
Tightly Cooperative Caching Approach in Mobile Ad Hoc Network

NWE NWE HTAY WIN
1,3

, BAO JIANMIN
2
, CUI GANG

1
, DALAIJARGAL PUREVSUREN

1

School of Computer Science and Technology
1
, College of Internet of Things

2

Harbin Institute of Technology
1
, Nanjing University of Posts and Telecommunication

2
, University of

Computer Studies (Mandalay)
 3

Harbin
1
, Nanjing

2
, Mandalay

3

CHINA
1, 2

, MYANMAR
3

bao@njupt.edu.cn

Abstract: - Mobile Ad hoc Network (MANETs) relies on cooperation of all participating nodes. All mobile

nodes may easily vulnerable to selfish/malicious nodes which can lower down data communication and degrade

the network performance due to refusal of relaying packet in order to save their own resources such as power,

time, etc. These non-cooperative behaviors become challenging in cooperative caching system which mainly

depends on cooperative nodes. To solve this problem, we propose tightly cooperative caching approach

(TCCA) to encourage all nodes to aggressively cooperate by using enhanced credit-based distribution algorithm

based on the resource status of the mobile nodes and the demand volume of the request to have load balancing

among the acceptor nodes and requester nodes. According to the experimental results, our approach gets the

superior results than other approaches under different parameter setting of nodes and network structure.

Key-Words: - mobile ad hoc network, cooperative caching, credit-based distribution, load balancing

1 Introduction
The mobile ad hoc networks (MANETs) are

impromptu wireless communication among mobile

nodes. MANETs allow users to access and exchange

information regardless of their geographic position

or proximity to infrastructure. They offer an

advantageous decentralized character to the network

in the absence of a fixed infrastructure [1].

Decentralization makes the networks more flexible

and more robust.

However, these advantageous factors have

become the challenging issues because connection

can rapidly change in time or even completely

disappear. Nodes can appear, disappear and re-

appear as the time goes on and all the time the

network connections should work between the

nodes that are part of it. So, the situation in ad hoc

networks with respect to ensuring the data accessing

and connectivity is aggressively demanding.

Most of the researches [2][3][4] on MANETs

propose on the development of dynamic routing

protocols for connectivity strength among mobile

nodes. Although routing is an important issue in ad

hoc networks, other issues such as data access are

also very important since the ultimate goal of using

such networks is to provide data access to mobile

hosts [5]. Therefore, there are still several

challenging issues in data accessing on MANETs

due to frequent disconnections, high mobility of

mobile nodes, limited bandwidth utilization and the

poor power resources such as battery life and

storage capacity.

To overcome these challenges on data access in

wireless ad hoc networks, data caching is one of the

most attractive techniques that can increase the

efficiency of data access [6-8]. Data caching means

that mobile nodes copy some parts of data they want

from the data source and store it in its local

memory. Due to caching or holding some pieces of

data, the mobile nodes will not need to request to

the server whenever it receives data requests. In this

way, the total access delay is decreased because of

the service provided by these cache nodes.

However, caching techniques used in one hop

mobile environment may not be applicable to multi-

hop mobile environments since data or request may

need to go through multiple hops. Caching alone is

not sufficient to guarantee high data accessibility

and low communication latency in dynamic systems

with limited network resources. As mobile clients in

ad hoc networks may have similar tasks and share

common interest, cooperative caching which allows

the data and information to share and collaborate

each other among multiple nodes, can be used to

reduce bandwidth utilization, power resource

consumption of mobile nodes and increase access

latency. Furthermore, cooperative caching technique

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 452 Volume 13, 2014

allows mobile caching nodes to coordinate the

caching data tasks such as the redirection of data

requests, cache placement, cache replacement and

cache invalidation process.

Although previous cooperative caching schemes

[9][10][11][12] have addressed to accessibility of

data objects on multiple hop client caches, they miss

the important facts on cooperative caching is

whether all mobile nodes tightly participate their

cooperative works and load balancing over the

nodes or not. In reality, it is impossible and

impractical to assume that all mobile nodes on the

network will follow this cooperative behavior in the

cooperative network such as MANETs, which

mainly rely on cooperative behavior of all

participating nodes.

Nodes may be selfish, lazy or greedy that is they

may refuse to relay packets for other nodes in order

to save their own resources including energy,

bandwidth, computing capacity or available memory

in civilian applications. Those kind of nodes may

refuse the packet delay for others if and only if they

expect benefit of doing so is larger than that of

acting cooperatively and vice versa [1].These non-

cooperative behaviors can not only lower down the

data passage on the network but also even break

down the network.

To facilitate the non-cooperative

communications among such kind of mobile nodes

in ad hoc networks, many mechanisms on packet

routing or forwarding has been proposed in

[14][15][5]. But, there are a few works in caching

approach considering selfish node behaviour

proposed by the researchers [8] [16] using game-

theoretical algorithms but they didn’t address to

cooperative caching system. In our proposed

system, we skim this credit-based distribution

mechanism [14][15] and apply it on cooperative

caching system. Besides, in our system, we propose

Tightly Cooperative Caching Approach (TCCA) to

guarantee the balanced credit-distribution and load

balancing between group nodes. So, we are the first

to our knowledge to propose tightly cooperative

caching mechanism applying credit-based

distribution in penalty and reward incentive manner

and load balancing features on various malicious

nodes by analyzing the current resource status of

acceptor nodes and the demand volume of the

requester nodes.

The rest of the paper is organized as follows.

Section 2 presents related works. The problem

model and its definition are described in Section 3.

The detailed description of TCCA caching approach

is discussed in Section 4. Section 5 evaluates the

system performance and the paper concludes in

Section 6.

2 Related Work
A lot of researches have been designing the caching

mechanisms in mobile ad hoc environments. But,

only few researchers have been paying attention on

cooperative caching to impose more benefits of

mobile ambient. Among them, the area of selfish

removal caching system in cooperative caching has

not received much attention. The researchers in [17]

proposed CoCa, a cooperative caching protocol to

share mobile cache contents to reduce both the

number of server requests and the number of access

misses. They proposed GroCoCa in [18] which

extends CoCa in the cost of extra power

consumption. The researchers in [5] designed and

evaluated three caching techniques, viz., Cache Data

which caches the passing-by data item, CachePath

which caches the path to the nearest cache of the

passing by data item, and HybridCache which

caches the data item of its size is small enough, else

caches the path to the data. Zone Cooperative (ZC)

is proposed in [7] which search the data in the zone

before forwarding the request to the next client that

lies on the path towards server. However, the

latency may become longer if the neighbours of

intermediate nodes do not have a copy of the

requested data object for the request. In our system,

it can reduce latency because we can know which

node hold what data item by using the list of group

table.

An effective cooperative cache replacement

policy is proposed by the research work [11] for

mobile P2P environments based on the sizes of the

data objects. They proposed to place smaller objects

in the local cache of each peer and larger objects in

idle neighbours peer. This scheme will cause

increase in caching overhead in the case of a busy

cache must always request their large data needs to

the idle peer. The researchers in [9] proposed a

cooperative caching scheme called COOP for

MANETs addressing two problems, cache

resolution and cache management. The former

problem used cocktail approach which consists of

two basic schemes: hop by hop resolution and zone-

based resolution. In cache management, COOP uses

the inter-category and intra-category rules to

minimize duplicate data in caching. But, this

scheme can flood in introducing extra discovery

overhead.

The work in [19] proposed proactive approach in

that they will cache the data of leaving nodes

depending on the caching information table (CIT).

Zone manager of each group will decide which data

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 453 Volume 13, 2014

is to be cached. Our approach also proposes this

feature to cache the data of leaving nodes by

extending in the fact that a node which has rich

resources among the group nodes will accept the

cache data of leaving nodes. All the nodes in the

group know which node are the rich resources

among them by using cache data exchange message.

So, we can eliminate the role of zone manager.

Distributed selfish replication and caching of

multiple objects is studied in [20]. In their model,

the set of objects are not in the network initially and

the caching cost is not considered. The study in

[16] presented caching system on selfish MANETs

in paying for cost to the service provider for caching

service adopting game theory. But, they addressed

in simply caching not for grouping. The next data

caching considering selfish MANETs [8] also

presented their approach based on game theoretical

analysis. They considered distance-dependent

caching cost for selfish MANETs but they are

topology dependent. Some researchers [20][16]

proposed caching in selfish MANETs but they

didn’t propose how cooperative caching system is

implemented to be tight. In our system, we present

caching system in cooperative behavior to overcome

the problems of selfish MANETs in load balancing

among selfish, lazy and greedy nodes and in

cooperation with tightly manner among those nodes.

3 Problem Model and Definition
In this section, we describe the problem model and

its definition applied by our mechanism, viz.,

network model, mobile computing model and

grouping model.

3.1 Network Model
The network topology of ad hoc network can be

represented by an undirected connected graph G =

(V, E), where V is the set of mobile nodes in the

network connected with edge or link E. The

existence of a link (u, v) ∈ E also means (v,u) ∈ E,

and two network nodes communicate directly with

each other, which is represented by an edge on the

graph, whereas nodes which cannot communicate

with each other may still contend directly with each

other, due the shared nature of wireless medium. If

mobile nodes u and v are within the transmission

range of each other, they can be thoughts as one-hop

neighbors. The combination of mobile nodes and

transitive closure and connectivity of their one-hop

neighbors forms a mobile ad hoc network.

3.2 Mobile Computing Model
In a mobile computing system, the geographical

area is divided into small regions, called cells. Each

cell has a base station (BS) and a number of mobile

hosts (MHs). BSs manage the communication

between inter-cell and intra-cell. The MHs

communicate with the BS by wireless links. An MH

can move within a cell or between cells while

retaining its network connection. An MH can either

connect to a BS through a wireless communication

channel or disconnect from the BS by operating in

the doze or power save mode. The mobile nodes of

our caching mechanism are modeled as shown in

Fig 1.

Base Station

MH

MH

MH

MH

MH

MH

MH

MH

MH

MH

MH

MH

MH

Internet

Data
Server

Mobile
Host Wireless

Link
Service area
of the system

Transmission
range of MH

Fig.1 System Structure

3.2 Grouping Model
A hop represents one partition of the path between

source and destination. Each MH and its one-hop

neighbors can be formed as a group. Each MH in a

group is in the range of coverage or transmission

area of other MHs in that group. Each MH has a

group member ID which may be IP address or

unique host IP. For the connectivity between the

nodes, we use a periodic beacon of “Hello”

message, known as “Keep-Alive-Signal”. By doing

so, each MH can know who its one-hop neighbor

are. We can extend the k-hop neighbor by

piggybacking the (k-1)-hop neighbor information in

“Hello” messages. When the cache miss occurs

from its local cache or group cache, the data request

can be sent to other 1-hop neighbor along to the path

of data source. So, each MH only needs to maintain

information of one-hop neighbor.

4 Problem Solving
This section describes how cooperative caching

mechanism is implemented to be tight on various

kinds of nodes nature and how the nodes on the

network are managed to balance in caching

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 454 Volume 13, 2014

workload by using credit value distribution

algorithm.

4.1 Network Model
One of the most important issues in designing

caching system on MANETs is how to deal with

selfish or malicious nodes called lazy and greedy

nodes which disturb the data flow of the network

and how to encourage them to take part in caching

cooperation by giving payoff such as reward or

penalty. Depending on the common nature of nodes,

we classify the mobile nodes in three groups: lazy,

greedy and selfish node as following description.

 Lazy Nodes : Nodes that do not have

any work in current time and also do not

desire to help other nodes’ request and even

they do not have any plan to request other

nodes. According to the system, if a node

holds enough credit value and also its node

have no activation in any work, we will

punish those kinds of nodes to join

cooperation by reducing its credit values to

the starting initialization value.

 Greedy Nodes : Nodes that have intense

work, excessive desire in acquiring

information, data request by saving their rich

resources. So, they are eager to ask some

nodes for their every needs. It can cause

overburden for other nodes with their jobs and

this will be unbalanced load balancing over

the nodes because of its glutton. Our TCCA

can overcome this problem by levying some

credit value for asking request to others.

Every node will decrease credit-value

depending on its demand for asking helps.

Therefore, according to our algorithm, they do

not dare to ask so many requests to other

without actually need because they realize

effectiveness of their credit-values.

 Selfish Nodes : Nodes that do not forward

other’s packets and data requests so, they can

maximize their benefits at the expense of all

others. They want to preserve their resources

and energy rationally. We will punish those

kinds of nodes due to non-cooperation

according to the rules of our approach

described in Section 4.3.

4.2 Caching Tables
There are two types of table which need to be kept

by every mobile node in our mechanism. One is to

record its own current information and called as

Self-Table {node_id, cached_data_id,

cached_data_item, timestamp, credit_value,

resource_value} and the another one is

MemberTable {member_node_id, cache_data_id,

timestamp, member_credit_value} in order to keep

the caching status of group caches. The timestamp

of both tables is used to know the caching time of

cache data for checking cache validation. The

credit_value and the member_credit_value are used

for credit value distribution mechanism and the

resource_value is used to check the workload status

for load balancing purpose. Each node knows the

updated cache data information of each other by

periodically sending the cache data exchange

message and update their local and group cache

tables according to the group cache information on

this exchange message. As an advantage of keeping

these tables, when a node requires a data request, it

just needs to send the one which is caching its

requested data such as group cache or data source.

Moreover, due to the knowledge of cache data item

among group members, we use cache admission

control by caching distinct data among group

members. Therefore, it can save the data

redundancy among group caches. So, it is obvious

that our mechanism significantly improves the

caching performance by decreasing the caching

overhead and cache query delay. Moreover, by

using credit-value retained in each node, whenever

the mobile nodes encounter the data requests of

other nodes, they order the data requests according

to the credit-value owned by the requester nodes and

offer the request first to the one which holds the

highest credit value. So, the higher the credit value

owned by the nodes, the more chances they can get

the offer. This process forces the nodes to

participate the caching operation in order to get the

higher credit values.

4.3 Tightly Cooperative Caching Algorithm

(TCCA)
This section describes the cooperative caching

mechanism which enforces all the nodes to take part

in caching by using credit-based distribution

approach and be able to adjust the workload among

the nodes by using load balancing control.

The major work of credit-based distribution

approach is to enforce the nodes to cooperate the

caching process by giving incentive for their

cooperation and non-cooperation. However,

ordinary credit-based distribution algorithm can lead

to unbalanced credit distribution because there are

various kinds of resource limited devices on mobile

networks and the capabilities they can performed

will be different depending on the requests they

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 455 Volume 13, 2014

received. Moreover, due to the resources condition

they owned (poor or rich resource) and the demand

type they received (light or heavy demand), the

works related with caching abilities such as storage,

relaying packets, transmission message, etc. may be

overburden or idle for some nodes which leads to

unbalancing the workload. In order to control this

load balancing capabilities on credit-based

distribution approach, we enhance the credit-based

distribution approach by taking into account of

resources of the acceptor nodes and the demand type

of the request in distribution the credit value for

increasing the credit value for cooperation and

decreasing the credit for non-cooperation.

4.3.1 Resource and Demand Comparison

To impose the balanced credit distribution on the

mobile nodes, we analyze the resources of the

acceptor nodes and the demand type of the requester

nodes depending on their related criteria.

The resource value denoted as rC , is calculated

on the resource related criteria such as available

battery life (Bl), memory space (Ms) and

processing power (Pp) of a node iN according to

Eq (1). All of these criteria are considered at time

cT when a request is received.

iiiir PpMsBlNC  )((1)

Wherein α, β and γ are the tunable parameters to

indicate the weight of three criteria. Setting the

proper value to the weighting factors achieve the

better performance in a design issue.

The demand value dC is evaluated on the criteria

which is related to the data demand of the requester

node such as size of demand (Sd), access

probability of demand (Ap) and data retrieval delay

(Rd) of that demand over the network. Although

the size of the demand can easily be known, the

other criteria need to be derived from other facts.

The access probability is similar with the popularity

of the cache item [21]. It means that the most

popular data item can easily be fetched from any

node because most cache hosts have willingness to

cache the data that is frequently requested by most

of the mobile nodes. For the data retrieval delay

criteria, it will vary depending on the several factors

such as node location, packet size, the number of

hops to reach a node and network congestion [22].

However, the evaluation based on too many factors

cannot improve the better result due to the

difficulties of deriving values. So, we account only

number of hops to calculate the average query delay

and the specific time taken to reach a hop.

To get the expected number of hops between any

two nodes (the node that needs data and the node

holding that data), we use stochastic geometry

applied, the probability density function of s [21] is

applied as shown in Eq (2)

}0{)5.0
2

(
4

)(2

22
abssbsasab

ba

s
sf 



 (2)

We assume this probability function is in a

rectangular topology with area a b and uniform

distribution of nodes in the transmission range, 0r .

The E[H], the expected minimum number of hops

between any two nodes in the network is equivalent

to dividing E[S], the expected distance, by 0r . The

E[H] needs to be assumed a lower bound because

the nodes are sparse on the network and the number

of hops will inevitably increase because of routing

through the longer distance to reach a certain node.

When ba  , the expected number of hops is

derived from Eq (3) [2] as shown below.

 0/521.0][raHE  (3)

We derive data retrieval delay by using Eq (4),

the expected number of nodes between any nodes by

multiplying the specific time, hT , delay time to

reach a hop. So, we derive data retrieval delay ir of

a node iN as shown in Eq (4).

 hi THEr ][(4)

Depending on the derived values of criteria for

demand value, we calculate the demand value of a

node iN according to Eq (5) as follows.

iiiid RdApSdNC  )((5)

Depending on the evaluation values: resource

value rC and demand value dC , we calculate the

comparison value (jV) according to Eq (6).

 rdj CCV / (6)

In the case of measurement in dC and rC , we

assume that they are similar unit to analyze their

value. The core work of this comparison value is to

judge the credit value distribution on the mobile

nodes to increase or decrease the credit value from

the current credit value currently hold by the mobile

nodes. The detailed process of enhanced credit-

based distribution is described in next section.

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 456 Volume 13, 2014

4.3.2 Credit-based Distribution

Our credit-based distribution algorithm on

cooperative caching mechanisms can bring many

benefits to ad hoc network by preventing

overloading caching work on some weak nodes, by

forcing the strong nodes to take part in caching

process due to the penalty imposed and by giving

fair payoff on different kinds of nodes in different

situation which connect on the volatile network

structure such as strength or weak network

bandwidth and so on.

Starting from the caching mechanism, we assign

the default credit values to every node. Generally, if

a node cooperates in caching process, it will receive

certain credits (jV) and plus that payoff to its own

credit value (cV) as a reward. If a node chooses not

to cooperate, the payoff is the penalty by decreasing

its current credit value by subtracting the certain

credits. However, the common credit distribution is

obviously unfair on diverse resource condition of

mobile nodes. In order to impose balanced credit

distribution, we take into account of the two types of

the nodes, poor node and rich node depending on

the enrichment of resources they owned, in other

ways, the higher or lower value of rC and two types

of demands, light demand and heavy demand

depending on the volume of requested data which

can consume the energy or memory for the acceptor

nodes.

Depending on the nodes (poor or rich node)

which are facing with different demands (heavy or

light demand), the payoff such as penalty and

reward should be different because it will not be

unfair to punish the same payoff when a poor node

refuses the heavy demand and a rich node denies a

light demand. Like this way, it should be different

payoff in rewarding when a poor node relays the

heavy demand and a rich node helps in relaying the

light demand. For same level between resource and

demand of mobile nodes, the payoff will be

common as general credit-based distribution

approach.

Our credit value distribution function for

cooperation and non-cooperation chosen by the

nodes are defined as described in Eq (7) and

depending on their choice, the current credit value

(cV) is increased or decreased by the comparison

value jV .

 jcc VVV  (7)

Wherein  is the tunable variable to balance the

credit value depending on the comparison value

jV between the poor or rich resources and light or

heavy demands. When the same level of resource

and demand, in other ways, the value of jV is equal

to 1, the value of  is also 1 by using normal credit

distribution on the common resource and demand

nature. For the unbalanced resource and demand

condition, the value of jV will be lower or higher

than 1, in this case, the parameter configuration of

 changes depending on the value of jV and payoff

condition, penalty or reward. In our credit

distribution, we select the value of  as 0.2 for

penalty and 0.8 for reward between poor node and

heavy demand, and choose the value of  as 0.8 for

penalty and 0.2 for reward between rich node and

light demand. Most of scholars evaluate the weight

value using intellectual algorithm via iteration. We

determine our weight value  according to the

empirical value based on resource and demand

status of all nodes in the network. On the mobile

nodes which choose cooperation or non-

cooperation, detailed calculation of our balanced

credit-based distribution are described in Table 1 by

assuming the current credit value cV of all nodes is

6.

Table 1. Computation of Payoff for Penalty and Reward

depending on Resource and Demand

Comparis

on Value

Vj= Cd/Cr

Parameter of


Resource

and

Demand

Pair

After PayOff

For

Penalt

y

For

Rewa

rd

After

Penalty

After

Reward

Vj=1

(3,3)
µ=0.5 µ=0.5 (poor,

light) &

(rich,

heavy)

Vc =5.5 Vc =6.5

Vj >1

(5,3)
µ=0.2 µ=0.8 (poor,

heavy)

Vc =5.7 Vc =7.3

Vj <1

(3,5)
µ=0.8 µ=0.2 (rich,

light)

Vc =5.6 Vc =6.1

4.4 Cache Placement and Replacement

Control
Storage management on data object in the cache is

one of the important functions of data caching

because of limited cache size and impact on system

performance. So, it needs to cache the most useful

and essential data which is often requested by the

nodes. When the cache has the free space for new

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 457 Volume 13, 2014

data, we just place the new data on the cache. If the

cache is full of cache data, one object has to be

removed from the cache to make room for the data

that has to be brought in. So, we need to consider

which object is removed for new data. System

performance will be better if we choose an object

that is not heavily used.

Many cache replacement algorithms have been

developing by the researchers with their

corresponding parameters for their objectives.

However, if we are using many parameters for

finding the value function, it is not easy to focus the

better performance. Therefore, in our replacement

control in caching database, we use the most

common usage criteria in the caching system such

as access frequency denoted as a , data size denoted

as s and recency denoted as r of the cache data item

iC .

The reason of taking into account of access

frequency is that, the more frequent requested data

item can be assumed that it will be requested in the

near future. Therefore, we want to evict the less

frequent data item to replace the data item that is

high demand or popularity among the mobile nodes.

To get more cache hit, a data item with larger

data size should be chosen for replacement. By

choosing larger data which has taken the more cache

space, the cache can accommodate the more data

items and satisfy more access requests.

Recency is based on the observation that data

that have been heavily used recently will probably

be used in the near future. Conversely, the data that

have not been used for ages will probably remain

unused for a long time. So, our system finds

minimum recency value of data item to remove

from the cache. Based on the above function, we

find the value of cache data item iC using the

following Eq (8).

iiii rwswawCvalue  321 /)((8)

wherein w1, w2 and w3 are the weighting value. We

find the replacement value of all cache data item

iC of a node and we evict the data item with the

lowest value to make a free space for new data item

to replace in the cache.

4.5 Complexity Analysis of TCCA Approach
In this section, we analyze time complexity for

searching cache data item on the network.

According to TCCA algorithm, there are four places

to search cache data for a node when it needs to

make a data request. They are local cache, a place

which almost needed data of a node is stored, group

cache, the places which stores most of all needed

data of the group neighbours, remote cache, the

places which keeps the data often demanded by one-

hop neighbour and global cache, a place which

stores all requested data on the network, known as

data source.

To analyze the complexity of data discovery

process, the searching time complexity of local

cache is)1(O . For group cache search, a node iN in

a group)1(MGG kk  , it needs to send only one

node that holds the wanted data, so it will take

)1(O . Instead, the other system, node iN sends all

other group nodes }11:{  NjjN j such that

ji  . So, it is obvious that their system will

take)(NO . For remote cache searching, our system

will take MO )1(so)(MO in remote cache time

complexity. Apparently in this case, the other

approaches take)(MNO for remote cache. For

global cache discovery process, in other ways, data

searching on the data source, we take)1(O for all

types of the system.

Additionally, data request to other nodes, other

groups and data sources, will generally take)(MO

time complexity in our system but in others, they

will take)(MNNO  . The time complexity will be

the same for two ways in requesting and receiving

the data. So, our system will eliminate traffic

congestion on the data passage between the nodes

and also reduce query retrieval delay and bandwidth

consumption for searching cache data item on the

network.

5 Problem Evaluation
We demonstrate our caching mechanism using NS2

simulator with DSDV routing protocol for routing

services. A set of mobile nodes are moved within a

rectangular workplace in an area of 1000x1000 m
2

for 100 seconds simulation time based on reference

point group mobility model. We assume that data

server will keep all the data items which will be

requested by the mobile nodes with 1500 bytes of

data item size [23]. To cache the fresh data, we use

TTL-based cache consistency strategy with 5s

timeout value. Every mobile node acts as a client

node else one node is left for acting as data source.

Different numbers of mobile nodes are used for each

experiment with different parameter setting. Each

client node sends their read-only queries to the data

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 458 Volume 13, 2014

source connected on randomly generated network

topologies.

We evaluate the performance of our TCCA

caching mechanism compared with cooperative

caching schemes: CoCa (Cooperative Caching) [24],

COACS (Cooperative and Adaptive Caching

Systems) [22] and with non-cooperative caching

scheme called N-CoCa (Non-Cooperative Caching)

which is a conventional caching scheme without

applying any cooperation mechanisms. These

caching mechanisms are analyzed under the various

essential performance metrics under following

different impact of parameters.

5.1 Impact of Group Size
This section explores the influence on cache hit ratio

and average query delay under various group sizes

(1, 5, 10, 15, 20, 25, 30). The number of nodes for

each group is equally assigned depending on the

node density of the network. The cache hit ratio

means the percentage of accesses that results in

cache hit from its local cache or its group caches.

The average query delay means the time interval

between the time of generating the data request and

the time of receiving the data offer from any source

such as local cache, group cache or data source.

Fig 2. Impact of group size

 As shown in Fig 2, all the cooperative caching

schemes improve their cache hit ratio and average

query delay because the higher the node density

within a group is, the more neighbor nodes in a zone

can share their local cache data to each other. As a

result, the total cache hit ratio is improved and the

average query delay is reduced due to the fact that a

global cache hit incurs shorter query time from the

data source. Our TCCA outperforms the other

mechanisms because of well management on the

nodes to be tight on caching cooperation. For the

performance of CoCa and COACS, the CoCa gets

better performance than COACS and N-CoCa

because COACS is lack of improving on cache

replacement or other caching mechanism else cache

discovery process and N-CoCa could not enlist the

cooperative caching.

5.2 Impact of Node Nature
In this section, we investigate the data distribution

and workload which can be performed by the

mobile nodes under different misbehavior of nodes

nature. The objective of this experiment is to show

how the nodes are implemented to tightly cooperate

each other by analyzing the data distribution pattern

which passes the demand and offer among neighbor

nodes and workload percentage they can perform on

their own work and other neighbor nodes’ work. In

this case, the workload means the amount of work

they can perform, it does not relate with load

balancing which is the amount of work assigned on

each node.

In order to show the performance of TCCA

compared with other caching mechanism on the

impact of nature of nodes, we simulate the mobile

nodes in the network to behave selfishly and

maliciously by periodically changing their custom

properties under different situations such as

workload, network topology, and network delay and

so on.

Fig 3. Impact of Nature of Nodes

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 459 Volume 13, 2014

Depending on the nature of nodes: ordinary node

and malicious node; we can see from the Fig 3. that

in both experiments, TCCA outperforms other by

getting significant highest results on both ordinary

and malicious nodes due to the effectiveness of

tightly cooperative caching algorithm. The other

cooperative caching mechanisms COACS and CoCa

performs well on ordinary nodes like TCCA but

they cannot take any advantage from their system on

malicious nodes due to their lack of consideration

on nature of nodes. Apparently, N-CoCa performs

the worst among the caching mechanisms for every

kind of nodes because of its simple working on

caching mechanism.

Compared with two charts of Fig 3 on ordinary

node (Or-Node) and malicious node (Ms-Node), the

malicious nodes can distribute the data more than

ordinary node because of cooperative policy: reward

and penalty but they cannot perform more workload

than ordinary node because of their own heavy

workload. So, obviously, although the malicious

nodes manage well the data distribution process,

they still need to keep pace in workload they can

finish.

5.1 Impact of Cache Size

This section measures the two performance metrics:

cache hit ratio and caching overheads under

different cache sizes (50, 100, 150, 200, 250).

Caching overheads means all the data passages in

caching systems, viz., data demand, data offer and

other message notification among the nodes for

caching process.

Fig 4. Impact of Cache Size

All mechanisms get better performance with

increasing cache size in increase of cache hit ratio

and decrease of caching overheads because the

mobile nodes experience a higher local cache hit as

the cache size gets larger and reduce the messages

passing among them.

As shown in the Fig 4, our TCCA gets significant

better results than other caching system in

performance metrics because we reduce the chance

of caching the same item in the local cache, group

cache to reduce the redundant data items. Therefore,

we got superior results in increasing cache hit ratio

and decreasing caching overheads among data

sources and client mobile nodes by applying tightly

cooperative caching scheme. The other two

cooperative caching schemes also get the better

result in this measurement while the cache size is

increasing but they are still cannot reach the same

level like TCCA could due to the lack of

considering on cache admission, placement control

on cache data. The performance of N-CoCa is still

modest on both metric types.

5 Conclusion
Cooperative caching is the effective scheme to

support the data access on MANETs by reducing the

network traffic, overlays and increasing data access

rate. Most scholar works perform cache

management mechanism with different perspective

in various parameters and methods, but little

attention is given to the issues of tightly

encouragement on the mobile nodes. In this paper,

we propose tightly cooperative caching mechanism

by enhancing the credit-based distribution algorithm

on the resources owned by the mobile nodes and the

demands types of the data request and develop the

cache placement and replacement control

mechanisms based on critical criteria evaluated on

the cache data item. As the advantages of our

proposed mechanism, firstly, it can encourage all

the nodes to participate the caching tasks and then it

also adjusts credit-values based on the resources and

demands to have balanced credit distribution.

Secondly, due to the priority on the credit-values, it

has already solved the problem in contending for

data accessing among requested nodes. Thirdly, if a

group member node leaves from a group, the

efficiency of grouping caching cannot be effected

because the cache data of leaving nodes are

transferred to the one of member nodes which

posses rich resources among them. Furthermore, this

algorithm uses cache admission control to reduce

redundancy for duplicated caching data within the

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 460 Volume 13, 2014

same group such that the cache space can be used to

accommodate more distinct data items. Lastly, it

makes all the nodes to have balanced workload and

reduce overburdening on a node for other demands.

In conclusion, we analyze the performance of our

proposed system under different impact of

experiments over unpredictable nodes nature of

dynamic network. Experimental shows that our

proposed TCCA algorithm can significantly

improve the overall performance of caching

approach when compared to other caching

approaches.

Acknowledgements

This work is supported by National 973 Program of

China (2011CB302903); NSFC (61100213);

Specialized Fund for the Doctoral Program of

Higher Education (20113223120007); Program of

Natural Science for Universities of Jiangsu

Province(12KJD510007), Ministry of Education

Key Laboratory of Development Fund projects

under Grant No.NYKL201105 as well as Scientific

Research Foundation of NJUPT under Grant

No.NY209017, China.

References:

[1] H. Y. Hu and H. Hu, Optimizing Energy

Consumption of Data Flow in Mobile Ad Hoc

Wireless Networks, WSEAS Transactions on

Computers, 7 (7), 2008.

[2] M. Frodigh, , P. Johansson and P. Larsson,

Wireless Ad Hoc Networking – The Art of

Networking without a Network, Ericsson

Review, 2000, No. 4

[3] D.B. Johnson and D.A. Maltz, Dynamic

Source Routing in Ad Hoc Wireless Networks,

The Kluwer International Series in Engineering

and Computer Science, Vol. 353,1996, pp. 153-

181

[4] C.E. Perkins, E.M. Royer and S.R. Das,

Performance Comparison of Two on-demand

Routing Protocols for Ad Hoc Networks, IEEE

Infocom, 2000, pp. 3-12

[5] Y. L. Zhong and C.G. Gong, Supporting

Cooperative Caching in Ad Hoc Networks,

IEEE Infocom, 2004, pp. 2537-2547

[6] N. Chand, R.C. Joshi and M. Misra, Efficient

Cooperative Caching in Ad Hoc Networks,

IEEE COMSWA, 2006, pp. 1-8

[7] N. Chand, R.C. Joshi and M. Misra,

Cooperative Caching in Mobile Ad Hoc

Networks Based on Data Utility, International

Journal of Mobile Information Systems Vol. 3,

No. 1, 2007, pp.19-37

[8] Y. Chen and B. Tang, Data Caching in Ad Hoc

Networks Using Game Theoretic Analysis,

Proc. SUTC, 2010, pp. 43-49

[9] Y. Du and S.K.S. Gupta, COOP- A

Cooperative Caching Service in MANETs,

Proceedings of the IEEE ICAS/ICNS, 2005,

pp. 58-63

[10] K. Shanmugavaidvu and M. Madheswaran,

Caching Technique for Improving Data

Retrieval Performance in Mobile Ad Hoc

Networks, International Journal of Computer

Science and Information Technologies, Vol .1 ,

No. 4, 2010, pp. 249-255

[11] J.W. Song, K.S. Par and S.B. Yang , An

Effective Cooperative Cache Replacement

Policy for Mobile P2P Environments, ICHIT

IEEE, Vol. 2, 2006, pp. 24-30

[12] Y.W. Ting and Y.K. Chang, A Novel

Cooperative Caching Scheme for Wireless Ad

Hoc Networks: Group Caching, IEEE

Conference on Networking, Architecture and

Storage, 2007, pp. 62-68

[13] D. Qian, C. Zhou and J. Zhang, Cooperation

Enforcement in Ad Hoc Networks with

Penalty, IEEE Conference on Mobile Adhoc

and Sensor Systems, 2005, pp.179

[14] L. Buttyan and J.P. Hubaux, Stimulating

Cooperation in Self-organizing Mobile Ad Hoc

Networks, Journal of Mobile Networks and

Application, Vol. 8, No. 5, 2001, pp. 579-592

[15] V. Srinivasan, P. Nuggehalli, C.F. Chiasserini

and R.R. Rao, Cooperation in wireless ad hoc

networks, Proceedings of Infocom , Vol. 2,

2003, pp. 808-817

[16] J. Zhai, Q. Li and X. Li, Data Caching in

Selfish MANETs, Proc. ICCNMC, Vol. 3619,

2005, pp.208-217

[17] C.Y. Chow, H.V. Leong and A. Chan, Peer-to-

Peer Cooperative Caching in Mobile

Environments, 24
th
 Int’l Conf. Distributed

Computing Workshops (ICDCSW ’04), 2004,

pp. 528-533

[18] C.Y. Chow, H.V. Leong and A. Chan, Group

Based Cooperative Cache Management for

Mobile Clients in Mobile Environments, Proc

33
rd

 Int’l Conf. Parallel Processing (ICPP’ 04),

Vol.1, 2004, pp. 83-90

[19] K. Prashant, C. Naveen, A. Lalit and C.

Narottam, Proactive Approach for Cooperative

Caching in Mobile Adhoc Networks, IJCSI,

2010

[20] N. Laoutaris, O. Telelis, Zissimopoulos, V. and

I. Stavrakakis, Distributed Selfish Replication”,

IEEE Transactions on Parallel and Distributed

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 461 Volume 13, 2014

Systems’, Vol. 17, 2005, No. 12, pp. 1401-

1413

[21] C. Bettstetter and J. Eberspacher, Hop

Distances in Homogenous Ad Hoc Networks,

Proc. 57
th
 IEEE Vehicular Technology Conf.

(VTC-Spring 03), Vol.4, 2003, pp. 2286-2290

[22] H. Artail, H. Safa, K. Mershad and Z. Abou-

Atme, COACS: A Cooperative and Adaptive

Caching System for MANETs, IEEE

Transcations on Mobile Computing, Vol. 7,

No.8, 2008, pp. 961-977

[23] E. Chan, W. Z. Li and D. Chen, Energy saving

strategies for cooperative cache replacement in

mobile ad hoc networks, Pervasive and Mobile

Computing, Vol. 5, 2009, pp. 77-92

[24] C.Y. Chow, H.V. Leong and A. Chan, Cache

Signatures for Peer-to-Peer Cooperative

Caching in Mobile Environments, Proc. 18
th

Int’l Conf. Advanced Information Networking

and Applications (AINA ’04), Vol. 1, 2004, pp.

96-101

[25] S. Zhong, J. Chen and Y.R. Yang, Sprite: A

simple, cheat-proof, credit-based system for

mobile ad hoc-networks, IEEE INFOCOM,

2003, San Francisco, CA, Vol. 3, pp. 1987-

1997

WSEAS TRANSACTIONS on COMPUTERS Nwe Nwe Htay Win, Bao Jianmin, Cui Gang, Dalaijargal Purevsuren

E-ISSN: 2224-2872 462 Volume 13, 2014

