.49 13.08 15.5 0.81 14.69 7.41 
3300 44.49 15.92 15.5 0.81 14.69 7.41 

Process Technology: 22 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1600 23.11 4.23 7.08 0.01 7.07 3.59 
2100 23.11 5.47 7.08 0.01 7.07 3.59 
2700 23.11 6.96 7.08 0.01 7.07 3.59 
3300 23.11 8.44 7.08 0.01 7.07 3.59 

 
 
 
Based on Table 6, it can be concluded that the most 
power-efficient Intel Core i5 configuration for 
PaRSA-4 is the configuration that is implemented at 
22 nm feature size and runs at 1200 MHz i.e. Intel 
Core i5 (22 nm, 1200 MHz).Moreover, power 

gating techniques should be used to minimize 
leakage power contributions.  In other words, the 
most power-efficient quad-core processor for the 
RSA should be implemented using small feature 
size and run at low clock frequency.  
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Table 6: Power consumption of PaRSA-4 on Intel Core i5. 

Process Technology: 90 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1200 460.754 35.57 18.3 1.69 16.61 8.08 
1500 460.754 44.31 18.3 1.69 16.61 8.08 
1800 460.754 53.05 18.3 1.69 16.61 8.08 
2100 460.754 61.79 18.3 1.69 16.61 8.08 
2400 460.754 70.53 18.3 1.69 16.61 8.08 

Process Technology: 65 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1200 253.17 20.04 26.1 2.59 23.51 11.51 
1500 253.17 24.93 26.1 2.59 23.51 11.51 
1800 253.17 29.81 26.1 2.59 23.51 11.51 
2100 253.17 34.7 26.1 2.59 23.51 11.51 
2400 253.17 39.58 26.1 2.59 23.51 11.51 

Process Technology: 45 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

1200 126.143 10.68 21.57 1.3 20.27 9.96 
1500 126.143 13.25 21.57 1.3 20.27 9.96 
1800 126.143 15.81 21.57 1.3 20.27 9.96 
2100 126.143 18.38 21.57 1.3 20.27 9.96 
2400 126.143 20.94 21.57 1.3 20.27 9.96 

Process Technology: 32 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1200 70.38 5.87 26.77 1.48 25.29 12.5 
1500 70.38 7.26 26.77 1.48 25.29 12.5 
1800 70.38 8.64 26.77 1.48 25.29 12.5 
2100 70.38 10.03 26.77 1.48 25.29 12.5 
2400 70.38 11.41 26.77 1.48 25.29 12.5 

Process Technology: 22 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

1200 37.14 3.24 11.9 0.02 11.88 5.93 
1500 37.14 3.98 11.9 0.02 11.88 5.93 
1800 37.14 4.27 11.9 0.02 11.88 5.93 
2100 37.14 5.46 11.9 0.02 11.88 5.93 
2400 37.14 6.2 11.9 0.02 11.88 5.93 

 
It should also be equipped with leakage-mitigation 
techniques as the processor becomes more leakage-
consuming at low process technologies.  By taking 
the Intel Core i5 (90 nm, 1200 MHz) as a base case, 

the power-efficient configuration can achieve 
around 82.6 % power saving. On the other hand,  
 
considering the Intel Core i5 (90 nm, 2400 MHz) as 
a reference case, the power-efficient configuration 
can achieve approximately 89.6% power saving. On 
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the other hand, Table 7 illustrates the power 
consumption of PaRSA-8 on Intel Core i7. It also  
gives the total processor area under all feature sizes. 
By analyzing the power consumption values 

provided  in Table 7, it becomes apparent that the 
same observations that have been made based on 
Table 4, 5 and 6 applies also to Intel Core i7.  
 

Table 7: Power consumption of PaRSA-8 on Intel Core i7. 

Process Technology: 90 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1200 506.012 38.15 19.03 1.78 17.25 8.38 
1500 506.012 47.53 19.03 1.78 17.25 8.38 
1800 506.012 56.91 19.03 1.78 17.25 8.38 
2100 506.012 66.3 19.03 1.78 17.25 8.38 
2400 506.012 75.68 19.03 1.78 17.25 8.38 

Process Technology: 65 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

1200 278.038 21.16 27.31 2.74 24.57 12.01 
1500 278.038 26.32 27.31 2.74 24.57 12.01 
1800 278.038 31.48 27.31 2.74 24.57 12.01 
2100 278.038 36.65 27.31 2.74 24.57 12.01 
2400 278.038 41.81 27.31 2.74 24.57 12.01 

Process Technology: 45 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1200 138.492 11.24 22.61 1.38 21.23 10.42 
1500 138.492 13.49 22.61 1.38 21.23 10.42 
1800 138.492 16.65 22.61 1.38 21.23 10.42 
2100 138.492 19.35 22.61 1.38 21.23 10.42 
2400 138.492 22.65 22.61 1.38 21.23 10.42 

Process Technology: 32 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST_PG 

1200 76.93 6.17 28.11 1.59 26.54 13.1 
1500 76.93 7.63 28.11 1.59 26.54 13.1 
1800 76.93 9.09 28.11 1.59 26.54 13.1 
2100 76.93 10.55 28.11 1.59 26.54 13.1 
2400 76.93 12.01 28.11 1.59 26.54 13.1 

Process Technology: 22 nm 

Frequency (MHz) Area (mm2) PD(W) PL (W) 
Total PLG PLST PLST PG 

1200 40.48 3.4 12.51 0.02 12.49 6.22 
1500 40.48 4.18 12.51 0.02 12.49 6.22 
1800 40.48 4.96 12.51 0.02 12.49 6.22 
2100 40.48 5.75 12.51 0.02 12.49 6.22 
2400 40.48 6.63 12.51 0.02 12.49 6.22 
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It can be observed that PaRSA-8 consumes its 
lowest power on Intel Core i7 (22 nm, 1200 MHz) 
with power gating capability. In other words, the 
most power-efficient processor for PaRSA-8 is an 
octa-core processor implemented using small 
feature size and is operated at low clock rate. By 
taking Intel Core i7 (90 nm, 1200 MHz) as a 

reference case, Intel Core i7 (22 nm, 1200 MHz) 
achieves around 83.1% power saving. On the other 
hand, by taking Intel Core i7 (90 nm, 2400 MHz) as 
our reference case, the power-efficient 
configuration can achieve around 89.8% power 
saving.  

  
5.3 Energy Dissipation Analysis 
This section shows the energy that PaRSA-n 
consumes on the processor configurations shown in 
Table 1. For each configuration, n is set to the 
number of hardware threads supported by that 
configuration; this is the situation where PaRSA-n 
achieves its optimal performance. The total energy 
that PaRSA-n dissipates on a particular processor 
depends on its execution time and the total power 
consumed by the processor. In other words: 

           TimeExecutionPowerEnergy ∗=        (9) 

Fig.11 depicts the total energy consumed by 
PaRSA-2 on Intel Core2Duo processor. It shows the 
total energy under all possible clock frequencies 
and feature sizes. The total energy is the sum of 
dynamic and leakage energies. In Fig.11, the x-axis 
of each subplot indicates the process technology 
while the y-axis shows the total energy. Each 
subplot corresponds to a particular clock frequency. 
It can be observed that, at all clock frequencies, 
PaRSA-2 has consumed its lowest energy when the 
processor was implemented using the 22 nm 
process technology. In addition, the most energy-
efficient configuration is the Intel Core2Duo (22nm, 
2800 MHz). Although the Intel Core2Duo (22 nm, 
800MHz) was the Most power-efficient 
configuration (section 5.2), it consumes more 
energy that Intel Core2Duo (22 nm, 2800 MHz). 
This is due to the fact that processor energy depends 
not only on its power consumption but also on its 
execution time. The execution time of PaRSA-2 on 
Intel Core2Duo (22nm, 2800MHz) is less than its 
execution time on Intel Core2Duo (22nm, 
800MHz); the magnitude of execution time 
reduction is higher than power consumption 
increases as PaRSA-2 moves from Intel Core2Duo 
(22 nm, 800MHz) to Intel Core2Duo (22 nm, 2800 
MHz). Whereas Intel Core2Duo (22 nm, 2800 
MHz) has a 71.70% reduction in execution time as 
compared to Intel Core2Duo (22 nm, 800 MHz), it 
has a 58.03% increases in its total power 
consumption. Therefore, its execution time 
reduction offsets its power consumption increase 

which in turn leads to less energy dissipation as 
compared to Intel Core2Duo (22 nm, 800 MHz).  
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Fig.11: Energy dissipation of PaRSA-2 on Intel 
Core2Duo. 

On the other hand, Fig.12 illustrates the energy 
dissipation of PaRSA-4 on Intel Core i3 processor. 
it shows the total energy dissipated at all possible 
clock rates and process technologies. Based on 
Fig.12, it can be observed that the most energy-
efficient Intel core i3 configuration for PaRSA-4 is 
the Intel Core i3 (22 nm, 3300 MHz). compared 
with the results shown in Table 5, the most energy-
efficient configuration for PaRSA-4 is not 
necessarily equivalent to the most power efficient 
configuration since the total processor energy is a 
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function both power consumption and execution time.
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Fig.12: Energy Dissipation of PaRSA-4 on Intel 
Core i3. 

Intel Core i3 (22 nm, 3300) has a 37.2% increase in 
its power consumption as compared to the Intel 
Core i3 (22 nm, 1600 MHz) i.e. the most power- 
efficient configuration. Moreover, it has achieved a 
51.3% reduction in the execution time of PaRSA-4 
as compared to the Intel Core i3 (22 nm, 1600 
MHz). Therefore, the percent reduction in execution 
time outweighs the percent increase in the total 
power consumption which has led to an overall 
reduction in the total energy dissipation of the Intel 
Core i3 (22 nm, 3300 MHz) as it executes PaRSA-
4.  Fig.13 shows the total energy dissipation of 
PaRSA-4 on Intel Core i5 processor. The energy 
values are shown for each possible pair of process 
technology and clock rate supported by this 
processor. The results given by Fig.13 indicate that 
the most energy-efficient Intel Core i5 configuration 
for PaRSA-4 is that implemented at 22 nm and run 
at 2400 MHz i.e. Intel Core i5 (22 nm, 2400 
MHz).Similar to the previous processor 
configurations, the energy-efficient configuration of 
Intel Core i5 is different from the power-efficient 
configuration which was found to be Intel Core i5 

(22 nm, 1200 MHz). Compared to the Intel Core i5 
(22 nm, 1200 MHz), Intel Core i5 (22 nm, 2400 
MHz) has a 19.6% increase in power consumption 
and 50.8% reduction in execution time.  
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Fig.13: Energy Dissipation of PaRSA-5 on Intel 
Core i5. 

Therefore, an overall energy saving has been 
achieved.  So far, there are two energy-efficient 
processor configurations for PaRSA-4: Intel Core i3 
(22nm, 3300 MHz) and Intel Core i5 (22 nm, 2400 
MHz). our results indicate that PaRSA-4 has a 
593.091 Joules of energy dissipation and a 31.11 
seconds of execution time on Intel Core i5 (22 nm, 
2400 MHz). on the other hand, it has a 363.478 
Joules of energy and a 23.42 seconds of execution 
time on Intel Core i3 ( 22 nm, 3300 MHz). In other 
words, Intel Core i3(22 nm , 3300 MHz) has 
achieved a 35.5% reduction in energy and a 24.7% 
reduction in execution time as compared to the Intel 
Core i5 ( 22 nm, 2400 MHz). Although the two 
processors support the same number of hardware 
thread, Intel Core i3 has outperformed Intel Core i5 
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due to its high clock frequency; it has a lower 
execution time and lower energy dissipation. In 
summary, it can be concluded that the best 
Multicore processor configuration, in terms of 
performance and energy, for PaRSA-4 is a 
processor that supports four simultaneous hardware 
threads and runs at a high clock rate. However, this 
observation should be further investigated based on 
the lifetime reliability of the processor as will be 
shown in the next subsection. 

Fig.14 illustrates the energy dissipation of PaRSA-8 
on Intel Core i7.  The total energy dissipation has 
been shown for all possible combinations of process 
technology and clock rate.  
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Fig.14: Energy Dissipation of PaRSA-8 on Intel 
Core i7. 

Fig.14 implies the fact that the most energy-
efficient process technology and clock rate, of Intel 
core i7, are 22 nm and 2400 MHz respectively. This 
observation confirms the aforementioned fact that 
the power-efficient configuration and the energy-
efficient configuration are not necessarily 
equivalent. Whereas the power-efficient 
configuration for PaRSA-8 was the Intel Core i7 (22 

nm, 1200 MHz), the energy-efficient configuration 
is the Intel Core i7 (22 nm, 2400 MHz).  The 
energy-efficient configuration has a 19.7% increase 
in power consumption and 49.9% reduction in 
execution time as compared to the power-efficient 
configuration. Thus, an overall energy saving has 
been achieved since the amount of execution time 
reduction is greater than the amount of power 
increase. Therefore, it can be observed that the best 
Multicore processor configuration for PaRSA-8 
from energy perspective is a processor that supports 
8 hardware threads and runs at a high clock rate. 
Based on the results shown in this section, the most 
energy-efficient configurations for PaRSA-2, 
PaRSA-4 and PaRSA-8 are Intel Core2Duo (22 
nm, 2800 MHz), Intel Core i3 (22 nm, 3300 
MHz) and Intel Core i7 (22 nm, 2400 MHz) 
respectively.Table 8 summarizes the execution 
time and the total energy of the optimal 
configurations for PaRSA-n where n is the number 
of hardware threads supported by the associated 
processor. The term optimal refers to the processor 
configuration that has achieved the lowest execution 
time and energy dissipation among all 
configurations that support the same number of 
hardware threads.   

Table 8: PaRSA-n Optimal Configuration 
Parameters. 

Algorithm Configuration Energy 
(Joules) 

Time 
(Seconds) 

PaRSA-2 

Intel 
Core2Duo (22 

nm, 2800 
MHz) 

700.994 

 

45.08 

 

PaRSA-4 
Intel Core i3 
(22 nm, 3300 

MHz) 

363.4784 

 

23.42 

 

PaRSA-8 
Intel Core i7 
(22 nm, 2400 

MHz)  

341.5776 

 

17.94 

 

The observation that can be made based on Table 8 
is that PaRSA-n can achieve a substantial 
performance improvement and energy savings by 
increasing the number of hardware threads and 
using a processor configuration whose number of 
hardware threads is at least equal to n. PaRSA-8 has 
achieved a 60.2 % performance improvement as 
compared to PaRSA-2 and a 23.4 % performance 
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improvement as compared to PaRSA-4. On the 
other hand, it has achieved a 51.3 energy saving as 
compared to PaRSA-2 and a 6.03 % energy saving 
as compared to PaRSA-4. Therefore, from 
performance and energy perspectives, PaRSA-8 is 
the best implementation of the RSA algorithm and 
Intel Core i7 (22 nm, 2400 MHz) is the optimal 
processor configuration for this algorithm. 
However, this result should be further investigated 
in terms of lifetime reliability as will be shown in 
the next subsection. 

 
5.4 Lifetime Reliability Analysis 
This section shows the lifetime reliability of the 
different processor configurations under the 
PaRSA-n workload. In section 5.3, it has been 
shown that all the energy-efficient configurations 
were obtained at the same process technology. 
Consequently, only clock rate has been considered 
for the sake of reliability analysis. As shown in 
section 4.3, the reliability analysis framework relies 
mainly on processor temperature in order to 
quantify its lifetime reliability [40-42]. Hence, it is 
necessary to obtain the temperature of the processor 
at different clock rates. In order to achieve this goal, 
the psensor [48] utility has been used to read the 
temperature of the processor while a particular 
PaRSA-n workload is running. In order to estimate 
the lifetime reliability at clock rates other than those 
supported by the real hardware, an empirical model 
has been developed. This model captures the 
relationship between processor’s temperature and 
its clock rate and can be used to predict processor’s 
temperature at each possible clock rate. Fig.15 
illustrates the relationship between processor 
temperature and its clock rate. The temperatures 
obtained by psensor were first plotted and a curve-
fitting operation has been performed to obtain a 
mathematical formula that expresses processor 
temperature as a function of its clock rate.  It can be 
observed that there is a quadratic relationship 
between processor temperature and its clock rate.  
The temperature values obtained by the psensor 
utility or the developed model have then be input to 
the RAMP model [40-42] in order to get an estimate 
of the processor’s lifetime reliability as it runs a 
particular PaRSA-n workload. Fig.16 depicts the 
mean time to failure (MTTF) as a function of clock 
frequency. It shows the MTTF based on each of the 
physical failure mechanisms described in section 
4.3. The x-axis indicates the clock rate, while the y-
axis shows the MTTF as a function of the clock 

rate. Each subplot is labeled with the corresponding 
failure mechanism. 
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Fig.15: The Relationship between processor 
temperature and its clock rate. 
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Fig.16: Processor's MTTF as a function of 
clock rate. 
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Fig.16 illustrates the fact that the MTTF of a 
processor is a decreasing function of clock rate. In 
other words, a processor running at a low clock rate 
would sustain a longer period of time before 
encountering temperature-induced failures as 
compared to a processor that runs on a higher clock 
rate. Therefore, it is important to re-evaluate the 
optimal configurations specified in section 5.3 
based on the lifetime reliability of the processor. 
Table 9 shows a comparison between the power-
efficient and the energy-efficient configuration for 
each PaRSA-n. It shows the percent increase in 
MTTF that the power- efficient configuration can 
achieve as compared to the energy-efficient 
configuration for each PaRSA-n under all possible 
physical failure mechanisms. The comparison 
results have been reported in terms of the percent 
increase in MTTF values since processor reliability 
is directly proportional to its MTTF. 

Table 9: MTTF comparison. 

Algorithm 
MTTF 

(EM) 

MTTF 

(SM) 

MTTF 

(TDDB) 

MTTF 

(TC) 

PaRSA-2 368.5% 251.2% 59.26% 333.3% 

PaRSA-4 458.82% 280.25% 72.73% 100.1 

PaRSA-8 146.58% 112.43% 30.40% 150% 

As shown in sections 5.2 and 5.3, power-efficient 
configurations have lower clock rates than the 
energy-efficient ones. Therefore, they exhibit low 
heat dissipation and spans a longer lifetime as 
compared to energy-efficient processors that run at 
higher clock rates. This fact can be directly 
observed from Table 9 which shows that moving 
from energy-efficient configuration (i.e. higher 
clock rate) to power-efficient configuration (i.e. 
lower clock rate) results into a significant increase 
in processor reliability under various physical 
failure mechanisms. Taking lifetime reliability into 
consideration, the optimal configurations for 
PaRSA-2, PaRSA-4 and PaRSA-n will be Intel 
Core2Duo (22 nm, 800 MHz), Intel Core i3 (22 nm, 
1600 MHz) and Intel Core i7 (22 nm, 2400 MHz) 
respectively. Based on the results shown in this 
section, it can be observed that the optimal 
processor configuration for RSA is a Multicore 
processor with a large number of hardware threads, 
low clock rate and a small feature size.  

 

6. Conclusion 
In this paper, an extensive design space exploration 
(DSE) has been performed in order to figure out the 
optimal Multicore processor configuration for 
cryptographic algorithms. All experiments were 
based on a parallel version of the RSA algorithm 
tuned for optimal performance settings. Our results 
indicate that a careful balance between processor 
specifications i.e.  Clock rate, number of hardware 
threads and process technology should be achieved 
in order to obtain the optimal processor 
configuration that maintains a reasonable tradeoff 
between performance, power consumption, energy 
dissipation and lifetime reliability of the processor. 
However, the appropriate setting of processor 
specifications depends on the design constraints and 
system requirements.  
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