
The Solution Area and Fitness-Based Algorithms of the Content-Driven

Template-Based Layout System

ISTVÁN ALBERT, HASSAN CHARAF, LÁSZLÓ LENGYEL

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

HUNGARY

{ialbert, hassan, lengyel}@aut.bme.hu

Abstract: - People use their mobile devices every day to access a wide variety digital content. The diversity of

mobile platforms and that of mobile device capabilities requires providing automatic layout solutions for online

content. For the purposes of this paper, our solutions focus on online magazines and newspapers. The Content-

Driven Template-Based Layout System (CTLS) is a template-based online magazine layout approach. This

approach facilitates in defining hierarchical layouts from basic layout elements and splitter components. The

goal is to effectively calculate the resulting adaptation method for a particular layout element at any level of the

layout hierarchy. This paper introduces both the solution area-based algorithm and the fitness-based algorithm

of the CTLS approach. These algorithms apply inequalities rather than equations. Inequalities, represented by

solution areas (polygons), provide the flexibility within the approach.

Key-Words: - Adaptive Layout, Content-Driven Layout, Template-Based Layout, Online Magazine

Layout, Splitter Algorithm

1 Introduction
Mobile devices play a significant role in the daily

lives of the majority of people living in a consumer-

based society [1] [2]. Many people own one or more

mobile devices, from numerous device distributors,

with a variety of special features, capabilities and

application programming framework. The diversity

of these devices and their screens require adaptive

layout solutions that can utilize the capabilities of

each different device. High-quality, automatic

document formatting is a difficult problem, with

many obstacles [3] [4]. The main challenge is to

automatically adapt the whole digital magazine

content so that articles look as good on a tablet

display, of any size, as they do in printed media.

Content-Driven Template-Based Layout System

(CTLS) [5] [6] templates are column templates. The

height of a column is fixed, based on the display

properties of the device. Then the ideal width of the

column is automatically calculated, based on the

text size, and horizontal scrolling is also made

possible.

Templates allow the manipulation of each unique

layout and are also applied to define one or more

columns, i.e., a template covering the entire column,

from top to bottom. Layouts consist of one or more

templates. Rules (constraints) relate to and are

applied in both templates and layouts. Rectangular

areas that are arranged in the template and filled

with content provide the basic composition of a

template. Text, images and captions make up the

basic layout elements. In [7], we have demonstrated

the reference layouts of the Content-Driven

Template-Based Layout System.

Figure 1. a. Sample basic layout, b. Example horizontal

splitter component

The adaptation methods are the focus of the

layout elements and size is not deeply considered.

The behavior of the layout is decided by the

methods during the layout calculation. The

adaptation of layout must be handled as layout

templates are often hierarchical. This issue of

layout component handling is addressed in different

ways to describe their behavior.

We have already introduced the Mixed Splitter

Algorithm [8], i.e., the common application of the

horizontal splitter and vertical splitter components

during the template definition. The Mixed Splitter

Algorithm applies equation sets to describe the

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 218 Issue 5, Volume 12, May 2013

behavior of different layout elements. Based on the

equation forms of the adaptation methods, our

automatic layout-related results are created. The

approach makes it possible to determine the

adaptation method of compound layout elements

using the domain-specific properties of the area. The

algorithm of the approach accounts for the behavior

of the contained layout elements. As a result, we can

manage the layout calculation of hierarchically

defined compound layout templates.

Unfortunately, in certain situations the equation

set-based approach is not flexible enough.

Therefore, in this paper we investigate the extension

possibilities of the approach. We conclude with a

solution area-based approach that applies

inequalities instead of equations. We represent these

solution areas with polygons and prove their

flexibility and wide-range applicability.

The fitness-based algorithm of the CTLS

approach is an extension of the solution area-based

algorithm with the addition of a fitness function.

We summarize the different solutions provided

by the CTLS approach:

1. Equation set-based solution: Aids in

calculating the exact height of a layout element

required by a given or selected width value.

There often exists more than one acceptable

value, which are expressed as precise height

values, not intervals.

2. Solution area-based approach: This approach

addresses inequalities. Based on the inequalities

defining the width of the layout element, the

algorithm determines the inequalities of the

acceptable height values. These inequalities are

visually represented by polygons. The drawback

to this solution lies in its inability to

differentiate between the valid values, i.e., each

of the valid values has the same quality.

3. Fitness-based solution: This initiation

advances the solution area-based approach with

the implementation of a fitness function. The

fitness function assigns the quality value to the

different x and y pairs (height-width value

pairs).

Section 2 discusses the Solution Area-Based

Algorithm. We introduce the principles of the

method, the solution area-related main concepts and

also work out the solution areas of the basic layout

elements. Section 3 accommodates the methods of

the solution area-based approach by discussing the

modifications addressed on the horizontal splitter

algorithm. Section 4 introduces the splitter

components-related calculation of the resulting

adaptation method. Section 5 discusses the fitness

function and fitness algorithm of the approach.

Finally, section 6 concludes the paper.

2 The Solution Area-Based Algorithm
The solution area-based algorithm determines the

height/width definition methods and the attributes of

the splitter components from the equation set-based

algorithm. The adaptation methods and the related

equation forms are provided in Table 1. Comparing

to the earlier version of the approach, one of the

basic layout elements and their equation sets has

been changed. The modification is made in the

Fixed Area (+) adaptation method (Table 1).

Table 1. The adaptation methods related equation forms

Eq. ID
Adaptation

method

Width / Height /

Both can be set
Equations

1 Free (O) X / X / X −

2 Fixed Width (W) - / X / - 𝑥 = 𝑐
3 Fixed Height (H) X / - / - 𝑦 = 𝑐

4 Fixed (F) - / - / -
𝑥 = 𝑐1

𝑦 = 𝑐2

5
Fixed Ratio (X)

(Calc. Ratio)
X / X / -

𝑥

𝑦
= 𝑐

6
Fixed Area (+)
(Calc. Ratio)

X / X / - -

Research was conducted due to several

motivating factors following the completion of the

equation set-based algorithm. The main points of the

motivation are as follows:

1. The equation set-based approach requires the

solution in a closed form: Closed Form

Condition and Substitution Condition [8]. This

restricts the complexity of the layout structure.

2. Practically, the approach allows the embedding

of splitter components into each other with

equation sets maintaining a maximum degree of

2. This can be extended, because there are

additional closed formulas to solve cubic and

quartic functions, but the involvement of these

methods into the algorithm does not provide a

globally efficient solution. The related

implementation necessitates too many branches

and special attention is required to treat these

particular branches. In the case of equation sets

with a maximum degree of 2, we can effectively

handle the number of different branches.

However, in the case of equation sets with a

higher degree, the implementation and testing

costs increase exponentially.

3. The approach provides only exact solutions,

meaning it can handle equations but cannot

handle inequalities. In effect, there is no built-in

flexibility, and no extensions can be made to

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 219 Issue 5, Volume 12, May 2013

support it. For example, assume that, for a

layout structure with the actual parameters,

there is no solution. However, if we were to

modify one of the constant values, e.g., by a few

percentage points, then it could be solved. This

also means that the approach cannot account for

the minimum and maximum height and width

values of the layout elements.

4. The adaptation method of the layout elements

containing a fixed length of text is Fixed Area

(+), i.e., the behavior is defined with an

equation that requires a fixed area (x*y=c).

Indeed, if the width of the layout element is

given, then the height of the element is

calculated based on the text fragmentation

(division and handling of different formatting).

The resulting function is not continuous,

invertible or monotone. This presents significant

problems especially in dealing with short texts

and long words. The applied approximation is

not precise, therefore, the text often does not fit

into the calculated area, e.g., the last word

requires an entire additional line.

2.1 The Principles of the Solution-Area

Based Algorithm
The novel approach does not apply an

approximation for the required area of layout

elements containing a fixed length of text. Instead,

the approach insists on following the precise text

fragmentation. Mathematically, this is a stricter and

more complex description, but surprisingly, we will

see that it will result in a better solution.

Figure 2 introduces both the approximated

(dashed line) and the real function of the x and y

value pairs.

Figure 2. The approximated and the real function of

the x and y value pairs

The discrete values on the y-axis result from the

text fragmentation. The different lengths of these

discrete values are based on the various word

lengths and word divisions. If we allow the different

text sizes as a text formatting option, then it can

result in functions that are not monotonically

decreasing, i.e., increasing the width of the layout

element results in the height also temporarily

increasing.

It should be noted that the result is a function of

x values but it is not a function of y values. In other

words, there are solutions only for few y values, and

regarding these y values the result is not a specific x

value but instead an interval of x values. The

consequence is that, in strictly following this

solution, the result is not an applicable model. For

example, if a template contains one layout element,

which has a fixed length of text, then we only get a

solution if the height of the screen can be divided by

the actual text line height. This type of problem can

be uniquely handled, but in a complex layout

hierarchy it cannot be propagated between the levels

of the layout element hierarchy.

2.2 Area-Based Solution
Considering the above example in a practical sense,

we can accept a solution if above or below the text

there is a minimal amount of empty space. This

empty space can be no higher than the actual text

line height. Therefore, for a specific width value,

there is no precise height value, which is a discrete

value based on the text fragmentation, but we assign

an interval of y values. The values within this

interval can be accepted regarding the actual width

value.

This approach uses inequalities instead of

equations. Figure 3 introduces the areas that

represent the solutions.

Note, that the rectangles are purposefully wider

on the right side (x-axis) than the lines. This means

that the text area can be wider than the ideal width

(the narrowest required width). Therefore, in certain

cases, the last words of the lines are skipped into the

subsequent line, even if there is adequate space for

them.

The area-based solution provides the flexibility

of the approach. Not only the presented Fixed Area

(+) function, but other functions can also be

extended in a similar way. Furthermore, the

flexibility of certain element types can be

individually parameterized. Or, if the algorithm does

not locate a solution for a given layout, then it can

extend the intervals of the accepted values in an

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 220 Issue 5, Volume 12, May 2013

iterative way. Practically speaking, this means larger

unfilled spaces between the layout elements.

Figure 3. Area-based solution of the Fixed Area (+)

adaptation method

In our earlier work [7], we introduced a concept

which addressed managing the aspect ratio of

images. I.e., rendering a layout, while preserving the

rules provided by the editor, often requires adapting

the image size to the actual conditions. This concept

also applies to the area-based solution, because if

the ratio of the image can be modified within certain

values, then the resulting solutions are not on a

single linear function, but an area between two

linear functions.

In summary, the extra empty space, which is

often a minimal amount, provides flexibility to the

approach. It allows for the mapping of a range of

height values to a certain width value.

In future work, we will develop the concept to

assign fitness values to different values of the

solution area. This facilitates in giving preference to

certain solutions, e.g., text areas with height values

that can be divided with the height of the text line.

The fitness values will be uniquely parameterized,

which is also a powerful tool for layout editors.

2.3 The Solution Areas of the Basic Layout

Elements
Text

Based on the above considerations, each of the basic

layout elements has solution areas i.e., inequalities

instead of equations. In order to make these

inequalities expressive and easier to handle, we use

polygons to define them. The x and y values within

the polygon represent the solutions of the actual

layout elements. The x and y values outside the

polygon are the cases in which the actual layout

element does not have a solution. This means that

we use polygons to define the adaptation method of

a layout element.

Table 2 depicts the inequalities and the polygons

for the different adaptation methods. The dark blue

values represent the original equation-based

solutions, and the light blue areas are the extension

of it. The light blue areas represent the flexibility of

the area-based approach.

We can see in the first four cases, the resulting

solutions are represented by rectangles, in the fifth

case the solution is the area between two linear

functions (it is almost an open rectangle), and in the

sixth case the solution is a list of rectangles. These

solution areas are similar, but it is important to

handle and qualify these cases separately, because

their distinctive treatment supports the work of the

magazine editors. Furthermore, the validation rules

of the different cases facilitate in providing better

layout solutions with more possibilities.

Introducing the inequalities provides a method

that is closer to the practice and makes more precise

modeling possible. The results of the contraction

operations are also more precise because they also

describe the range of applicable values (co-domain).

Another advantage to the area-based solution is

that introducing additional margins to layout

element is no more challenging than it was in the

case of equation set-based approach. We only have

to move the functions up and right, but their

handling method remains the same.

3 Horizontal/Vertical Splitter

Algorithm – Based on the Results of

the Solution Area Approach
Our layout templates are composed of basic layout

elements: texts, images and captions. A splitter

component contains two or more elements ordered

in one direction, either horizontally or vertically. In

a Horizontal Splitter Component, elements are

arranged in descending order. Figure 1b provides an

example, in which three elements are arranged one

below another. The red lines indicate the borders

between the various elements.

Every primitive content type contains a default

adaptation mode. The questions are: What happens

with the splitter component if we stack different

elements and define their height calculation

method? What will be the resulting adaptation

method of the horizontal splitter component?

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 221 Issue 5, Volume 12, May 2013

Table 2. The inequalities and solution areas of the adaptation methods

ID
Adaptation

method
Inequalities Solution Areas

1 Free (O)
𝑐1 ≤ 𝑥 ≤ 𝑐2

𝑐3 ≤ 𝑦 ≤ 𝑐4

2 Fixed Width (W)
𝑐1 ≤ 𝑥 ≤ 𝑐2

𝑐3 ≤ 𝑦 ≤ 𝑐4

3 Fixed Height (H)
𝑐1 ≤ 𝑥 ≤ 𝑐2

𝑐3 ≤ 𝑦 ≤ 𝑐4

4 Fixed (F)
𝑐1 ≤ 𝑥 ≤ 𝑐2

𝑐3 ≤ 𝑦 ≤ 𝑐4

5
Fixed Ratio (X)

(Calc. Ratio)

𝑐1 ∗ 𝑥 + 𝑙1 ≥ 𝑦 ≥ 𝑐2 ∗ 𝑥 − 𝑙2
𝑤1 ≤ 𝑥 ≤ 𝑤2

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 222 Issue 5, Volume 12, May 2013

6
Fixed Area (+)

(Calc. Ratio)
-

Layout templates contain cells assembled

hierarchically. Every cell has two basic properties:

(i) the adaptation method (resizing mode) of the

contained element, and (ii) the height calculation

method. The contained element can be a simple or

complex layout element, e.g., another horizontal

splitter component.

In this section, we discuss the results using the

Horizontal Splitter Component, which are also true

for the Vertical Splitter Component in a similar

way.

3.1 The Basics of the Splitter Algorithms
The behavior (adaptation) methods of the basic

layout elements (text, image and caption) are

provided in Table 1, are the followings:

1. Free text; Free (O): containing optional width

and height.

2. One column text; Fixed Width (W): the width

is fixed, but the height is optional.

3. Header image; Fixed Height (H): the height is

fixed, but the width is optional.

4. Fixed image; Fixed (F): both height and width

are fixed.

5. Resizable image; Fixed Ratio (X): the ratio is

constant.

6. Caption (finite text); Fixed Area (+): the

consumed area is constant.

7. Calc. Ratio (C): for a given width, it calculates

the appropriate height, and vice versa. This is a

generalized version of points 5 and 6.

Besides these considerations, the approach

suggests the following height definition methods:

- FixedH (FH): The height is defined with a

fixed value. It can be a screen rate (e.g., 30%

of the screen height) or expressed with ideal

row height (the number of text rows). Allowed

cell content adaptation methods: Free and

Fixed Height (the contained element

determines the height).

- FixedHW (FHW): This cell determines both

the height and width of the template.

Therefore, only one cell with this type can be

inserted into a table. If a fixed height value is

defined similarly to FixedH, or the fixed width

value is defined, then the allowed cell content

adaptation methods are: Fixed Ratio, Fixed

Area, Calc. Ratio and Fixed Width. If a fixed

width value is defined then the allowed cell

content adaptation methods are: Fixed Ratio,

Fixed Area, Calc. Ratio and Fixed Height. If

neither height nor width value is defined, then

the cell content adaptation method must be

Fixed.

- Auto (A): The height is determined by the

contained element. Given a width, the height is

automatically calculated. The width can be

defined by the splitter component (e.g., by a

nearby Fixed Width type cell) or a surrounding

condition. Allowed adaptation methods: Fixed

Ratio, Fixed Area and Calc. Ratio.

- AutoN (AN): AutoN stands for 1..n*Auto. This

means that the cell height is proportioned to an

automatically-sized (Auto) cell height, i.e., N is

a multiplication factor used to calculate the

final height of the element. Allowed adaptation

methods: Free and Fixed Width.

- *N: This method defines the utilization of the

remaining space. N is a multiplication factor

used to calculate the final height of the

element. Allowed adaptation methods: Free

and Fixed Width.

The size of the elements is not an area of major

concentration in our layout approach. In fact, this

lack of concentration regarding size is the

motivating factor in our layout approach, i.e., we do

not inquire about their size or requested size, but

instead focus on their adaptation methods. This

method defines their behavior during layout

calculation. The algorithms of the approach provide

answers to the following questions:

- Which cell containment type and cell height

adaptation method pairs are feasible and which

are invalid (contradicting)?

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 223 Issue 5, Volume 12, May 2013

- What is the behavior method of a splitter

component? Depending upon the contained

element, what is the resulting adaptation

method (e.g. Free, Fixed Ratio, or Fixed

Height)?

- How are the specific cell heights for a

particular device calculated?

It is necessary to examine all possible layout

element combinations. In order to minimize the

number of combinations, they are normalized,

which enables us to handle only those cases that

behave differently. The combinations and their

possible normalizations are discussed in the next

section.

3.2 Normalizing Layout Combinations and

Calculating the Resulting Equations
In an effort to finish with a reasonable number of

cases, we consolidate the similarly behaving height

definition methods and adaptation methods.

It is assumed that all horizontal splitter

combinations can be composed. The approach has to

account for the hierarchically applied horizontal

splitter components. This is necessary to understand

the resulting adaptation method, because these rules

should be applied during the combination of two or

more horizontal splitter components. From the

algorithm’s point of view, this represents a recursive

calculation method.

The layout element composition’s key

motivations are the following: A layout template

can contain several layout elements, which are often

hierarchically defined. In the case of a horizontal

splitter component, we aim to replace it, as well as

the contained layout elements, with a similarly

behaving, single element. The supplanting element

should have the same layout behavior as the original

horizontal splitter. In this way, we can efficiently

manipulate the layout calculation of hierarchically

defined compound layout templates, even in the

case of a deep hierarchy.

In order to reduce the number of the different

content types and height definition method

combinations, we consolidate the similarly behaving

cases. This process includes the normalization of

both the height definition methods as well as the

adaptation methods. As a result, we end with a

manageable number of cases.

We use the following special notations:

- ?: It signals a cell where optional content type

or height definition method can be inserted. Of

course, the actual content and method should

fulfill the conditions provide by the

surrounding elements.

- !: Invalid case.

- ../..: We use a slash as a separator to enumerate

the different input and output cases of the

layout normalization. For example O / O / W.

Furthermore, we use the already introduced cell

height definition methods: FixedH (FH), FixedHW

(FHW), Auto (A), AutoN (AN) and *N.

Figure 4. Consolidation of *N and AutoN height

definition methods (cases 1-3), consolidation of FixedH

(FH) height definition method (case 4), consolidation of

Fixed Area (+), Fixed Ratio (X) and Calc. Ratio(C)

adaptation methods (cases 5-8)

In Figure 4, the consolidation of *N and AutoN

height definition methods are provided by cases 1-3.

The consolidation consideration of the FixedH (FH)

height definition method is presented in case 4.

Cases 5-8 depict the consolidations related to the

Fixed Area (+), Fixed Ratio (X) and Calc. Ratio(C)

adaptation methods. For example, in the case of the

first consolidation we realize the following:

- Two cells, where both have Free (O)

adaptation method with a *N height definition,

behave in the same way as a single Free (O)

cell with a *N height definition method.

- Two cells, where the first has Free (O) and the

second has Fixed Width (W) adaptation method

with a *N height definition, behave in the same

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 224 Issue 5, Volume 12, May 2013

way as a single Fixed Width (W) cell with a *N

height definition method.

- Two cells, where both have Fixed Width (W)

adaptation method with a *N height definition,

represents an invalid case.

In case 3, there is a horizontal splitter with two

cells, where the first has Auto (A) and the second

has AutoN (AN) height definition method.

According to our earlier definitions, the AutoN cell

can contain only layout elements with optional

height (Free and Fixed Width). This ensures that the

layout has a widespread solution. The new,

consolidated cell adaptation method is also Auto.

The resulting polygon is the stretched polygon from

cell Auto. For all valid y values the resulting value

will be y*(N+1), because the height of the

contracted cell is yAuto* (N+1). Therefore, the

stretching factor of the original polygon is (N+1).

Figure 5 provides the details of the layout

element consolidation of case 3 from Figure 4

(above). The horizontal splitter component contains

two layout elements. These elements have Auto and

AutoN adaptation methods. In the current case, the

value of N is 2. The resulting layout element is

presented on the right side of Figure 5. This element

has an Auto adaptation method.

Figure 5. Example consolidation (Figure 4, Case 3)

The next aspects we must consider are the

minimum and maximum values assigned to the cell

AutoN. These values cut the resulting polygon with

the appropriate lines. These cutting lines are parallel

to the x or y-axis.

In case 4, the layout element has a definite fixed

height. We can apply free elements as well, but due

to the FixedH height definition method, the resulting

adaptation method will be FixedH. This

consolidation also reduces the number of the

possible combinations.

The main point of the consolidation rules are

provided in case 8. This is because the Calc. Ratio

(C) containment is general; this is typically not a

basic layout element but the result of another splitter

component.

Figure 6 summarizes the results of the layout

definition normalization rules. This table shows the

possible containment type and height definition

method pairs.

Figure 6. The summary of the normalization

We investigated the different content type

combinations and determined the resulting

adaptation method of the horizontal splitter

component, using the normalization rules. If the

splitter contains one cell, it corresponds to the

adaptation of the actual containment. In Figure 7,

cases 1-9 introduce the possible content

combinations when the horizontal splitter

component contains two content cells. The figure

denotes the resulted adaptation method of the actual

combination and the number of the resulting

inequalities. For example, case number 3 contains a

cell with an optional content (?) and a cell with a

Free (O) content. The related height definition

methods are FixedHW (FHW) and *. The resulted

adaptation method of the splitter component is

Fixed Width (W). The tables also provide the

numbers of the related inequalities.

In Figure 7, cases 10-13 provide the possible

content combinations for three cell horizontal

splitter components and cases 14-15 for four.

Among the discussed content combinations, case

number 2 introduces a content combination which

results in a contradiction related to the resulting

width. Combination 14 is also forbidden, but an

identical situation is handled in case 2.

It is sufficient to contract the appropriate

equations, when the algorithm has to determine the

resulting behavior method of a splitter component. It

is unnecessary to account for the actual height

definition methods. The height definition methods

affect the validation (what type of primitive layout

elements can be placed into particular cells), as well

as the calculation of the final layout. This

corresponds to our goal: to determine the behavior

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 225 Issue 5, Volume 12, May 2013

of compound elements (splitter components) based

on the polygons defined by inequalities.

Figure 7. The summary of the normalization

The composition of layout elements is

commutative, meaning that the order of the elements

in a splitter component is optional. This also relates

to our motivation. If we are able to prove this

statement, then the layout editor should disregard

the order of certain layout elements, i.e., the layout

elements can be optionally rearranged.

4 Calculation of the Resulting

Adaptation Method
This section introduces an iterative algorithm for the

splitter components related resulting adaptation

method calculation.

4.1 The Hierarchy of the Layout Elements
Primitive elements are the basic building blocks of

the hierarchical templates. They represent the leaves

of the template tree. Splitter components are

composed from leaves. Furthermore, splitter

components can contain not only primitive

elements, but other splitter components as well. The

metamodel (a UML class diagram) of the Template

Tree language is shown in Figure 8. Green nodes

represent the primitive layout elements, and blue

nodes indicate the two types of splitter components.

The leaf elements on a template tree correspond

to the inequalities 1-6 (Table 1), and the further tree

nodes are based on the inequalities of a splitter

element. The supplemental constraints of the splitter

components (e.g., fixed height or fixed width

values) are defined with additional inequalities.

Figure 8. The metamodel of the Template Tree language

Figure 9 depicts an example hierarchical layout

definition and the corresponding template tree. The

template contains two splitter components (S1 and

S2), an image (1) and the splitter S2 are embedded

into splitter S1. Splitter S2 contains a text area (2),

an image (3), and a caption (finite text) component

(4).

Figure 9. Example hierarchical layout definition and the

corresponding template tree

Definition (Template Tree). The template tree is

a model built from primitive layout elements (text,

image and caption) and splitter components

(horizontal splitter and vertical splitter) according to

the Template Tree language metamodel.

In regards to the online magazine we have

defined the following requirements:

1. The magazine should work on optional screen,

i.e. the approach should support optional

screen resolution. This means that in vertical

direction, the layout should automatically

adapt to the device properties.

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 226 Issue 5, Volume 12, May 2013

2. The content can be scrolled in the horizontal

direction. Therefore, the calculated layout has

no horizontal direction related restrictions.

These requirements are applied to the root

template. Therefore, it should be possible to

parameterize the root template in the vertical

direction, and the template should be either

calculated or contain a fixed size in the horizontal

direction. If the horizontal direction values are

calculated, then they are based on the vertical

settings. These considerations constraints the

possible adaptation methods of the root template

element: Fixed Width (W), Fixed Ratio (X), Fixed

Area (+), Calc. Ratio (C) or Free (O). In the case of

the Free (O) adaptation method, the approach can

determine the width of the column template, e.g., it

can apply the default column text element width.

Note. If, instead of the horizontal scrolling

feature, we wanted to provide a page-based layout,

then the root template should have a Free (O)

adaptation method in order to be applicable on

optional screen sizes. In a similar way, we can

conclude that the vertical scrolling could be

conducted using the following adaptation methods:

Fixed Height (H), Fixed Ratio (X), Fixed Area (+)

or Calc. Ratio (C).

Definition (Basic Layout Element). The

adaptation method of a basic layout element is one

of the following adaptation methods: Free (O),

Fixed Width (W), Fixed Height (H), or Fixed (F).

These adaptation methods correspond to the

inequalities 1-4 in Table 1.

4.2 The Steps of the Adaptation Method

Calculation Algorithm
Splitter components allow the placing of layout

elements one below another (or one next to another)

and calculate the resulting adaptation method. Based

on the polygons (defined by the inequalities) related

to the behavior of different layout elements, the

algorithm calculates the polygon of the splitter

element. The resulting polygon determines the

adaptation method of the whole component.

Supposing that the algorithm can accomplish this

for all splitter elements, the result is a single

polygon (inequality set). In order to end with a

single polygon (or list of polygons), the algorithm

applies the convolution operation.

The inputs of the convolution operation are the

adaptation methods of the two layout elements. An

adaptation method is defined by one or more

polygons. The result is also a polygon set, therefore,

the convolution operation, taking into account two

polygon sets (Set1 and Set2), produces a third

polygon set (SetResult).

The convolution operation contracts each of the

polygons from Set1 with each of the polygons from

Set2. The convolution operation is performed

according to the rules of horizontal and vertical

contractions. The convolution can be performed

based on the inequality sets, however, given the

information from the polygons, it is more efficient

but also more expressive.

Figure 10 shows an example result of the

convolution operation. The contracted layout

elements are an image and a fixed length of text.

The input polygons are related to a resizable image

(Fixed Ratio (X)) and a finite text (Fixed Area (+)).

They are provided in Table 2 (Case 5 and Case 6).

Figure 10. Example result of the convolution operation

We will now introduce the rules of the polygon

convolution operation. Let f(x,y) and g(x,y) be the

describing functions of the two polygons (or

polygon sets) in the following way. The values of

these functions are 1 where the corresponding

polygon (or polygon set) has an internal point or the

point is on its circumference, and otherwise is 0.

Definition (Horizontal Convolution Operation).

The horizontal convolution operation is defined in

the following way:

ℎ(𝑥0, 𝑦0)

= {

1, 𝑖𝑓 ∃𝑦1 𝑎𝑛𝑑 𝑦2, 𝑤ℎ𝑒𝑟𝑒 𝑦0 = 𝑦1 + 𝑦2 𝑎𝑛𝑑

𝑓(𝑥0, 𝑦1) = 1 𝑎𝑛𝑑 𝑔(𝑥0, 𝑦2) = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The definition of the horizontal convolution

operation shows that, in the case of the horizontal

splitter component, the result is 0 for those polygon

pairs, where the intersection of the polygon

projections on the x-axis is empty. For example, in

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 227 Issue 5, Volume 12, May 2013

Figure 11, there are no common points of the two

input polygons before x1 and after x2, therefore, in

these ranges the polygon projections on the x-axis

are empty.

Figure 11. Convolution of Fixed Width (W) and Fixed

Ratio (X) layout elements

Figure 11 depicts an example convolution. In this

case, the two input layout elements are a one

column text (Fixed Width (W)) and a resizable

image (Fixed Ratio (X)). The result is presented in

the third frame of reference. The ideal point depicts

the intersection of the two original functions.

In our CTLS approach, concerning its basic

layout components and splitter elements, our goal is

to characterize the different, describing polygons

and polygon contour types. These polygons define

the adaptation methods of the layout elements. In

order to achieve the goals of the layout approach,

we define the Monotone Polygon, Upper Polygon

Contour, Bottom Polygon Contour, Monotone

Contour, Monotone Increasing (Decreasing)

Polygon and First Degree Monotone Polygon.

Furthermore, we use these definitions to provide the

CTLS approach related propositions. The final goal

is to make both the layout algorithms and the related

implementation more effective.

Definition (Monotone Polygon). A polygon P in

the plane is called monotone with respect to a

straight line L, if every line orthogonal to L

intersects P no more than twice [9].

Proposition. Assume two monotone polygons

(P1 and P2) with respect to the x-axis. Contracting

polygons P1 and P2 with Horizontal Convolution

Operation the resulting polygon PResult is also a

monotone polygon with respect to the x-axis.

Proof. For an optional x0 let 𝑦2 ≥ 𝑦1, width

𝑦1 = min {𝑦: 𝑓(𝑥0, 𝑦) = 1} and 𝑦2 =
max {𝑦: 𝑓(𝑥0, 𝑦) = 1}.

In a similar way for g(x,y): for an optional x0 let

𝑌2 ≥ 𝑌1, width 𝑌1 = min {𝑦: 𝑔(𝑥0, 𝑦) = 1} and

𝑌2 = max {𝑦: 𝑔(𝑥0, 𝑦) = 1}.
The original polygons are monotone, therefore,

every point between y1 and y2, as well as between

Y1 and Y2, are parts of the original polygons. The

resulting h(x,y) function is defined in the following

way:

ℎ(𝑥0, 𝑦0) = {
1, 𝑖𝑓 𝑦1 + 𝑌1 ≤ 𝑦0 ≤ 𝑦2 + 𝑌2

0 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

This definition corresponds to the original

definition of h(x,y), because 𝑓(𝑥0, 𝑦0) = 1 𝑖𝑓 𝑦1 ≤
𝑦0 ≤ 𝑦2, 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒 0, and 𝑔(𝑥0, 𝑦0) = 1 𝑖𝑓 𝑌1 ≤
𝑦0 ≤ 𝑌2, 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒 0. So any 𝑦 ∈ [𝑦1 + 𝑌1, 𝑦2 +
𝑌2] has a decomposition. The resulting definition of

h(x,y) function is a monotone polygon with respect

to x-axis.

A monotone polygon, with respect to the x-axis,

can be described with two sets of edges. The y

values of the points belonging to the upper edge set

(ESetUpper) is always greater or equal to the y values

of the points belonging to the bottom edge set

(ESetBottom) for any given x0.

Definition (Upper Polygon Contour). The edges

of the set ESetUpper and the related nodes represent

the upper polygon contour.

Definition (Bottom Polygon Contour). The edges

of the set ESetBottom and the related nodes represent

the bottom polygon contour.

Definition (Monotone Contour). The contour of

the polygon is a monotone increasing (decreasing) if

for all (𝑥𝑖 , 𝑦𝑖) orderd by x values is true that

𝑦𝑖+1 ≥ 𝑦𝑖 (𝑦𝑖+1 ≤ 𝑦𝑖).
Note. The nodes are connected by straight lines,

therefore, the monotone behavior is also true for the

function defined by these lines.

Definition (Monotone Increasing (Decreasing)

Polygon). A polygon that is a monotone polygon

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 228 Issue 5, Volume 12, May 2013

with respect to x-axis is a monotone increasing

(decreasing) polygon and its upper polygon contour

is monotone increasing (decreasing) and its bottom

polygon contour is monotone increasing

(decreasing).

Proposition. Applying the convolution operation

for two monotone increasing (decreasing) polygons

produces a similarly monotone increasing

(decreasing) polygon.

Proof. The upper and bottom polygon contours

are defined by the following steps.

1. Remove those parts of the contours that are not

part of the common projections on the x-axis.

The monotone behavior of the resulting

contours and polygons are not affected,

because we only removed a part of the

contours.

2. Let f(x) and F(x) define the upper contours of

the two polygons, and let a(x) and A(x) define

the bottom contours of the two polygons.

Based on these, we can determine the contour

of the resulting polygon. It is always true that

𝑎(𝑥) ≤ 𝑓(𝑥) 𝑎𝑛𝑑 𝐴(𝑥) ≤ 𝐹(𝑥).
Based on the fact that the two input polygons

are monotone, the resulting polygon can be

defined in the following way:

ℎ(𝑥0, 𝑦0) = {
1, 𝑖𝑓 𝑦1 + 𝑌1 ≤ 𝑦0 ≤ 𝑦2 + 𝑌2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑦1 = min{𝑦: 𝑎(𝑥0, 𝑦) = 1} and

𝑦2 = max{𝑦: 𝑓(𝑥0, 𝑦) = 1}. Furthermore,

𝑌1 = min{𝑦: 𝐴(𝑥0, 𝑦) = 1} and 𝑌2 =
max{𝑦: 𝐹(𝑥0, 𝑦) = 1}.

Based on the upper and bottom contours, the

resulting polygon can be defined in the

following way:

ℎ(𝑥0, 𝑦0) = {

1, 𝑖𝑓 𝑎(𝑥) + 𝐴(𝑥) ≤ 𝑦0 ≤

𝑓(𝑥) + 𝐹(𝑥)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Based on this, the upper contour of the

resulting polygon is the following:

𝑒(𝑥) = 𝑓(𝑥) + 𝐹(𝑥)

Based on this, the bottom contour of the

resulting polygon is the following:

𝑟(𝑥) = 𝑎(𝑥) + 𝐴(𝑥)

The sum of the similarly monotone increasing

(decreasing) functions remains monotone

increasing (decreasing), therefore the

convolution operation preserves the monotone

behavior of the upper and bottom contours.

Thus, the polygon remains monotone as well.

Proposition. If the first derivatives of the

functions describing the contour of the input

polygons (P1 and P2) are monotone increasing

(decreasing), then the first derivative of the function

defining the contour of the polygon (PResult) resulting

from the convolution operation is also monotone

increasing (decreasing).

Proof. Based on the proof of the previous

proposition and the utilizing of the sum rule in

differentiation: f’ + g’ = (f + g)’. If f’ and g’ have a

certain property, then f’ + g’ also has that property

[10].

Definition (First Degree Monotone Polygon).

The polygon is monotone in the first degree if: its

upper polygon contour is monotone increasing with

respect to the x-axis, the first derivation of the upper

polygon contour is monotone decreasing, the bottom

polygon contour is monotone increasing with

respect to the x-axis and the first derivation of the

bottom polygon contour is monotone increasing.

Note. If the upper contour of the polygon is

monotone increasing with respect to the x-axis, then

it is also monotone increasing with respect to the y-

axis. If the first derivation of the polygon contour

with respect to the y-axis is monotone increasing,

then the first derivation of the polygon contour with

respect to the x-axis is monotone decreasing.

Proposition. Commuting the x and y coordinates,

the above statements related to the horizontal

convolution operation are also true for the vertical

convolution operation.

Proof. Based on the similarities of the horizontal

and vertical splitter components, and based on the

above proofs.

Proposition. The CTLS layout system provides

only those layout elements in which the adaptation

methods are described with first degree monotone

polygons.

Proof. The proof is based on a mathematical

induction:

1. The polygons related to the 6 basic layout

elements are first degree monotone polygons

(Table 2).

2. The basic layout elements are contracted to

each other. During this contraction, the

convolution operation preserves the first

degree monotone behavior of the polygons.

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 229 Issue 5, Volume 12, May 2013

4.3 Propagating the Results Down in the

Layout Hierarchy
We can calculate the adaption method of the root

layout element by recursively applying the

adaptation method calculation algorithm. Reaching

the root level, every polygon has the valid height-

width value pairs. The algorithm picks a height-

width value pair and propagates the result down in

the layout element hierarchy to the child elements.

Each polygon takes into account the actual settings

of the higher level polygons. Finally, the available

areas are proportionally divided between the layout

elements.

5 The Fitness-Based Algorithm
The fitness-based algorithm extends the solution

area-based approach with the implementation of a

fitness function. The fitness function assigns the

quality value to the different x and y pairs (height-

width value pairs).

5.1 The Fitness Function
The solution area-based approach can be regarded

as a binary fitness function, which defines whether a

given height-width value pair is acceptable for a

layout element. This can also be extended to provide

a more sophisticated fitness function.

The requirements related to the fitness function:

- Simple and easy to define with few

parameters. This assures its ease of use among

the magazine editors. In this way, they can

easily contemplate the layout issues and

deliberate them. E.g., what is the ideal ratio, or

what is an acceptable variation from the ideal

settings?

- An efficient method should be developed to

determine the optimal height-width value pairs

(maximum points of the fitness function) for

the layout elements.

- Contracting layout elements, embedded into

horizontal and/or vertical splitters, facilitate

the calculation of the resulting adaptation

method. The resulting fitness function should

be easily calculated in a similar way.

Furthermore, the resulting fitness function

should be in a form that can be contracted with

another fitness function on the subsequent

level of the layout hierarchy.

- The maximum points (optimal height-width

value pairs) of the resulting fitness function

should also be efficiently calculated.

Our proposition is to apply a linear fitness

function, in which planes determine the quality of

the height-width value pairs.

5.2 The Steps of the Fitness-Based

Algorithm
Splitter components facilitate in the placement of

layout elements, one below another (or one next to

another), and calculate the resulting adaptation

method. Based on the polygons (defined by the

inequalities) and fitness functions of different layout

elements, the algorithm calculates the polygon and

fitness function of the splitter components. The

resulting polygon and fitness function determine the

adaptation method of the entire component and the

quality of the specific height-width value pairs. The

algorithm performs this step by contradicting the

layout elements. The algorithm always contradicts

two elements using the convolution operation. The

convolution operation is commutative, making the

contradiction order optional.

Assuming the algorithm can conceive the

contradiction for all splitter elements, the result is a

single polygon set (inequality set) and fitness

function (a set of planes).

Definition (Fitness Function). The function,

Fit(x,y), for a particular layout element provides the

quality value related to an x,y value pair (width-

height value pair). Invalid height-width value pairs

have a function value of 0 within the layout element.

These points are positioned outside of the polygon

defined by the inequalities of the layout element,

i.e., the polygon provides a mask for the fitness

function.

The quality value related to a certain height-

width value pair tells that how good, how accurate,

the layout element with a certain height-width value

pair is.

Now let’s examine the convolution operation

related to the horizontal splitter component.

The fitness function is an equation of a plane

- f(x): the function of the upper polygon contour

is monotone with respect to the x-axis.

- a(x): the function of the bottom polygon

contour is monotone with respect to the x-axis.

- p0(x0,y0,z0): the reference point is the bottom-

left point of the polygon. Due to the two way

monotony, this point is clear. z0 represents the

value of the fitness function for this point.

 The following formulas assume that this

point is related to the result of the

contracted polygons, i.e., x0=X0. Figure

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 230 Issue 5, Volume 12, May 2013

12 provides an example of this, where the

contraction of the polygons is based on

their common projections on the x-axis.

 For the bottom-left point: y0 = a(x0).

- The normal vector of the plane related to the

fitness function is n(mh; mv; -1).

 v(0; 1; mv): determines the rotation of the

plane defining the fitness function around

the x-axis.

 h(1; 0; mh): determines the rotation of the

plane defining the fitness function

surrounding the y-axis.

Based on the above considerations the fitness

function is the following:

ℎ(𝑥, 𝑦) = {

𝑧0 +𝑚ℎ ∗ (𝑥 − 𝑥0) + 𝑚𝑣 ∗ (𝑦 − 𝑦0),

𝑖𝑓 𝑎(𝑥) ≤ 𝑦 ≤ 𝑓(𝑥)

0 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

Figure 12. Input polygons of the convolution

During the convolution, the algorithm calculates

the function describing the resulted adaptation

method of the contracted layout element. Assume

that h(x,y) and H(x,y) are the adaptation methods of

the two layout elements. The resulting adaptation

method is as follows:

𝑒(𝑥, 𝑦)

=

{

arg max
𝑦1,𝑦2

(ℎ(𝑥, 𝑦) + 𝐻(𝑥, 𝑦)),

𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑦1 + 𝑦2 𝑎𝑛𝑑 ℎ(𝑥, 𝑦1) ≠ 0

𝑎𝑛𝑑 𝐻(𝑥, 𝑦2) ≠ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This means that the volume defined by the

(planes of the) fitness function should be

maximized.

In the case of planes, based on the principles of

linear programming, we can see that, when

convolving two polygon-fitness pairs, the result is

two polygon-fitness pairs. In the space, the resulting

polygons are one stacked on top of each other. They

have a common contour, but are described using

different fitness functions.

Assuming that mv < MV, we define the resulting

polygon-fitness pairs.

Definition (Upper Polygon).

- Upper contour: fe(x) = f(x) + F(x)

- Bottom contour: ae(x) = F(x) + a(x)

- Reference point: pe0(x0; y0=ae(x0); z0 +

H(x0,y0) = z0 + Z0 + Mv * (F(x0) - A(x0)))

- Normal vector: n(mh+Mh; mv; 1)

Definition (Bottom Polygon).

- Upper contour: Fe(x) = F(x) + a(x)

- Bottom contour: Ae(x) = a(x) + A(x)

- Reference point: Pe0(X0; Y0 = Ae(X0); Z0 +

z0)

- Normal vector: n(Mh + mh; Mv; 1)

Figure 13 illustrates the above definitions.

Figure 13. The resulting polygon-fitness pairs of the

convolution operation

5.3 Propagating the Results Down in the

Layout Hierarchy
We can calculate the adaption method of the root

layout element by recursively applying the fitness-

based algorithm. Reaching the root level, every

polygon has the valid height-width value pairs and

fitness values, where the higher fitness value means

the best solution. The algorithm picks the height-

width value pair with the highest fitness value and

propagates the result down in the hierarchy to the

child elements. At each hierarchy level, the number

of the affected polygons equals to the number of the

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 231 Issue 5, Volume 12, May 2013

source polygons (we do not count polygons with no

intersect). This differs from the solution-area based

approach. On each hierarchy level the solution is

related to only one of the polygons. For that polygon

the height or width of the element is proportionally

calculated and propagated further, while the

adjacent element size is maximized or minimized.

6 Conclusion
Mobile device owners are continually consuming

digital data, such as online magazines. Therefore

mobile devices play a significant role in our lives

[11]. Appropriate mobile applications and

supporting methods are necessary for these

platforms. Such a supporting method is the

automatic and adaptive layout calculation [12]. This

paper has introduced the Solution Area-Based

Algorithm of the Content-Driven Template-Based

Layout System.

The Content-Driven Template-Based Layout

System approach enables the application of both

horizontal and vertical splitter components and the

embedding of them into each other. Our algorithms

facilitate to deduce the resulting adaptation method

on any level of the layout element hierarchy.

We have introduced the principles of the solution

area-based approach and worked out the solution

areas of the basic layout elements. Furthermore, we

have introduced the splitter algorithms, the

normalizing layout combinations and we have

calculated the resulting adaptation methods.

We have worked out the concept to assign fitness

values to different values of the solution area. This

facilitates to give preference to certain solutions

within the solution area. The approach facilitates to

parameterize the fitness value calculation. This is

also a powerful tool for layout editors.

Acknowledgements
This work was partially supported by the European

Union and the European Social Fund through

project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt.

Balatonfüred.

References:

[1] Gartner survey 2010,

http://www.gartner.com/it/page.jsp?id=152921

4

[2] Vision: Developer Economics 2012,

http://www.visionmobile.com/devecon.php

[3] E. Schrier, M. Dontcheva, C. Jacobs, G. Wade,

and D. Salesin, Adaptive layout for

dynamically aggregated documents, In

Proceedings of the 13th international

conference on Intelligent user interfaces (IUI

'08), ACM, New York, NY, USA, pp. 99-108,

2008.

[4] N. Hurst, and K. Marriott, Towards optimal

table layout, 2005,

http://citeseerx.ist.psu.edu/viewdoc/summary?d

oi=10.1.1.60.3858

[5] I. Albert, H. Charaf and L. Lengyel, Layout

Definition of Online Magazines with Splitter

Components, International Journal of

Engineering Research and Development 4:(7),

pp. 61-69, 2012.

[6] Content-Driven Template Based Layout

System (CTLS) web page,

https://www.aut.bme.hu/CTLS

[7] I. Albert, H. Charaf and L. Lengyel, The

Reference Layouts of the Content-Driven

Template-Based Layout System – A Technical

Report, Budapest University of Technology

and Economics, 2012.

[8] I. Albert, H. Charaf and L. Lengyel, The Mixed

Splitter Algorithm of the Content-Driven

Template-Based Layout System, 6th WSEAS

International Conference on Visualization,

Imaging and Simulation, Lemesos, Cyprus,

March 21-23, 2013. Accepted.

[9] F. P. Preparata and M. I. Shamos,

Computational Geometry - An Introduction,

Springer-Verlag, ISBN 0-387-96131-3. 1st

edition: ISBN 0-387-96131-3, 1985, 2nd

printing, corrected and expanded, 1988: ISBN

3-540-96131-3.

[10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C.

W. Clark, NIST Handbook of Mathematical

Functions, Cambridge University Press, 2010,

ISBN 978-0-521-19225-5.

[11] Vision Mobile Developer Economics 2013:

The tools report, 2013,

http://www.visionmobile.com/product/develop

er-economics-2013-the-tools-report/

[12] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and

D. Salesin, Adaptive document layout,

Commun. of ACM 47, 8, 2004, 60-66.

WSEAS TRANSACTIONS on COMPUTERS István Albert, Hassan Charaf, László Lengyel

E-ISSN: 2224-2872 232 Issue 5, Volume 12, May 2013

