
Towards An Optimal Multicore Processor Design for Cryptographic
Algorithms – A Case Study on RSA

MUTAZ Al-TARAWNEH1, ASHRAF ALKHRESHEH2

1Computer Engineering Department, 2Mathematics and Computer Science

1Mu’tah University, 2Tafila Technical University

1P.O.Box 7, Mu’tah 61710, 2P. O. Box 179, Tafila 66110

JORDAN

1mutaz.altarawneh@gmail.com, 1mutaz.altarawneh@mutah.edu.jo,2khresheh.ashraf@ttu.edu.jo

Abstract: - This paper aims at identifying the optimal Multicore processor configuration for cryptographic
applications. The RSA encryption algorithm has been taken as a case study and a comprehensive design
space exploration (DSE) has been performed to obtain the optimal processor configuration that can serve as
either a standalone or a coprocessor for security applications. The DSE was based on four figures of merit
that include: performance, power consumption, energy dissipation and lifetime reliability of the processor. A
parallel version of the RSA algorithm has been implemented and used as an experimentation workload.
Direct program execution and full-system simulation have been used to evaluate each candidate processor
configuration based on the aforementioned figures of merit. Our analysis was based on commodity
processors in order to come up with realistic optimal processor configuration in terms of its clock rate,
number of cores, number of hardware threads, process technology and cache hierarchy. Our results indicate
that the optimal Multicore processor for parallel cryptographic algorithms must have a large number of
cores, a large number of hardware threads, small feature size and should support dynamic frequency scaling.
The execution of our parallel RSA algorithm on the identified optimal configuration has revealed a set of
observations. First, the parallel algorithm has achieved a 79% performance improvement as compared to the
serial implementation of the same algorithm. Second, running the optimal configuration at the highest
possible clock rate has achieved 40.13% energy saving as compared to the same configuration with the
lowest clock rate. Third, running the optimal configuration at the lowest clock rate has achieved a 19.7 %
power saving as compared to the same configuration with the highest clock rate. Fourth, the optimal
configuration with low clock rate has achieved 109.85 % higher mean time to failure (MTTF), on average, as
compared to the high-frequency configuration. Consequently, the optimal configuration has always the same
number of cores, hardware threads, and process technology but the clock rate should be adjusted
appropriately based on the design constraints and the system requirements.

Key-Words:- RSA, performance, power, energy, lifetime reliability, optimal configuration.

1. INTRODUCTION
Cloud computing has recently become an attractive
computing infrastructure for both individual users
and governmental organizations. It typically
consists of networked resources and provides
subscription-based services that allow users to
obtain storage space and computing resources [1].
The cloud alleviates the need for users to be in the
same physical location as the hardware resources
they are using. Hence, its use via mobile and
handheld devices has gained a widespread among

computer users. Admittedly, data security is one of
the major critiques against the services provided by
the cloud; the ability of the cloud service providers
to secure user’s data is of questionable value from
user’s perspective. Therefore, users see an
inevitable responsibility to protect their data before
storing it on the cloud. This goal can be achieved by
using cryptographic algorithms such that data can
be encrypted before being stored, on the cloud, and
decrypted when retrieved. The security level

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 54 Volume 13, 2014

provided by any cryptographic algorithm is
proportional to the amount of processing performed
by that algorithm. On the other hand, energy
efficiency and battery life of mobile and handheld
devices have a great deal of importance for both
users and hardware designers. This valuable
requirement could potentially be overwhelmed by
the high processing demand of cryptographic
algorithms. Consequently, a new algorithm design
and a careful hardware configuration should be
attained in order for users to satisfy the requirement
of high security and an extended battery lifetime of
their mobile devices. From software perspective;
cryptographic applications have a large amount of
data-level parallelism. From hardware viewpoint,
today’s mobile devices have been equipped with
Multicore processors that can execute multiple
software threads simultaneously. This paper makes
the case that a parallel cryptographic algorithm that
runs on a Multicore processor with a particular
power settings, such as clock frequency, would
provide the same security level, achieve a higher
performance and consume less energy as compared
to a sequential version of the same algorithm
running on a single core processor with the same or
even higher power settings. This paper takes the
RSA algorithm [2, 3, 4] as a case study and makes
the following twofold contributions. First, a parallel
version of the RSA algorithm has been
implemented using the OpenMP parallel
programming model [5]. Second, a comprehensive
design space exploration has been performed to
figure out the optimal Multicore processor
configuration that best fits the processing
requirements of cryptographic algorithms and
maintains the optimum trade-off between four
important figures of merit including performance,
power, energy and lifetime reliability of the
processor. Each processor configuration is a 3-tuple
including the number of hardware threads, clock
frequency and the process technology used to
implement the underlying transistors. In order to
obtain realistic processor configurations, the design
space has been limited to those designs that
resemble commercially available commodity
processors. The rest of this paper is organized as
follows: section 2 discusses some preliminaries,
section 3 briefly summarizes the related work,
section 4 describes our methodology, section 5
shows our results and analysis and section 6
summarizes and concludes this work.

2. Preliminaries
This section is an introductory framework that
explains the basic operation of the RSA algorithm
and the OpenMP programming model.

2.1 RSA Cryptography
The RSA algorithm follows the concept of public
key cryptography (PKC) [6, 7, 8]. The PKC is a
cryptographic paradigm in which two keys i.e. an
encryption key and a decryption key are used to
govern the encryption and decryption processes.
The encryption and decryption in PKC are very
compute-intensive and time-consuming processes
due to the large number of mathematical operations
involved. These mathematical operations include
modular exponentiation and reduction techniques
[9].The RSA include three main phases: Key
Generation in which public and private keys are
generated, Data Encryption which is used to hide a
plain text in a cipher text and Data Decryption
where plain text is retrieved from the cipher text.

2.1.1 Key Generation
The key generation phase is a very crucial part of
the RSA algorithm. It consists of the following
steps:

1. Pick two large random prime numbers p
and q whose bit size is at least equal to 512
bits.

2. Find the modulus (m) = p × q.
3. Find phi = (p-1) × (q-1).
4. Pick an integer value e that falls in the

range (1, phi) such that GCD (e, phi) =1
where GCD stands for the Greatest
Common Divisor. In RSA, e is known as
the public or encryption exponent.

5. Find an integer value d that falls in the
range (1, phi) such that e × d = 1 mod phi.
In RSA, d is referred to as the private or
decryption exponent.

According to the RSA operation, the public key
consists of m and e while the private key consists of
m and d.

2.1.2 Data Encryption
The encryption process works according to the
following equation:

 mMC e mod= (1)

Such that:

 - C is the cipher text

 - M is the plain text.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 55 Volume 13, 2014

Eq. (1) illustrates the basic operation of encryption
in which the plain text (M) is raised to the power e
and divided by the modulus m. The remainder of the
division operation is taken as the cipher text (C).
While a normal division operation can be used for
small values of p and q, a more complex operation
such as modular exponentiation and reduction [9]
should be used for large numbers. The use of
modular exponentiation makes Data Encryption a
very time-consuming part of the RSA.

2.1.3 Data Decryption
The decryption process works according to the
following equation:

 mCM d mod= (2)

Eq. (2) depicts the basic operation of decryption in
which the cipher text (C) is raised to the power d
and divided by the modulus m. The remainder of
division yields the plain text (M). The Data
Decryption phase with large values of p and q
requires the use of modular exponentiation and
reduction technique to perform the decryption
process which means that Data encryption is also a
time-consuming part of the RSA.

2.2 OpenMp
OpenMP is a portable Application Programming
Interface (API) that can be used to create shared-
memory parallel programs. It has recently gained a
widespread among computer programmers; it
allows programmers to write implicitly
multithreaded applications that can efficiently
utilize the ever-increasing abundance of processor
cores on a Multicore processor. In general,
Programs written using OpenMp depends on
Thread-Level Parallelism (TLP), in which several
execution threads are distributed among the
available cores, to achieve high performance as
compared to sequential programs which depend on
Instruction-Level Parallelism (ILP) only. OpenMP
consists of a group of compiler directives that tells
the complier that a particular region of a program
(typically the most time-consuming loops) should
be divided into a number of simultaneous threads.
The number of created threads in by default equal to
the number of cores, however, the user can set the
number of threads to any particular value via the
numerous interfaces provided by the OpenMP.
Moreover, OpenMP provides the user with the
ability to choose the thread’s scheduling policy that
will be used during program execution.

3. Related Work
This section summarizes previous research efforts
that directly relates to our work in both parallel
algorithm implementation and optimal hardware
design.

3.1 Processor Design
Optimal hardware configuration of both general and
special purpose architectures is an active area of
research. In [10], an exhaustive design space
exploration (DSE) has been performed to identify
the optimal parameters i.e. branch prediction,
instruction-window size and cache size of a general
purpose superscalar processor. Their work targets a
single-core processor design and has focused on
processor performance without taking into account
other parameters such as energy and reliability. On
the other hand, DSE has been widely used to figure
out the optimal design of embedded or special
purpose processors. In [11-19], DSE has been used
to study performance/energy tradeoffs in the design
of embedded/special purpose processors. However;
their work differs from ours in two main aspects.
First, their work targets single core processor design
only without considering Multicore designs.
Second, cache memory design was the only
parameter of interest without taking into account
other parameters such clock frequency and process
technology. In [20], the impact of TLP on the
performance of optimum single-core embedded
processor design has been investigated. However,
their work did not consider Multicore processors
and did not take into account other parameters such
as energy and reliability.

In [21, 22], the efficiency of the DSE process has
been addressed and some mechanisms were
proposed to improve its speed. In the context of
Multicore processors, [23, 24, 25, 26, 27] have used
DSE to study performance/energy tradeoffs of
Multicore special purpose processors. However; our
work differs from theirs in four main aspects. First,
their analysis was cache-based only without taking
into account other parameters such as clock
frequency and the number of hardware threads.
Second, they have focused on dynamic energy only
without considering leakage energy. Third, they
have overlooked the impact of technology scaling
on processor energy. Fourth, their analysis was
based on multiprogramming workloads while our
analysis is based on a multithreaded workload. In
[28], a regression-based analysis has been
performed to identify the most important factors

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 56 Volume 13, 2014

that affect the power consumption of Multicore and
multithreads processor chips.

3.2 Algorithm Design
With the advent of Multicore processors, parallel
algorithm implementation has become an appealing
programming paradigm due to its performance
advantages over sequential implementations.
However, only few research efforts have focused on
cryptographic algorithms. In [29], the
parallelization of the AES algorithm has been
presented and its performance has been evaluated.
However, their study was performance-centric
without taking into account the energy and
reliability implications of the algorithm on
Multicore processor design .On the other hand, [30]
has studied the performance advantages of parallel
RSA implementation. However, they did not take
into account other parameters such as power
consumption and processor reliability. Moreover,
they did not shed light on which hardware
configuration was used to run the algorithm. Hence,
their work did not focus on workload-architecture
interactions. Moreover, [31] has investigated an
FPGA-based implementation of the RSA. While
FPGA-based implementations can provide
comparable performance levels as Multicore
processors, its power consumption is very high that
it cannot be employed in battery-operated devices
such as mobile and handheld devices. In summary,
our work represents a comprehensive study in
which a novel parallel algorithm design has been
presented and its performance, energy and lifetime
reliability implications have been investigated based
on some figures of merit that captures the current
trends in processor design.

4. Methodology
The experimental work conducted towards this
research consists of three main steps including:
RSA parallelization and performance evaluation,
power consumption and energy dissipation
estimation and lifetime reliability analysis. Each
step will be thoroughly explained in the following
sub-sections.

4.1 Automatic parallelization of RSA
This step was mainly inspired by Amdahl’s law
which is commonly used to measure the overall
speedup that can be achieved by parallelizing a
particular portion of an algorithm [32]. Amdahl’s
law is given by equation 3.

nff

Speedup
/)1(

1
−+

= (3)

In Eq. 3, f is the time spent executing the serial
portion of the parallelized algorithm and n is the
number of processor cores. The first corollary of
Amdahl’s law states that: decreasing the serialized
portion of an algorithm by increasing the
parallelized portion is of greater importance than
adding more processor cores [33]. For example, if
30-percent of an algorithm can be parallelized on a
dual-core system, doubling the number of processor
cores reduces the execution time from 85% of the
serial time to 77.5%, whereas doubling the amount
of parallelized code reduces the execution time
from 85% to 70%. Consequently, implementing a
parallel version of RSA has been adopted as an
extremely important part of this work. Given a
number of messages to be encrypted
(NUM_MSGS), the RSA encryption algorithm is
straight forward and can be written as shown in
Fig.1. Where MSGS and EMSGS are the arrays in
which plain and cipher messages are stored
respectively. The RSA main loop does not have any
true data dependences. On the other hand, anti and
output dependences can be avoided by the
privatization of loop induction variables.

{ }
 End

m; mod) e ^(MSGS[i] EMSGS[i] do
NUM_MESGS to 0 i for

Begin
EMSGS; :Output

 MSGS;:Input
NUM_MSGS; :Input

(SeRSA) RSA Serial

←
←

:4.1.1 Algorithm

Fig.1: Serial RSA (SeRSA) pseudo-code.

The OpenMP parallelization technique was based
on the following two steps:
i. Creating a parallel region using the #pragma

directive. The appropriate clauses (i.e. shared
and private clauses) should also be set
accordingly.

ii. Using the #pragma omp for directive to
specify the loop whose iterations should be
executed in parallel.

The new automatically parallelized RSA algorithm
is given by pseudo-code depicted by Fig.2.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 57 Volume 13, 2014

{ }

 End

 m; mod) e ^(MSGS[i] =EMSGS[i] do
1-NUM_MSGS to 0 i for

 for omp pragma#

(i) private MSGS)(EMSGS, shared parallel omp pragma#

Begin
EMSGS; :Output

 MSGS;:Input
NUM_MSGS; :Input

(PaRSA) RSA Parallel

}
}

{

{

←

:4.1.2 Algorithm

Fig.2: Parallel RSA (PaRSA) pseudo-code.

The same parallelization procedure can be applied
on the decryption part of the RSA. For the rest of
this paper, the serial and parallel versions of the
RSA will be denoted as SeRSA and PaRSA
respectively. Both SeRSA and PaRSA have been
implemented using the C++ programming language
and compiled using the GCC compiler on Fedora 19
[34]. They have been run on four different Intel
Multicore processors [35]. Each processor
configuration is defined in terms of four different
parameters including: number of cores, number of
threads per core, clock frequency and on-chip cache
hierarchy. Processor configurations are summarized
in table 1. In case of PaRSA, OpenMP allows the
programmer to set the number of threads that the
complier can create. From performance perspective,
the number of created threads should be less than or
equal to the number of hardware threads per
processor chip. Table 2 illustrates the number of
threads supported by each processor. A PaRSA
with 1 thread is equivalent to SeRSA. The used
processors (Table 1) support CPU frequency
scaling. Frequency scaling can be done either
dynamically or manually. Dynamic frequency
scaling is done by the Operating System based on
workload demands while manual scaling can be
done by userspace applications based on
performance or power constraints. In this paper,
CPU frequency scaling has been done manually
using the CPUFreqUtils package provided by the
Linux operating system [36].For both SeRSA and
PaRSA, several working set sizes i.e. NUM_MSGS
have been tested. The working set include {100,
200, 300, 400 and 500} million messages. For each
possible working set size all possible combinations
of the 2-tuple (no. of threads, clock frequency) have

been experienced. In case of SeRSA, the no. of
threads was always set to 1. Therefore, each
experiment in this part represents one possible
combination of the 3-tuple (working set size, no. of
threads, clock frequency).

Table 1: Processor Configurations.

Processor
Cores

per
Processor

Threads
per

Core

Available
Frequencies in

GHz

Core2Duo 2 1 0.8,1.6,2.13,2.8

Core i3 2 2 1.6, 2.1, 2.7, 3.3

Core i5 4 1 1.2,1.5,1.8,2.1,2.4

Core i7 4 2 1.2,1.5,1.8,2.1,2.4

Cache Hierarchy

 Level-1 Level-2 Level-3

Core2Duo
IL1: 32KB

DL1:32 KB

6 MB

shared
N/A

Core i3
IL1: 32KB

DL1:32 KB

256 KB

Private

3 MB

Shared

Core i5
IL1: 32KB

DL1:32 KB

256 KB

Private

3 MB

Shared

Core i7
IL1: 32KB

DL1:32 KB

256 KB

Private

3 MB

Shared

Table 2: Possible number of Threads per Processor.

Processor Supported no. of Threads

Core 2 Duo 1,2

Core i3 1,2,4

Core i5 1,2,4

Core i7 1,2,4,8

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 58 Volume 13, 2014

4.2 Power Consumption Estimation.

Power consumption is an extremely important
parameter in the design space of modern processors.
Fig.3 illustrates our power analysis framework.
McPAT [37] has been used to obtain the power
consumption of the RSA on the processor
configurations shown in Table 1. McPAT is an
integrated power, area and timing modelling
framework that supports extensive design space
exploration for Multicore processors ranging from
90nm to 22 nm and beyond. Power readings include
both dynamic and leakage power. It models power,
area and timing for the device types forecast in the
ITRS roadmap [38].

 XML Interface

Architecture Specifications &
Optimization Target

Machine
Statistics

Performance Simulation
using Multi2simUser Inputs

McPAT

Chip Representation Optimizer

Results

Timing Area Power

Dynamic, Leakage and
Short circuit

 Fig.3: Power Analysis Framework

 McPAT has a flexible XML-based interface that
allows it to accept both user inputs and performance
simulator’s statistics. McPAT uses user inputs and
performance simulator’s statistics in order to report
power, area and timing of the modelled processor
architecture. All these inputs can be passed via the
XML interface. User inputs include architecture
parameters, circuit’s parameters, technology
parameters and optimization target. Simulation
statistics include hardware utilization, activity
factors and the usage of power management

techniques such as P- and C- states. On the other
hand, multi2sim [39] has been used to obtain the
necessary resource utilization information that
McPAT requires in order to estimate the total power
consumption of the processor. Multi2sim is a full-
system simulation environment that allows
hardware designers to simulate superscalar,
multithreaded and Multicore processor based on the
x86 instruction set architecture (ISA). The RSA has
been simulated on multi2sim using processor
models the closely resembles the configurations
shown in Table 1. Multi2sim has been chosen since
it supports the X86 ISA used by the processor
configuration in Table 1. Therefore, the same binary
can be used for both direct execution (section 4.1)
and performance simulation without any
modifications which allows hardware designer to
obtain identical results from the two evaluation
methods i.e. direct execution and performance
simulation. The power consumption of each
processor configuration (Table 1) has been
estimated at all possible clock frequencies and
process technologies.

4.3 Lifetime Reliability Analysis
Admittedly, integrating a large number of
transistors on a single chip and running them on a
very high clock rates have resulted into an
incredible power density levels. Increasing power
densities has a negative effect on the long-term life-
time reliability of the processor [40-42].
Therefore, designing efficient processor chips
should take into account lifetime reliability besides
other metrics such as performance and power
consumption. In this work, the RAMP model [40-
42] has been used to estimate the lifetime reliability
of processor chips based on the RSA workload.
RAMP is an analytical model that provides
reliability estimates for a workload running on a
processor chip implemented using a specific process
technology. In order to choose an appropriate
reliability metric, the proposed processor
architecture is assumed to work according to a
particular Service Level Agreement (SLA) [43].
With respect to an SLA, the processor alternates
between two states of service:

a. Service accomplishment in which the
service is delivered as specified.

b. Service interruption in which the delivered
service is different from the SLA.

Failures cause transitions between these two states
(from state 1 to 2) while restorations leads to
transition from state 2 to 1. This work takes into

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 59 Volume 13, 2014

account irreparable faults only; only failures are
taken into account. In other words, the used
reliability metric should take failures into account
while overlooking system restorations. Therefore,
system reliability becomes a measure of the
continuous service accomplishment (or
equivalently, of the time to failure) from a reference
initial instant. Thus, the mean time to failure
(MTTF) is an appropriate reliability measure.

RAMP estimates long-term processor MTTF of a
given workload based on four failure mechanisms
including electromigration (EM), stress migration
(SM), time-dependent dielectric breakdown
(TDDB) and thermal cycling (TC). It provides a
micro-architectural structure level implementation
(e.g. caches, ALUs, branch predictor, etc) of the
failure mechanisms for a particular technology
generation. The following paragraphs summarize
each of these failure mechanisms assuming that the
processor operates in the steady state at a fixed
operating point.

Electromigration (EM) is a well-understood
failure mechanism in the field of material science
and semiconductor technology. It appears in
processor interconnects and is caused by the mass
transport of the conductor metal atoms in those
interconnects [44, 45]. Two destructive scenarios
can be caused by EM. First, increased resistance
and open circuits appear at the sites of metal atoms
depletion. Second, extrusions can form at the sites
of metal atom pile up which leads to shorts between
adjacent metal lines [44, 45].

The EM-induced MTTF, MTTFEM, is given by the
following formula [39-41]:

 kT
E

n
EMa

eJ −=)(MTTFEM (4)
Such that J is the current density in the
interconnects of the processor,

EMaE is EM’s
activation energy, k is Boltzmann’s constant and T
is the processor temperature in Kelvin.

EMaE and n
are interconnect-dependent constants. For the
copper interconnects modelled in RAMP [40-42],
the values of 0.9 and 1.1 have been used
respectively.

Stress Migration (SM) is a failure mechanism in
which the metal atoms in the processor
interconnects migrate due to mechanical stress. SM
is mainly caused by thermo-mechanical stresses

which are caused by differing thermal expansion
rates of different materials in the device [44].

The SM-induced MTTF, MTTFSM, is given by the
following formula [40-42, 44]:

 kT
E

m
SM

SMa

eTTMTTF −−=)(0 (5)

Where T0 is the stress-free temperature in Kelvin, T
is the absolute processor temperature in Kelvin, m
and EaSM are material-dependent constants and have
been set to 2.5 and 0.9 for the copper interconnects
modelled in RAMP [40-42].

Time-Dependent Dielectric Breakdown (TDDB)
is another failure mechanism that can be
encountered in the semiconductor devices. It is also
known as gate oxide breakdown. The dielectric (or
the gate oxide) breaks down with time and fails
when a conductive path is formed in the dielectric
[40, 46]. The TDDB-induced MTTF modelled by
RAMP [40-42] is based on the experimental work
performed by Wu et al. at IBM [47] and is given by
the following formula:

 kt

zT
T
yx

bTa
TDDB e

V
MTTF

++

−=)1((6)

Such that T is the absolute processor temperature, V
is the supply voltage, a, b, x, y and z are fitting
parameters. Table 3 shows the fitting parameters
used by RAMP Based on the experimental data
published in [47].

Table 3: RAMP TDDB parameters [47]

Parameter Value

A 78

B -0.081

X 0.759 ev

Y -66.8 evk

z -8.37 x 10-4 ev/k

Thermal Cycling (TC) is a well-known failure
mechanism in the semiconductor industry. It is
mainly caused by thermal cycling in the processor.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 60 Volume 13, 2014

Thermal cycles can be classified into two main
types: large cycles which occur at a low frequency
(powering up and down) and small cycles which
happen at a much higher frequency due to changes
in application behaviour. RAMP [40-42] takes into
account large thermal cycles only due to the lack of
validated models that captures the impact of small
thermal cycles on device reliability [44]. The TC-
induced MTTF modelled in RAMP [40-42] is based
on the Coffin-Manson equation [44] and is given by
the following formula:

 q

ambientaverage
TC TT

MTTF)1(
−

= (7)

Where Tambient is the ambient temperature and
(Taverage - Tambient) is the average large thermal cycle
a processor chip encounters during workload
execution and q is the Coffin-Manson exponent
which is a material-dependent, empirically
determined constant. RAMP uses a q of 2.35 [40-
42].

As shown in the formulas given by equations 4-7,
the extent to which a particular workload can
influence the lifetime reliability of the processor
depends on the amount of heat dissipated during
program execution. In other words, since the
switching activity and the total power consumed by
the processor depends on the running workload, the
actual operating temperature and current densities in
the processor interconnects also depends on the
running workload [42]. Consequently, in order
estimate the impact of the RSA workload on the
MTTF of the processors shown in Table 1,
processor temperature under the RSA workload
should be determined. The flow chart shown in
Fig.4 summarizes our reliability analysis procedure.
As shown in Fig.4, clock frequency was the only
parameter of interest during our reliability analysis.
All frequencies supported by a particular processor
configuration have been tested and its
corresponding temperature and MTTF values have
been observed. The reliability analysis consists of
five main steps. First, the clock frequency of the
processor is changed using the CPUFreqUtils.
Second, the RSA workload is run using appropriate
input parameters that can aggressively stress the
processor chip. Third, the processor temperature is
observed using the psensor utility [48]. Psensor is a
graphical hardware temperature monitor for Linux.
It provides temperature measurements by accessing
the sensors installed on the processor chip. Fourth,

processor temperature, obtained by psensor, is used
as inputs for the RAMP model. Fifth, the MTTF
values from the RAMP model are used to judge the
RSA impact on the lifetime reliability of the
processor taking into account the four different
failure mechanisms modelled by RAMP [40-42].

Start

Change CPU
Frequency Using

CPUFreqUtils

Run RSA

Observe CPU
Temperature Using

psensor Utility

Send CPU
Temperature to

RAMP

Obtain MTTF
Estimates

All
Frequencies

Tested ?

No

End

Yes

Fig.4: Reliability Analysis Flow Chart

5. Results and Analysis
This section summarizes the results that have been
obtained based on the research methodology
outlined in the previous section. Each subsection
provides a comparison between the processor
configurations shown in Table 1 in terms of one
particular parameter or figure of merit. The optimal
processor configuration is determined based on its
performance, power consumption, energy
dissipation and lifetime reliability. In other words,
the processor that achieves the best tradeoffs
between the aforementioned parameters is said to be
the optimal processor configuration for the
cryptographic algorithms.

5.1 Performance Analysis
In this part, an extensive performance-centric
analysis has been performed in order to study the
impact of software parallelization on RSA’s
performance and identify the best processor
configuration to run such a parallel workload. The

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 61 Volume 13, 2014

best processor configuration is the one on which the
RSA achieves its highest performance as compared
to other processor configurations. Two main steps
have to be performed as a prerequisite to the
aforementioned goals:
a. Workload selection: the goal of this step is to

pick an appropriate working-set size for
performance evaluation.

b. Scheduling policy section: this step aims at
identifying the best threads scheduling policy
that minimizes contention between threads and
leads to the highest possible performance using
OpenMP.

Fig.5 depicts the impact of working-set size (i.e. the
number of RSA input messages) on the
performance of the parallelized RSA. It shows the
speedup that parallel RSA (PaRSA) can achieve
over serial RSA (SeRSA) at all possible working-
set sizes. PaRSA-n indicates a PaRSA running with
n threads. The values on the x-axis indicate the
working-set size while the y-axis shows the speedup
the PaRSA-n can achieve as compared to SeRSA. It
can be observed that PaRSA-n almost always
achieves the same speedup, as compared to SeRSA,
at all working-set sizes. In other words, it can be
concluded that the working-set size has a negligible
impact on PaRSA’s performance. Therefore, one
particular working-set size can be used for the sake
of performance evaluation. For the rest of this work,
a working-set size of 200 million messages will be
used. The other intermediate step was to evaluate
the impact of different scheduling techniques on the
performance of the PaRSA. OpenMP provides three
main scheduling schemes: static, dynamic and
guided [33]. Static scheduling partitions the loop
iterations into equal-sized chunks or as nearly equal
as possible in the case where the number of loop
iterations is not evenly divisible by the number of
threads multiplied by the chunk size. When chunk
size is not specified, the iterations are divided as
evenly as possible, with one chunk per thread [33].
Dynamic scheduling uses an internal work queue to
give a chunk-sized block of loop iterations to each
thread as it becomes available. When a thread is
finished with its current block, it retrieves the next
block of loop iterations from the top of the work
queue. By default, chunk size is set to 1. It has extra
overhead as compared to other scheduling schemes
[33]. Guided scheduling is similar in spirit to
dynamic scheduling, but the chunk size starts off
large and shrinks in an effort to reduce the amount
of time threads have to go to the work queue to get
more work. When guided scheduling is used, the

optional chunk parameter specifies the minimum
size chunk to use, which, by default is 1 [33].

Fig.5: Impact of working-set size on
performance.

 In this work, the three scheduling schemes have
been evaluated on PaRSA with eight threads
(PaRSA-8). PaRSA-8 has been run on a data-set
size of 200 million messages. Fig.6 shows the
execution time of PRSA-8 with different scheduling
techniques as the chunk size increases from 1 up to
100. As illustrated in Fig.6, PaRSA-8 with guided
scheduling and PaRSA-8 with static scheduling
have maintained an almost constant execution time
regardless of the chunk size. On the other hand, the
execution time of PARSA-8 with dynamic
scheduling was higher than that of other scheduling
techniques when the chunk size is less than 20; as
the chunk size decreases, the overhead associated
with retrieving work from the shared work queue
will increase which in turn can degrade the
performance of PARSA-8 with dynamic scheduling.
It can be observed from Fig.6 that the guided
scheduling policy always outperforms the other
scheduling policies due to its minimal thread
contention. Consequently, the guided scheduling
policy has been used throughout this paper. Having
obtained the optimal OpenMp settings, both SeRSA
and PaRSA have been directly executed on the
processor configurations shown in Table 1 and their
performance has been observed at different clock
frequencies and thread numbers. Fig.7 shows the
execution time of SeRSA and PaRSA on Intel
Core2Duo [35]. Intel Core2Duo supports two
hardware threads at a time; therefore, only PaRSA-2
has been evaluated on this processor. It supports
four different frequency levels that include 800,
1600, 2130 and 2800 MHz. Both SeRSA and
PaRSA have been executed at all frequency levels
and their execution time has been observed.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 62 Volume 13, 2014

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Chunk Size (Unit of Work)

T
im

e
(s

)

Dynamic
Guided
Static

Fig.6: the impact of OpenMP scheduling policy
on performance.

As depicted in Fig.7, increasing the clock frequency
can always reduce the execution time of SeRSA
while increasing the number of threads and/or clock
frequency can always reduce the execution time of
PaRSA-2; both SeRSA and PaRSA-2 have achieved
their optimal performance at 2800 MHz. PaRSA-2
achieves approximately 47% performance
improvement, as compared to SeRSA, at all clock
frequencies. On the other hand, doubling the clock
frequency (from 800 MHz to 1600 MHz) has
achieved a 50 % performance improvement for both
SeRSA and PaRSA-2. In other words, doubling the
clock frequency on Intel Core2Duo can yield more
performance improvement than doubling the
number of threads. However, doubling the number
of threads at low clock frequencies is more
beneficial from power consumption perspective as
will be shown in the next subsection. Fig.8
illustrates the performance results of SeRSA and
PaRSA on Intel Core i3 [35]. Intel Core i3 has two
cores with each core supporting two hardware
threads. In other words, it supports four concurrent
software threads. Consequently, both PaRSA-2 and
PaRSA-4 have been evaluated on this processor. It
can run at 1600, 2100, 2700 and 3300 MHz. Several
observations can be made based on Fig.8. First, the
execution time of both SeRSA and PaRSA is
inversely proportional to the clock rate of the
processor. Second, the execution time of PaRSA
decreases as the number of threads increases at all
clock rates.

800 1600 2130 2800
0

50

100

150

200

250

300

Freqeuncy (MHz)

Ex
eu

ct
io

n
Ti

m
e

(s
)

SeRSA
PaRSA-2

Fig.7: Performance of SeRSA and PaRSA-2 on
Intel Core2Duo.

Third, PaRSA-2 and PaRSA-4 achieve a 47 % and
65 % performance improvement, as compared to
SeRSA, respectively. Fourth, for SeRSA, PaRSA-2
and PaRSA-4, increasing the clock frequency from
1600 MHz to 3300 MHz has resulted in 52 %
approximately. In other word, as the number of
threads beyond 2 can lead to more performance
improvement that increasing the clock frequency of
the processor.

1600 2100 2700 3300
0

20

40

60

80

100

120

140

Freqeuncy (MHz)

Ex
eu

ct
io

n
Ti

m
e

(s
)

SeRSA
PaRSA-2
PaRSA-4

Fig.8: Performance of SeRSA and PaRSA on
Intel Core i3.

Fig.9 shows the performance result of SeRSA and
PaRSA on Intel Core i5 [35]. Intel Core i5 has four
cores with each core supporting a single thread
leading to a processor chip that can support four
simultaneous software threads; only PaRSA-2 and
PaRSA-4 have been studied on this processor. It
can run at 1200, 1500, 1800, 2100 and 2400 MHz.
The observations that can be drawn from Fig.9 are
almost identical to that of Fig.8. However, by
comparing the two processor at the 2100 clock rate

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 63 Volume 13, 2014

(i.e. the common clock rate), it can be observed that
Intel Core i5 slightly outperforms Intel Core i3
when running PaRSA-2 and PaRSA-4; this due to
the fact that Intel Core i5 has four different cores
with each core supporting a single running thread in
contrast to Intel Core i3 where each pair of threads
runs on the same core.

1200 1500 1800 2100 2400
0

20

40

60

80

100

120

140

160

180

Freqeuncy (MHz)

Ex
eu

ct
io

n
Ti

m
e

(s
)

SERSA
PaRSA-2
PaRSA-4

Fig.9: Performance of SeRSA and PaRSA on
Intel Core i5.

In other words, when PaRSA runs on Intel Core i5,
the running threads will encounter minimal inter-
thread contention which results in a lower execution
time as compared to Intel Core i3. Fig.10
summarizes the results of running SeRSA and
PaRSA on Intel Core i7 [35]. Intel Core i7 consists
of four cores with each core supporting two
hardware threads which results in a processor chip
that can support up to 8 simultaneous software
threads. Consequently, PaRSA-8 has been evaluated
on this processor in addition to PaRSA-2 and
PaRSA-4. Similar to Intel Core i5, Intel Core i7 can
run at 1200, 1500, 1800, 2100 and 2400 MHz. The
results shown in Fig.10 confirm the results that have
been depicted in Fig.8 and Fig.9 in all aspects. The
most important observation that can be made is that
increasing the number of threads can be more
advantageous that increasing the clock frequency
from performance perspective. Whereas increasing
the clock frequency from 1200 to 2400 MHz leads
to almost 50% performance improvement for
SeRSA, PaRSA-2, PaRSA-4 and PaRSA-8,
increasing the number of threads from 1 to 8 yields
a 79% performance improvement at all clock rates.

1200 1500 1800 2100 2400
0

20

40

60

80

100

120

140

160

180

Freqeuncy (MHz)

Ex
eu

ct
io

n
Ti

m
e

(s
)

SeRSA
PaRSA-2
PaRSA-4
PaRSA-8

Fig.10: Performance of SeRSA and PaRSA on
Intel Core i7.
In summary, the performance of RSA can be
improved by either increasing the clock frequency
for the same number of threads or increasing the
number of threads for the same clock rate.
However, the results shown in this section
illustrates that increasing the number of threads can
achieve more performance improvement than
increasing the clock rate. In addition, our results
indicate that, from performance perspective, the
best processor configuration for cryptographic
algorithms is a Multicore processor with a large
number of hardware threads and a high clock
frequency. However, this observation should be
further investigated from power consumption and
reliability perspectives as will be shown in the next
subsections.

5.2 Power Consumption Analysis
This section shows the power consumption of
PaRSA-n on the processor configurations shown in
Table 1. For each configuration, n was set to the
number of hardware threads supported by that
processor. Both dynamic and leakage powers have
been obtained for each processor configuration. The
leakage power consists of gate leakage and sub-
threshold leakage [37].The ultimate goal of this
section is to determine the most power-efficient
Multicore processor configuration for the RSA. Our
power analysis was based on processor’s clock
frequency and its underlying process technology.
Table 4 summarizes the power consumption of
PaRSA-2 on Intel Core2Duo at all clock
frequencies and process technologies. PD is the
dynamic power while PL is the leakage power which
consists of gate leakage (PLG) and sub-threshold
leakage (PLST). PLST_PG is the sub-threshold leakage
when power gating is employed. It also shows the

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 64 Volume 13, 2014

processor’s chip area at each process technology.
Several observations can be made based on the
results shown in Table 4. First, as the process
technology scales down, the total processor area
decreases by around 50%. This can be explained by
Dennard scaling [49]. According to Dennard
scaling, transistor’s dimensions decreases by around
30% as process technology scales down. Therefore,
the total area occupied by a single transistor and in
turn the processor chip decreases by 50% with
respect to the previous process technology. Second,
increasing the clock frequency leads to an equal-
size increase in the dynamic power consumption of
the processor under all process technologies. This
can be explained by the following equation which
shows how the power consumption of a CMOS can
be calculated [50]:

 2VCfPD α= (8)

Where PD is the dynamic power consumption, ⍺ is
the activity factor, f is the processor’s clock
frequency, C is the load capacitance and V is the
supply voltage. Eq. 8 indicates a direct
proportionality between the clock frequency and the
dynamic power consumption of the transistor and,
in turn, the whole processor chip. Third, the total
dynamic power of a processor decreases as the
technology scales down. This can be explained by
the scaling theory stated in [49]. According to [49],
the load capacitance and the supply voltage
decrease as the process technology scales leading to
a power saving that approaches 50% as compared to
the previous process technology. Fourth, the
leakage power constitutes a significant portion of
the total power consumption at lower process
technologies especially when the processor runs at
low clock rates. For example, when the Intel
Core2Duo is implemented using the 22nm process
technology and runs at 800 MHz, the leakage power
constitutes approximately 74% of the total power
consumption of the processor. This fact
necessitates the use of power gating [37] in order to
minimize the sub-threshold leakage which forms the
majority of the leakage power of the processor as
the technology scales down. In the previous
example, the use of power gating reduces the
leakage power by 47% and the total power by
35%.Based on Table 4, it can be observed that
PaRSA-2 achieved its lowest power consumption
when Intel Core2Duo is implemented using the 22
nm process technology and runs at 800 MHz. In
other words, the most power-efficient dual-core

processor for PaRSA-2 is a processor implemented
at low process technology and runs at a low clock
frequency. By considering the Intel Core2Duo
(90nm, 800 MHz) as a reference case, the power-
efficient configuration can achieve 75% power
saving approximately. On the other hand, the
power-efficient configuration can achieve a 91%
power saving as compared to the Intel Core2Duo
(90 nm, 2800 MHz).
On the other hand, Table 5 depicts the power
consumption of PaRSA-4 on Intel Core i3
processor. It also shows the total processor area at
each process generation. The observations that can
be made from Table 5 are fourfold. First, the
processor becomes more area-efficient as the
process technology scales down. This can be
explained by the scaling theory provided by [49].
Second, there is a significant increase in the total
dynamic power as the clock frequency increases.
The aforementioned observation can be explained
by Eq. 8. Third, the dynamic power of the processor
decreases as the process technology shrinks due to
the same reasons provided for the Intel Core2Duo
processor [49].Fourth, leakage power becomes the
major source of power consumption as we move
towards lower feature sizes. However, its effect can
be minimized by using power gating techniques
[37]. In summary, the most power-efficient Intel
Core i3 configuration for PaRSA-4 is the
configuration that is implemented using the 22 nm
process technology, running at 1600 MHz and is
using the power gating techniques to minimize
leakage power consumption. Taking the Intel Core
i3 (90 nm, 1600 MHz) as the base case, the power-
efficient configuration i.e. Intel core i3 (22 nm,
1600 MHz) can achieve 80% power savings. On the
other hand, the power-efficient configuration can
achieve around 92.7% saving as compared to Intel
core i3 (90 nm, 3300 MHz). Similarly, Table 6
summarizes the power consumption of PaRSA-4 on
Intel core i5 processor. It also shows the total
processor area under all process technologies.
Several observations can be made based on the
results shown in Table 6. First, Intel Core i5
becomes more area-efficient as the feature size
thinks. This point can be explained by the scaling
theory provided by [49]. Second, the dynamic
power consumption of the processor is directly
proportional to the clock frequency of the processor
under all process technologies. This point can be
directly noticed from Eq. 8. Third, the processor
consumed less dynamic power as its feature size
scales down. This point agrees with the scaling
theory in [49]. Fourth, when the processor is

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 65 Volume 13, 2014

implemented at small feature sizes, leakage power
becomes the major source of power consumption
which necessitates the use of leakage-aware design
methodologies such power gating [37].

Table 4: Power Consumption of PaRSA-2 on Intel Core2Duo.

Process Technology: 90 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

800 338.68 27.6 11.78 0.86 10.91 5.62
1600 338.68 54.59 11.78 0.86 10.91 5.62
2130 338.68 72.47 11.78 0.86 10.91 5.62
2800 338.68 95.07 11.78 0.86 10.91 5.62

Process Technology: 65 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

800 186.87 15.63 14.66 1.34 13.32 6.89
1600 186.87 30.75 14.66 1.34 13.32 6.89
2130 186.87 40.76 14.66 1.34 13.32 6.89
2800 186.87 53.42 14.66 1.34 13.32 6.89

Process Technology: 45 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

800 90.96 8.23 12.24 0.67 11.57 6.03
1600 90.96 16.04 12.24 0.67 11.57 6.03
2130 90.96 20.21 12.24 0.67 11.57 6.03
2800 90.96 27.75 12.24 0.67 11.57 6.03

Process Technology: 32 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

800 59.36 4.65 15.8 0.78 15.02 7.81
1600 59.36 8.97 15.8 0.78 15.02 7.81
2130 59.36 11.84 15.8 0.78 15.02 7.81
2800 59.36 15.46 15.8 0.78 15.02 7.81

Process Technology: 22 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

800 29.45 2.56 7.28 0.01 7.27 3.82
1600 29.45 4.84 7.28 0.01 7.27 3.82
2130 29.45 6.36 7.28 0.01 7.27 3.82
2800 29.45 8.27 7.28 0.01 7.27 3.82

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 66 Volume 13, 2014

Table 5: Power Consumption of PaRSA-4 on Intel Core i3.

Process Technology: 90 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1600 302.22 48.6 10.99 0.9 10.09 5.01
2100 302.22 63.73 10.99 0.9 10.09 5.01
2700 302.22 81.76 10.99 0.9 10.09 5.01
3300 302.22 99.79 10.99 0.9 10.09 5.01

Process Technology: 65 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1600 163.03 26.67 14.84 1.4 13.44 6.71
2100 163.03 34.85 14.84 1.4 13.44 6.71
2700 163.03 44.66 14.84 1.4 13.44 6.71
3300 163.03 54.47 14.84 1.4 13.44 6.71

Process Technology: 45 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1600 81.24 14.29 12.38 0.7 11.68 5.86
2100 81.24 18.63 12.38 0.7 11.68 5.86
2700 81.24 23.83 12.38 0.7 11.68 5.86
3300 81.24 29.03 12.38 0.7 11.68 5.86

Process Technology: 32 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1600 44.49 7.89 15.5 0.81 14.69 7.41
2100 44.49 10.25 15.5 0.81 14.69 7.41
2700 44.49 13.08 15.5 0.81 14.69 7.41
3300 44.49 15.92 15.5 0.81 14.69 7.41

Process Technology: 22 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1600 23.11 4.23 7.08 0.01 7.07 3.59
2100 23.11 5.47 7.08 0.01 7.07 3.59
2700 23.11 6.96 7.08 0.01 7.07 3.59
3300 23.11 8.44 7.08 0.01 7.07 3.59

Based on Table 6, it can be concluded that the most
power-efficient Intel Core i5 configuration for
PaRSA-4 is the configuration that is implemented at
22 nm feature size and runs at 1200 MHz i.e. Intel
Core i5 (22 nm, 1200 MHz).Moreover, power

gating techniques should be used to minimize
leakage power contributions. In other words, the
most power-efficient quad-core processor for the
RSA should be implemented using small feature
size and run at low clock frequency.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 67 Volume 13, 2014

Table 6: Power consumption of PaRSA-4 on Intel Core i5.

Process Technology: 90 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1200 460.754 35.57 18.3 1.69 16.61 8.08
1500 460.754 44.31 18.3 1.69 16.61 8.08
1800 460.754 53.05 18.3 1.69 16.61 8.08
2100 460.754 61.79 18.3 1.69 16.61 8.08
2400 460.754 70.53 18.3 1.69 16.61 8.08

Process Technology: 65 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1200 253.17 20.04 26.1 2.59 23.51 11.51
1500 253.17 24.93 26.1 2.59 23.51 11.51
1800 253.17 29.81 26.1 2.59 23.51 11.51
2100 253.17 34.7 26.1 2.59 23.51 11.51
2400 253.17 39.58 26.1 2.59 23.51 11.51

Process Technology: 45 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

1200 126.143 10.68 21.57 1.3 20.27 9.96
1500 126.143 13.25 21.57 1.3 20.27 9.96
1800 126.143 15.81 21.57 1.3 20.27 9.96
2100 126.143 18.38 21.57 1.3 20.27 9.96
2400 126.143 20.94 21.57 1.3 20.27 9.96

Process Technology: 32 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1200 70.38 5.87 26.77 1.48 25.29 12.5
1500 70.38 7.26 26.77 1.48 25.29 12.5
1800 70.38 8.64 26.77 1.48 25.29 12.5
2100 70.38 10.03 26.77 1.48 25.29 12.5
2400 70.38 11.41 26.77 1.48 25.29 12.5

Process Technology: 22 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

1200 37.14 3.24 11.9 0.02 11.88 5.93
1500 37.14 3.98 11.9 0.02 11.88 5.93
1800 37.14 4.27 11.9 0.02 11.88 5.93
2100 37.14 5.46 11.9 0.02 11.88 5.93
2400 37.14 6.2 11.9 0.02 11.88 5.93

It should also be equipped with leakage-mitigation
techniques as the processor becomes more leakage-
consuming at low process technologies. By taking
the Intel Core i5 (90 nm, 1200 MHz) as a base case,

the power-efficient configuration can achieve
around 82.6 % power saving. On the other hand,

considering the Intel Core i5 (90 nm, 2400 MHz) as
a reference case, the power-efficient configuration
can achieve approximately 89.6% power saving. On

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 68 Volume 13, 2014

the other hand, Table 7 illustrates the power
consumption of PaRSA-8 on Intel Core i7. It also
gives the total processor area under all feature sizes.
By analyzing the power consumption values

provided in Table 7, it becomes apparent that the
same observations that have been made based on
Table 4, 5 and 6 applies also to Intel Core i7.

Table 7: Power consumption of PaRSA-8 on Intel Core i7.

Process Technology: 90 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1200 506.012 38.15 19.03 1.78 17.25 8.38
1500 506.012 47.53 19.03 1.78 17.25 8.38
1800 506.012 56.91 19.03 1.78 17.25 8.38
2100 506.012 66.3 19.03 1.78 17.25 8.38
2400 506.012 75.68 19.03 1.78 17.25 8.38

Process Technology: 65 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

1200 278.038 21.16 27.31 2.74 24.57 12.01
1500 278.038 26.32 27.31 2.74 24.57 12.01
1800 278.038 31.48 27.31 2.74 24.57 12.01
2100 278.038 36.65 27.31 2.74 24.57 12.01
2400 278.038 41.81 27.31 2.74 24.57 12.01

Process Technology: 45 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1200 138.492 11.24 22.61 1.38 21.23 10.42
1500 138.492 13.49 22.61 1.38 21.23 10.42
1800 138.492 16.65 22.61 1.38 21.23 10.42
2100 138.492 19.35 22.61 1.38 21.23 10.42
2400 138.492 22.65 22.61 1.38 21.23 10.42

Process Technology: 32 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST_PG

1200 76.93 6.17 28.11 1.59 26.54 13.1
1500 76.93 7.63 28.11 1.59 26.54 13.1
1800 76.93 9.09 28.11 1.59 26.54 13.1
2100 76.93 10.55 28.11 1.59 26.54 13.1
2400 76.93 12.01 28.11 1.59 26.54 13.1

Process Technology: 22 nm

Frequency (MHz) Area (mm2) PD(W) PL (W)
Total PLG PLST PLST PG

1200 40.48 3.4 12.51 0.02 12.49 6.22
1500 40.48 4.18 12.51 0.02 12.49 6.22
1800 40.48 4.96 12.51 0.02 12.49 6.22
2100 40.48 5.75 12.51 0.02 12.49 6.22
2400 40.48 6.63 12.51 0.02 12.49 6.22

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 69 Volume 13, 2014

It can be observed that PaRSA-8 consumes its
lowest power on Intel Core i7 (22 nm, 1200 MHz)
with power gating capability. In other words, the
most power-efficient processor for PaRSA-8 is an
octa-core processor implemented using small
feature size and is operated at low clock rate. By
taking Intel Core i7 (90 nm, 1200 MHz) as a

reference case, Intel Core i7 (22 nm, 1200 MHz)
achieves around 83.1% power saving. On the other
hand, by taking Intel Core i7 (90 nm, 2400 MHz) as
our reference case, the power-efficient
configuration can achieve around 89.8% power
saving.

5.3 Energy Dissipation Analysis
This section shows the energy that PaRSA-n
consumes on the processor configurations shown in
Table 1. For each configuration, n is set to the
number of hardware threads supported by that
configuration; this is the situation where PaRSA-n
achieves its optimal performance. The total energy
that PaRSA-n dissipates on a particular processor
depends on its execution time and the total power
consumed by the processor. In other words:

 TimeExecutionPowerEnergy ∗= (9)

Fig.11 depicts the total energy consumed by
PaRSA-2 on Intel Core2Duo processor. It shows the
total energy under all possible clock frequencies
and feature sizes. The total energy is the sum of
dynamic and leakage energies. In Fig.11, the x-axis
of each subplot indicates the process technology
while the y-axis shows the total energy. Each
subplot corresponds to a particular clock frequency.
It can be observed that, at all clock frequencies,
PaRSA-2 has consumed its lowest energy when the
processor was implemented using the 22 nm
process technology. In addition, the most energy-
efficient configuration is the Intel Core2Duo (22nm,
2800 MHz). Although the Intel Core2Duo (22 nm,
800MHz) was the Most power-efficient
configuration (section 5.2), it consumes more
energy that Intel Core2Duo (22 nm, 2800 MHz).
This is due to the fact that processor energy depends
not only on its power consumption but also on its
execution time. The execution time of PaRSA-2 on
Intel Core2Duo (22nm, 2800MHz) is less than its
execution time on Intel Core2Duo (22nm,
800MHz); the magnitude of execution time
reduction is higher than power consumption
increases as PaRSA-2 moves from Intel Core2Duo
(22 nm, 800MHz) to Intel Core2Duo (22 nm, 2800
MHz). Whereas Intel Core2Duo (22 nm, 2800
MHz) has a 71.70% reduction in execution time as
compared to Intel Core2Duo (22 nm, 800 MHz), it
has a 58.03% increases in its total power
consumption. Therefore, its execution time
reduction offsets its power consumption increase

which in turn leads to less energy dissipation as
compared to Intel Core2Duo (22 nm, 800 MHz).

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

800 MHz

Dynamic
Leakage

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1600 MHz

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

2130 MHz

90 65 45 32 22
0

2000

4000

6000

8000

Feature Size (nm)

To
ta

l E
ne

rg
y

(J
)

2800 MHz

Fig.11: Energy dissipation of PaRSA-2 on Intel
Core2Duo.

On the other hand, Fig.12 illustrates the energy
dissipation of PaRSA-4 on Intel Core i3 processor.
it shows the total energy dissipated at all possible
clock rates and process technologies. Based on
Fig.12, it can be observed that the most energy-
efficient Intel core i3 configuration for PaRSA-4 is
the Intel Core i3 (22 nm, 3300 MHz). compared
with the results shown in Table 5, the most energy-
efficient configuration for PaRSA-4 is not
necessarily equivalent to the most power efficient
configuration since the total processor energy is a

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 70 Volume 13, 2014

function both power consumption and execution time.

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1600 MHz

Dynamic
Leakage

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

2100 MHz

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

2700 MHz

90 65 45 32 22
0

2000

4000

6000

8000

Feature Size (nm)

To
ta

l E
ne

rg
y

(J
)

3300 MHz

Fig.12: Energy Dissipation of PaRSA-4 on Intel
Core i3.

Intel Core i3 (22 nm, 3300) has a 37.2% increase in
its power consumption as compared to the Intel
Core i3 (22 nm, 1600 MHz) i.e. the most power-
efficient configuration. Moreover, it has achieved a
51.3% reduction in the execution time of PaRSA-4
as compared to the Intel Core i3 (22 nm, 1600
MHz). Therefore, the percent reduction in execution
time outweighs the percent increase in the total
power consumption which has led to an overall
reduction in the total energy dissipation of the Intel
Core i3 (22 nm, 3300 MHz) as it executes PaRSA-
4. Fig.13 shows the total energy dissipation of
PaRSA-4 on Intel Core i5 processor. The energy
values are shown for each possible pair of process
technology and clock rate supported by this
processor. The results given by Fig.13 indicate that
the most energy-efficient Intel Core i5 configuration
for PaRSA-4 is that implemented at 22 nm and run
at 2400 MHz i.e. Intel Core i5 (22 nm, 2400
MHz).Similar to the previous processor
configurations, the energy-efficient configuration of
Intel Core i5 is different from the power-efficient
configuration which was found to be Intel Core i5

(22 nm, 1200 MHz). Compared to the Intel Core i5
(22 nm, 1200 MHz), Intel Core i5 (22 nm, 2400
MHz) has a 19.6% increase in power consumption
and 50.8% reduction in execution time.

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1200 MHz

Dynamic
Leakage

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1500 MHz

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1800 MHz

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

2100 MHz

90 65 45 32 22
0

2000

4000

6000
8000

Feature Size (nm)

To
ta

l E
ne

rg
y

(J
)

2400 MHz

Fig.13: Energy Dissipation of PaRSA-5 on Intel
Core i5.

Therefore, an overall energy saving has been
achieved. So far, there are two energy-efficient
processor configurations for PaRSA-4: Intel Core i3
(22nm, 3300 MHz) and Intel Core i5 (22 nm, 2400
MHz). our results indicate that PaRSA-4 has a
593.091 Joules of energy dissipation and a 31.11
seconds of execution time on Intel Core i5 (22 nm,
2400 MHz). on the other hand, it has a 363.478
Joules of energy and a 23.42 seconds of execution
time on Intel Core i3 (22 nm, 3300 MHz). In other
words, Intel Core i3(22 nm , 3300 MHz) has
achieved a 35.5% reduction in energy and a 24.7%
reduction in execution time as compared to the Intel
Core i5 (22 nm, 2400 MHz). Although the two
processors support the same number of hardware
thread, Intel Core i3 has outperformed Intel Core i5

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 71 Volume 13, 2014

due to its high clock frequency; it has a lower
execution time and lower energy dissipation. In
summary, it can be concluded that the best
Multicore processor configuration, in terms of
performance and energy, for PaRSA-4 is a
processor that supports four simultaneous hardware
threads and runs at a high clock rate. However, this
observation should be further investigated based on
the lifetime reliability of the processor as will be
shown in the next subsection.

Fig.14 illustrates the energy dissipation of PaRSA-8
on Intel Core i7. The total energy dissipation has
been shown for all possible combinations of process
technology and clock rate.

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1200 MHz

Dynamic
Leakage

90 65 45 32 22
0

2000

4000

6000
8000

To
ta

l E
ne

rg
y

(J
)

1500 MHz

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

1800 MHz

90 65 45 32 22
0

2000

4000

6000

8000

To
ta

l E
ne

rg
y

(J
)

2100 MHz

90 65 45 32 22
0

2000

4000

6000

8000

Feature Size (nm)

To
ta

l E
ne

rg
y

(J
)

2400 MHz

Fig.14: Energy Dissipation of PaRSA-8 on Intel
Core i7.

Fig.14 implies the fact that the most energy-
efficient process technology and clock rate, of Intel
core i7, are 22 nm and 2400 MHz respectively. This
observation confirms the aforementioned fact that
the power-efficient configuration and the energy-
efficient configuration are not necessarily
equivalent. Whereas the power-efficient
configuration for PaRSA-8 was the Intel Core i7 (22

nm, 1200 MHz), the energy-efficient configuration
is the Intel Core i7 (22 nm, 2400 MHz). The
energy-efficient configuration has a 19.7% increase
in power consumption and 49.9% reduction in
execution time as compared to the power-efficient
configuration. Thus, an overall energy saving has
been achieved since the amount of execution time
reduction is greater than the amount of power
increase. Therefore, it can be observed that the best
Multicore processor configuration for PaRSA-8
from energy perspective is a processor that supports
8 hardware threads and runs at a high clock rate.
Based on the results shown in this section, the most
energy-efficient configurations for PaRSA-2,
PaRSA-4 and PaRSA-8 are Intel Core2Duo (22
nm, 2800 MHz), Intel Core i3 (22 nm, 3300
MHz) and Intel Core i7 (22 nm, 2400 MHz)
respectively.Table 8 summarizes the execution
time and the total energy of the optimal
configurations for PaRSA-n where n is the number
of hardware threads supported by the associated
processor. The term optimal refers to the processor
configuration that has achieved the lowest execution
time and energy dissipation among all
configurations that support the same number of
hardware threads.

Table 8: PaRSA-n Optimal Configuration
Parameters.

Algorithm Configuration Energy
(Joules)

Time
(Seconds)

PaRSA-2

Intel
Core2Duo (22

nm, 2800
MHz)

700.994

45.08

PaRSA-4
Intel Core i3
(22 nm, 3300

MHz)

363.4784

23.42

PaRSA-8
Intel Core i7
(22 nm, 2400

MHz)

341.5776

17.94

The observation that can be made based on Table 8
is that PaRSA-n can achieve a substantial
performance improvement and energy savings by
increasing the number of hardware threads and
using a processor configuration whose number of
hardware threads is at least equal to n. PaRSA-8 has
achieved a 60.2 % performance improvement as
compared to PaRSA-2 and a 23.4 % performance

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 72 Volume 13, 2014

improvement as compared to PaRSA-4. On the
other hand, it has achieved a 51.3 energy saving as
compared to PaRSA-2 and a 6.03 % energy saving
as compared to PaRSA-4. Therefore, from
performance and energy perspectives, PaRSA-8 is
the best implementation of the RSA algorithm and
Intel Core i7 (22 nm, 2400 MHz) is the optimal
processor configuration for this algorithm.
However, this result should be further investigated
in terms of lifetime reliability as will be shown in
the next subsection.

5.4 Lifetime Reliability Analysis
This section shows the lifetime reliability of the
different processor configurations under the
PaRSA-n workload. In section 5.3, it has been
shown that all the energy-efficient configurations
were obtained at the same process technology.
Consequently, only clock rate has been considered
for the sake of reliability analysis. As shown in
section 4.3, the reliability analysis framework relies
mainly on processor temperature in order to
quantify its lifetime reliability [40-42]. Hence, it is
necessary to obtain the temperature of the processor
at different clock rates. In order to achieve this goal,
the psensor [48] utility has been used to read the
temperature of the processor while a particular
PaRSA-n workload is running. In order to estimate
the lifetime reliability at clock rates other than those
supported by the real hardware, an empirical model
has been developed. This model captures the
relationship between processor’s temperature and
its clock rate and can be used to predict processor’s
temperature at each possible clock rate. Fig.15
illustrates the relationship between processor
temperature and its clock rate. The temperatures
obtained by psensor were first plotted and a curve-
fitting operation has been performed to obtain a
mathematical formula that expresses processor
temperature as a function of its clock rate. It can be
observed that there is a quadratic relationship
between processor temperature and its clock rate.
The temperature values obtained by the psensor
utility or the developed model have then be input to
the RAMP model [40-42] in order to get an estimate
of the processor’s lifetime reliability as it runs a
particular PaRSA-n workload. Fig.16 depicts the
mean time to failure (MTTF) as a function of clock
frequency. It shows the MTTF based on each of the
physical failure mechanisms described in section
4.3. The x-axis indicates the clock rate, while the y-
axis shows the MTTF as a function of the clock

rate. Each subplot is labeled with the corresponding
failure mechanism.

1 1.5 2 2.5
316

318

320

322

324

326

328

330

332

334

Frequency(GHz)
T

em
pe

ra
tu

re
 (

K
el

vi
n)

T = 2.1*f2 - 0.23*f + 3.2e+002

Fig.15: The Relationship between processor
temperature and its clock rate.

0.5 1 1.5 2 2.5 3 3.5
0

2

4

6
x 10

13

M
T

T
F

EM

0.5 1 1.5 2 2.5 3 3.5
0

2

4

6
x 10

8

M
T

T
F

SM

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
x 10

-6

M
T

T
F

TC

0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2
x 10

9

Frequency (GHz)

M
T

T
F

TDDB

Fig.16: Processor's MTTF as a function of
clock rate.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 73 Volume 13, 2014

Fig.16 illustrates the fact that the MTTF of a
processor is a decreasing function of clock rate. In
other words, a processor running at a low clock rate
would sustain a longer period of time before
encountering temperature-induced failures as
compared to a processor that runs on a higher clock
rate. Therefore, it is important to re-evaluate the
optimal configurations specified in section 5.3
based on the lifetime reliability of the processor.
Table 9 shows a comparison between the power-
efficient and the energy-efficient configuration for
each PaRSA-n. It shows the percent increase in
MTTF that the power- efficient configuration can
achieve as compared to the energy-efficient
configuration for each PaRSA-n under all possible
physical failure mechanisms. The comparison
results have been reported in terms of the percent
increase in MTTF values since processor reliability
is directly proportional to its MTTF.

Table 9: MTTF comparison.

Algorithm
MTTF

(EM)

MTTF

(SM)

MTTF

(TDDB)

MTTF

(TC)

PaRSA-2 368.5% 251.2% 59.26% 333.3%

PaRSA-4 458.82% 280.25% 72.73% 100.1

PaRSA-8 146.58% 112.43% 30.40% 150%

As shown in sections 5.2 and 5.3, power-efficient
configurations have lower clock rates than the
energy-efficient ones. Therefore, they exhibit low
heat dissipation and spans a longer lifetime as
compared to energy-efficient processors that run at
higher clock rates. This fact can be directly
observed from Table 9 which shows that moving
from energy-efficient configuration (i.e. higher
clock rate) to power-efficient configuration (i.e.
lower clock rate) results into a significant increase
in processor reliability under various physical
failure mechanisms. Taking lifetime reliability into
consideration, the optimal configurations for
PaRSA-2, PaRSA-4 and PaRSA-n will be Intel
Core2Duo (22 nm, 800 MHz), Intel Core i3 (22 nm,
1600 MHz) and Intel Core i7 (22 nm, 2400 MHz)
respectively. Based on the results shown in this
section, it can be observed that the optimal
processor configuration for RSA is a Multicore
processor with a large number of hardware threads,
low clock rate and a small feature size.

6. Conclusion
In this paper, an extensive design space exploration
(DSE) has been performed in order to figure out the
optimal Multicore processor configuration for
cryptographic algorithms. All experiments were
based on a parallel version of the RSA algorithm
tuned for optimal performance settings. Our results
indicate that a careful balance between processor
specifications i.e. Clock rate, number of hardware
threads and process technology should be achieved
in order to obtain the optimal processor
configuration that maintains a reasonable tradeoff
between performance, power consumption, energy
dissipation and lifetime reliability of the processor.
However, the appropriate setting of processor
specifications depends on the design constraints and
system requirements.

References:

[1] www.us-cert.gov.

[2] J. Pieprzyk and David Pointcheval, Parallel

Authentication and Public key encryption.
Information Security and Privacy, Lecture
notes in computer science, Vol. 2727,
2003,pp. 387-401.

[3] R. L. Rivest, A. Shamir and L. Adleman, A
method for obtaining digital signatures and
public-key cryptosystems, Communications of
the ACM, Vol. 21, Issue 2, 1978, pp. 120-126.

[4] P Barrett, Implementating the Rivest, Shamir

and Aldham Public-key Encryption Algorithm
on Standard Digital Signal Processor,
Proceedings of CRYPTO’86, Lecture Notes in
Computer Science, 1986, pp. 311–323.

[5] B. Chapman, G. Jost, and R. V. D. Pas,

Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and
Engineering Computation), The MIT Press,
2007.

[6] A. J. Menezes, S. A. Vanstone and P. C. V.

Oorschot, Handbook of Applied Cryptography,
CRC Press, Inc., Boca Raton, FL, USA, 1986.

[7] C. Fu and Z.-L Zhu, An Efficient

Implementation of rsa Digital Signature

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 74 Volume 13, 2014

http://link.springer.com/book/10.1007/3-540-45067-X�

Algorith,. In Proc. of the 4th International
Conference on Wireless Communications,
Networking and Mobile Com-puting, 2008, pp.
1–4.

[8] W. Diffie and M. Hellman, New Directions in

Cryptography, IEEE Transactions on
Information Theory, Vol. 22, No. 6, 1976, pp.
644–654.

[9] P. Hamalainen, N. Liu, M. Hannikainen and T.

D. Hamalainen, Acceleration of Modular
Exponentiation on System-on-a-Programmable-
Chip, In. Proc. of the International Symposium
of the system-on-Chip, 2005, pp. 14-17.

[10] K. Skadron, P. S. Ahuja, M. Martonosi and D.

W. Clark, Branch Prediction, Instruction-
Window Size, and Cache Size: Performance
Trade-Offs and Simulation Techniques, IEEE
Transactions on Computers, Vol. 48, Issue 11,
1999, pp. 1260-1281.

[11] A. Gellert, G. Palermo, V. Zaccaria, A. Florea,

L. Vintan and C. Silvanto, Energy-
Performance Design Space Exploration in SMT
Architectures Exploiting Load Value
Predictions, In Proc. of the Design Automation
and Test in Europe Conference and Exhibition
(Date), 2010, pp. 271-274.

[12] S. K. Dash, T. Srikanthan, Instruction Cache

Tuning for Embedded Multitasking
Applications, In Proc. of the IEEE/IFIP
International Symposium on Rapid System
Prototyping, 2009, pp. 152-158.

[13] T. S. R. Kumar, C. P. Ravikumar and R.

Govindarajan, Memory Architecture
Exploration Framework for Cache Based
Embedded SoC, In Proc. of the 21st
International Conference on VLSI Design,
2008, pp. 553-559.

[14] M. Y. Qadri and K. D. M. Maier, Data Cache

Energy and Throughput Models: Design
Exploration for Embedded Processor,
EURASIP Journal on Embedded Systems, 2009
, Article 13 (Jan. 2009).

[15] A. G. Silva-Filho, F. R. Cordeiro, C. C. Araujo,

A. Sarmento, M. Gomes, E. Barros and M. E.
Lima, An ESL Approach for Energy
Consumption Analysis of Cache Memories in

SoC Platforms, International Journal of
Reconfigurable Computing, Vol. 2011, pp. 1-
12,2011.

[16] S. Przybylski, M. Horowitz and J. Hennessy,

Performance Tradeoffs in Cache Design, In
Proc. of the 15th Annual International
Symposium on Computer Architecture, 1988,
pp. 290-298.

[17] M. Alipour and M. E. Salehi, Design Space

Exploration to Find the Optimum Cache and
Register File Size for Embedded Applications,
In Proc. of the 9th International Conference on
Embedded Systems and Applications, 2011, pp.
214-219.

[18] M. Alipour, H. Taghdisi and S. H.

Sadeghzadeh, Multi objective design space
exploration of cache for embedded
applications, In. Proc. of the 25th IEEE
Canadian Conference on Electrical and
Computer Engineering, 2012, pp.1-4.

[19] Y. Cai, M. T. Schmitz, A. Ejlali, B. Al-

Hashimi and S. R. Reddy, Cache Size Selection
for Performance, Energy and Reliability of
Time-Constrained Systems, In Proc. of Asia and
South Pacific Conference on Design
Automation, 2006, pp. 923-928.

[20] M. Alipour and H. Taghdisi, Effect of Thread

Level Parallesim on the Performance of
Optimum Architecture for Embedded
Applications, International Journal of
Embedded systems and Applications. Vol. 2,
No. 1, 2012, pp. 15-24.

[21] S. Eyerman, L. Eeckhout and K. D. Bosschere,

Efficient Design Space Exploration of High
Performance Embedded Out-of-Order
Processors, In. Proc. of Design Automation
and Test in Europe, 2006, pp. 1-6.

[22] G. Palermo, C Silvano and V. Zaccaria, Multi-

objective Design Space Exploration of
Embedded Systems, Journal of Embedded
Computing, Vol. 1, Issue 3, 2005, pp. 305-316.

[23] A. Assaduzzamn, F. Sibai and M. Rani, Impact

of level-2 Cache Sharing on the Performance
and Power Requirements of Homogenous
Multicore Embedded Systems, Microprocessors

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 75 Volume 13, 2014

http://www.informatik.uni-trier.de/%7Eley/pers/hd/a/Alipour:Mehdi�
http://www.informatik.uni-trier.de/%7Eley/pers/hd/t/Taghdisi:Hojjat�
http://www.informatik.uni-trier.de/%7Eley/pers/hd/s/Sadeghzadeh:Seyed_Hassan�
http://www.informatik.uni-trier.de/%7Eley/pers/hd/s/Sadeghzadeh:Seyed_Hassan�
http://www.informatik.uni-trier.de/%7Eley/pers/hd/s/Sadeghzadeh:Seyed_Hassan�

and Microsystems, Vo. 33,Issue 5-6, 2009, pp.
388-397.

[24] A. Assaduzzamn and M. Rani, Level-2 Shared

Cache versus Level-2 Dedicated Cache for
Homogenous Multicore Embedded Systems, In
Proc. of the 7th International Conference on
Computing, Communications and Control
Technologies, 2009.

[25] A. Assaduzzaman, M. Rani and F. Sibai, On

the Design of Low-Power Cache Memories for
Homogenous Multicore Processor, In Proc. of
the 22nd International Conference on
Microelectronics, 2010, pp. 387-390.

[26] A. Assaduzzaman, A Power-Aware Multi-Level

Cache Organization Effective for Multicore
Embedded Systems, Journal of Computers, Vol.
8, No. 1, 2013, pp. 49-60.

[27] F. Sibai, On the Performance Benefits of

Sharing and Privatizing Second and Third
Level Cache Memories in Homogenous Multi-
core Architectures, Microprocessors and
Microsystems, Vol. 32, Issue 7 , 2008, pp. 405-
412.

[28] V. Saravanan, S. K. Chandran, S. Punnekkat

and D. P. Kothari, A Study on the Factors
Influencing Power Consumption in
Multithreaded and Multicore CPUs, WSEAS
Transactions on Computers, Vol. 10, Issue 3,
2011, pp. 93-103.

[29] W. Bielecki and D. Burak, Parallelization of

the AES Algorithm, In. Proc. of the 4th WSEAS
International Conference on Information
Security, Communications and
Computers,2005, pp.224-228.

[30] S. Saxena, N. Kishore, D. Handa and B.

Kapoor, Comparative Analysis of Sequential
and Parallel Implementations of RSA,
International Journal of Scientific and
Engineering Research, Vol. 4, Issue 8, 2013,pp.
2100-2103.

[31] V. Garg and V. Arunachalam, Architectural

Analysis of RSA Cryptosystem on FPGA,
International Journal of Computer Applications,
Vol. 26, No. 8, 2011, pp. 30-34.

[32] M. Hill and M. Marty, Amdahl's law in the
Multicore era, IEEE Computer, vol. 41, no. 7,
2008, pp.33 -38.

[33] S. Akther and J. Roberts, MultiCore

Programming: Increasing Performance through
Software Multi-threading, The Intel Press,
2006.

[34] www.fedoraproject.org.

[35] www.intel.com.

[36] wiki.archlinux.org.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman,

D. M. Tullsen and N. P. Jouppi, The McPAT
Framework for Multicore and Manycore
Architectures: Simultaneously Modeling Power,
Area and Timing, ACM Transactions on
Architecture and Code Optimization.,Vol. 10,
No. 1 , 2013, Article 5.

[38] www.itrs.net.

[39] R. Ubal, B. Jang, P. Mistry, D. schaa and D.

Kaeli, Multi2Sim: a simulation framework for
CPU-GPU computing, In Proc. of the 21st
International Conference on Parallel
Architectures and Compilation Techniques,
2012, pp. 335-344.

[40]J. Srinivasan, S. V. Adve, P. Bose and J. Rivers,

The Case for Lifetime Reliability-Aware
Microprocessors, In Proc. of the 31st
International Symposium on Computer
architecture, 2004, pp. 276-287.

[41] J. Srinivasan, S. V. Adve, P. Bose and J.
Rivers, Lifetime Reliability: Toward an
Architectural Solution, IEEE Micro, Vol. 25,
Issue 3, 2005, pp. 70-80.

[42] J. Srinivasan, S. V. Adve, P. Bose and J.

Rivers, The Impact of Technology Scaling on
Lifetime Reliability, In Proc. of the International
Conference on Dependable Systems and
Networks, 2004, pp. 177-186.

[43] D. A. Patterson and J. L. Hennessy, Computer

Architecture: a Quantitative Approach, Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA,2006.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 76 Volume 13, 2014

http://rsim.cs.uiuc.edu/Pubs/srinivasan_isca04.pdf�
http://rsim.cs.uiuc.edu/Pubs/srinivasan_isca04.pdf�

[44] J. J. Clement, Electromigration Modeling for
Integrated Circuit Interconnect Reliability
Analysis, IEEE Transactions on Device and
Materials Reliability. Vol. 1, Issue 1, 2001, pp.
33-42.

[45] Yi- L. Cheng, B-J. Wei and Yi-L. Wang,
Scaling Effect on Electromigration in Copper
Interconnects, In Proc. of the 16th IEEE
International Symposium on the Physical and
Failure Analysis of Integrated Circuits, 2009,
pp. 698-701.

[46]J. H. Stathis, Reliability limits for the gate

Insulator in CMOS technology, IBM Journal of
Research and Development, Vol. 46, 2002, pp.
265-286.

[47] E. Wu, J.Sune, W. Lai, E. Nowak, J. McKenna,

A. Vayshenker and D. Harmon, Interplay of
voltage and temperature acceleration of oxide
breakdown for ultra-thin gate oxides. Solid-
state Electronics Journal, Vol. 46, 2002, pp.
1787-1798.

[48] https://aur.archlinux.org/packages/psensor.

[49] S. Borkar, Design Challenges of Technology

Scaling, IEEE Micro, Vol. 19, Issue 4, 1999,
pp. 23-29.

[50] A. P. Chandrakasan, S. Sheng and R. W.

Brodersen, Low-power CMOS Digital Desig,
IEEE Journal of Solid-state Circuits.Vol. 27,
Issue 4, 1992, pp.473-484.

WSEAS TRANSACTIONS on COMPUTERS Mutaz Al-Tarawneh, Ashraf Alkhresheh

E-ISSN: 2224-2872 77 Volume 13, 2014

http://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&sqi=2&ved=0CC0QFjAB&url=http%3A%2F%2Fdomino.watson.ibm.com%2Ftchjr%2Fjournalindex.nsf%2F0%2F11581fcaf21fd17c85256bfa0067fb9b%3FOpenDocument&ei=afMMU8icN-TF0QXqpIDADA&usg=AFQjCNGu210ZguVOvGeiwgDb2d0tEupqlA&bvm=bv.61725948,d.Yms�
http://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&sqi=2&ved=0CC0QFjAB&url=http%3A%2F%2Fdomino.watson.ibm.com%2Ftchjr%2Fjournalindex.nsf%2F0%2F11581fcaf21fd17c85256bfa0067fb9b%3FOpenDocument&ei=afMMU8icN-TF0QXqpIDADA&usg=AFQjCNGu210ZguVOvGeiwgDb2d0tEupqlA&bvm=bv.61725948,d.Yms�
http://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&sqi=2&ved=0CC0QFjAB&url=http%3A%2F%2Fdomino.watson.ibm.com%2Ftchjr%2Fjournalindex.nsf%2F0%2F11581fcaf21fd17c85256bfa0067fb9b%3FOpenDocument&ei=afMMU8icN-TF0QXqpIDADA&usg=AFQjCNGu210ZguVOvGeiwgDb2d0tEupqlA&bvm=bv.61725948,d.Yms�

