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Abstract: - A novel information identification model is proposed to support accurate classification tasks with 
mixtures of categorical and real-valued attributes. This model combines the advantages of rough set theory and 
cluster validity method to promote the classification quality to the higher levels. Real-valued attribute values 
are pre-processed by fuzzy c-means clustering method and then analyzed by variable precision rough set 
theory. Our cluster validity index finalizes the information system with the feasible cluster number for each 
attribute. In the case that a considerable amount of ambiguous instances is included, the experimental results 
show that our model can explicitly improve traditional classifiers in the aspects of classification accuracy and 
discrimination power. This paper provides a better solution for the generation of reliable decision rules for 
classification problems with attribute mixtures. 
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1 Introduction 
Information and knowledge discovered from the 
tremendous amount of data have constantly 
encouraged the data mining techniques to step 
forward a higher level. These techniques including 
association rules, classification models, cluster 
analyses, sequential patterns, and time sequence 
methods [27]. Many modern decision makers 
concentrate more and more their attentions on how 
to interpret the historic transaction data. For the sake 
of making right strategies, they are in the urgent 
need of learning past experiences and inducing the 
useful results. Among a variety of different data 
mining techniques, classification is the typical 
inductive learning model toward supervising and 
exploring the relationships between a number of 
attributes and the target class. A classification 
algorithm capable of implementing a learning model 
can be used to generate a specific classifier. The 
well-known classifiers include decision trees [30], 
rule-based algorithm [9], neural networks (NN) 
[40], support vector machines (SVM) [33], 
conformal predictors [35], Bayesian classifiers [41], 

logistic regression [25], linear discriminant analysis 
(LDA) [4], nearest neighbor methods [10], random 
forests [31], and so forth. In addition, some 
classification methods [8, 16, 18, 26, 37] are 
proposed for the problems of text classification. 
The data types of attributes fall into two broad 
categories: nominal and numeric. Nominal (also 
termed as categorical) attributes generally comprise 
text-based data and they can either be unordered (for 
example, male or female) or ordered (for example, 
high or low). Numeric attributes are usually 
preserved with ordinal data such as integer or real-
valued data. Many classifiers can have more favor 
to numeric attributes than nominal attributes. For 
example, to achieve high quality of classification 
results, classifiers such as SVM, NN, and LDA 
prefer to handle real-valued attributes. However, in 
case that datasets equipped with a plentiful amount 
of nominal attributes or the crucial information is 
identified in some nominal attributes, these 
classifiers are unable to draw the suffice information 
in their supervised learning processes. Namely, 
many classifiers are likely to suffer from the 

WSEAS TRANSACTIONS on COMPUTERS Kuang Yu Huang, Hung-Yi Lin

E-ISSN: 2224-2872 198 Issue 5, Volume 12, May 2013

mailto:kyhuang@mail.ltu.edu.tw


situation of attribute mixtures and in turn deteriorate 
their classification performance. Although decision 
trees [14], nearest neighbor methods [39], random 
forests [34], and logistic regression [24] get rid of 
the problem of attribute mixtures, it still leaves 
space for further improvement. This triggers the first 
motivation of our method. 
Ambiguous information involved in the supervised 
learning process readily cause overfitting problem. 
Many traditional classification models ignore to 
distinguish the typical instances from ambiguous 
ones. Classifiers constituted from such models could 
have the poor discrimination powers suffering from 
the overfitting problem. Rough set (abbreviated as 
RS) [29] is the well-known theory which can deal 
with the vagueness and uncertainty of categorical 
data. RS analyzes an information system based on 
the advantageous scenario of data driven, 
nonparametric, and less restrictive in a priori 
assumption. RS devotes the mathematical analyses 
on the data structure of the given information and its 
analysis of equivalence classes is helpful to 
distinguish indiscernibility and vagueness from 
unambiguous information. Such advantage in RS 
triggers the second motivation of our method. In 
other words, RS is capable of producing the better 
knowledge representation structure without severely 
suffering the indiscernible and vague information. 
So, the using of RS promotes a higher probability to 
generate the meaningful and interpretable decision 
rules in an intuitive and comprehensible manner 
[11]. 
Although the usefulness of RS is already verified in 
many scientific fields such as machine learning, data 
mining, and pattern recognition [21], it lacks the 
capability in tolerating some certain extent of 
uncertainty or misclassification error [5, 6]. To 
remedy such drawback, Ziarko [42] allows some 
extent misclassification in RS and proposes variable 
precision rough set (VPRS). In VPRS, the uncertain 
nature of information within the interested system is 
handled using the concept of β-lower and β-upper 
approximate sets. The β-lower approximate set 
contains all the objects within the system which can 
be unambiguously ascribed to a particular target set 
with a certain pre-defined misclassification error, 
and provides the information required to extract a 
set of decision rules with which to classify new data 
arrivals within the system. On the other hand, the β-
upper approximate set contains all the objects within 
the system which may possibly belong to a 
particular target set. In this paper, the VPRS’s 
tolerant capability of uncertainty or 
misclassification error is adequately employed to 

concrete the information derived from the typical 
objects.  
The remainder of this paper is organized as follows. 
Section 2 respectively reviews the fundamental 
designs of fuzzy c-means, VPRS, and clustering 
validity index function. Section 3 employs a 
hypothetical example and presents how to integrate 
these concepts to complete a novel information 
identification model supporting classification 
problems. The experimental results of classification 
performance regarding accuracy and discrimination 
power are given in Section 4. Finally, Section 5 
presents some brief concluding remarks and 
indicates the intended direction of future research. 
 
2 Related work 
 
2.1 Clustering method 
As is well known, cluster analyses can achieve the 
explorative task of assigning a set of data into 
clusters so that the data in the same cluster are more 
similar to each other than to those in other clusters. 
In hard clustering, data is divided into distinct 
clusters, where each data element belongs to exactly 
one cluster. In fuzzy clustering (also termed soft 
clustering), data elements can belong to more than 
one cluster. Fuzzy clustering provides the higher 
flexibility and thus the better analytical quality than 
hard clustering. So, we adopt the most widely used 
fuzzy clustering algorithm, i.e., fuzzy c-means 
(FCM) algorithm [12], in this paper. The main 
advantages of FCM are its simplicity and speed 
which allows it to run on large datasets. The detail 
procedures about how to implement FCM are 
omitted here. 
 
2.2 VPRS model 
The VPRS is a generalized model of RS that inherits 
all basic mathematical properties of the original RS 
model. RS model assumes that the universe under 
consideration is known and all conclusions derived 
from the model are only applicable to this universe. 
However, in practice, there is an evidence show that 
only a smaller set of examples suffices for 
generalizing the conclusions of a larger population. 
The VPRS model allows for a controlled degree of 
misclassification. If the majority of available data 
can be correctly classified, any partially incorrect 
classification rule provides valuable trend 
information about future test cases. 
Every object (i.e., example or instance) x in a 
universal set U is characterized and classified by a 
set of conditional attributes A and a single decision 
attributes d. The VPRS model deals with partial 
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classifications by introducing a precision parameter 
β. This parameter is the threshold of the portion of 
objects in a particular conditional class being 
classified into the same decision class. In RS model, 
β is equal to one. The past studies involved in VPRS 
do not investigate the choosing of β. The systematic 
method presented by [19] can determine the value of 
β using FCM clustering method and related fuzzy 
set theories. In case that an information system is 

processed by the VPRS model with 15.0 ≤< β , 
the goal of this processing is to identify the β-lower 
and β-upper approximate sets associated with each 
class of the decision attribute. In general, for a 
subset of objects X extracted from U (i.e., UX ⊆ ), 
the β-lower approximation set under a subset of 
conditional attributes P (i.e., AP ⊆ ) is denoted as 

)(XRP
β

and can be expressed as follows. 
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For the k-th class of the decision attribute, the 

accuracy denoted as βαk  is measured as
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In the case of 1=β , the cardinalities of )(XRP
β  

and )(XRP
β are equal to those of the lower and 

upper approximation sets in RS theory. That is, the 
effect of VPRS model is the same as that of RS 
model. 
 
2.3 Cluster validity index and MV-index 
 
Before applying VPRS model to an information 
system, it necessitates the number of clusters for 
every attribute in the dataset. Unfortunately, such 
information is not known a priori. Finding the 
optimal number of clusters for discretizing a set of 
real-valued attributes is a NP-hard problem [23, 32]. 
To prevent from falling into the NP-hard situation, 
cluster validity index [7] is integrated with VPRS 
model for the assessment of cluster quality in this 
paper. Namely, we choose the adequate cluster 
number by means of comparing distinct index 
values. Many cluster validity indexes have been 
proposed to assess the nature of fuzzy clustering 
methods [15, 28, 36]. The common insufficient part 
of them is that they do not take the complicated 

interrelationships among various attributes into 
account. In [20, 22], a heuristic VPRS-based index 
is proposed, which can integrate a new cluster 
validity index function with the VPRS model. The 
major contributions of this approach are threefold. 
First, it is very feasible to classify labeled/unlabeled 
datasets. Second, it provides a more reliable basis 
for the extraction of decision-making rules from 
labeled/unlabeled datasets. Third, it generates the 
feasible cluster number for unlabeled attributes. 
In this paper, we propose a new index function 
modified from VPRS index and abbreviated it as 
MV-index. Because VPRS-based index is only 
feasible to categorical attributes, we utilize the 
VPRS-based index and our MV-index for the handle 
of mixture attributes. MV-index becomes a helpful 
complement to the VPRS-based index. The MV-
index ensures a small number of compact clusters 
are applied to the information system and 
maximizes the separation distance between these 
resulting clusters. It can also significantly improve 
the accuracy of approximation when an appropriate 
clustering scheme is applied in advance. The design 
of MV-index is given as follows. 
For the completeness of explanation, the notations 
used in the design are given as follows.  
 N: The total number of objects in the 

dataset. 
 d : The cardinalities of d. Precisely, the 

class number of the decision attribute d.  
 κ : The designated cluster number used to 

partition real-valued attributes. 
 iz : The centroid of the lower approximate 

set associated with the i-th class for the 
decision attribute d. 

 βα i : The accuracy of the i-th class of the 
decision attribute in VPRS model, 

|}|,,2,1{ di ∈ . 
For a given dataset X, the measurement of MV-
index adopting a cluster number κ  is by means of 
the computation of attribute values in all real-valued 
attributes and the decision attribute.  The index is 
given as 

F
DMV
×

=
κ

κ )(                                                   (3) 

, where F measures the compactness inside the 
resulting clusters while D measures the 
separation outside the resulting clusters. Since 
the more compact individual clusters (i.e., lower 
measurement of F) and the more separable 
cluster centroids (i.e., higher measurement of 

WSEAS TRANSACTIONS on COMPUTERS Kuang Yu Huang, Hung-Yi Lin

E-ISSN: 2224-2872 200 Issue 5, Volume 12, May 2013



D) are expected, the goal in this process can be 
reduced to find the least value of κ which 
maximizing the MV-index. F is formulated as 

∑∑
= =

−×d

i

N

j i

ij zx

1 1
βα

δ , where δ is the dummy 

variable with the alternative values of 0 or 1. 
After the approximate sets are identified, in 
case that jx is classified into the i-th class with 
centroid of iz , δ is assigned to be 1. Otherwise 
δ is assigned to be 0. The calculation of iz has 
to retrieve the raw data. The higher the accuracy 

βα i , the more the term F contributes to the MV-

index. Term D is formulated as ji

d

ji
ji

zz −
≠
=

||

1,
max  

which indicates the maximum separation 
distance among the centroids. Since the 
distances measured from categorical attributes 
are meaningless, the measurements of iz  and D 
in the MV-index is valid only when real-valued 
attributes are considered. Again, we remind that 
the proposed MV-index is responsible for the 
decision of optimal cluster number (i.e., κ ) for 
all real-valued attributes while the handles of 
categorical attributes appeal to VPRS-based 
index. 
 
3 Novel information identification 
model 
In order to explicitly illustrate the computation of 
MV-index and in turn the determination of optimal 
cluster number for real-valued attributes, a simple 
hypothetical dataset with six objects, i.e., X={x1, 
x2, x3, x4, x5, x6}, as shown in Table 1 is taken to 
demonstrate our design step by step. This 
hypothetical dataset comprises two real-valued 
attributes (i.e., a1 and a3) and one categorical 
attribute (i.e., a2). The decision attribute d has the 
alternative value of class 1 or class 2 (respectively 
denoted as c1 and c2). The following three steps 
complete the calculation of MV-index for every 
round. 
 
Step I. Cluster analysis using FCM. 
Initially, the cluster number κ  assigned to handle 
real-valued attributes using FCM is 2, i.e., 2=κ . 
Table 2 shows the membership values of a1 and a3 
for c1 and c2. Attributes a2 and d retain their 
original values. 
 

Step II: Generation of decision table and 
approximate sets. 
By the using of index function maxI  proposed in 
[22], the membership values depicted in Table 2 are 
taken to determine the proper cluster to which the 
attribute value belongs.  As shown in Table 3, the 
results from maxI  is consistent with an intuition that 
the large membership values dominate the decision 
in this example. The output of this step is called 
decision table where only discrete values are 
preserved. 
For the simplicity of explanation, the resulting first 
and second classes of the decision attribute for the 
hypothetical dataset are listed in Table 4. The 
original data followed with dominative 
memberships in the parentheses are depicted in the 
table. The parameter β of the first class (and the 
second class) is selected from the minimum among 
the membership values (please refer to the numbers 
with shadow). As formulae (1) and (2) mentioned in 
Section 2.2, theβ -lower and β -upper approximate 
sets associated with each class of the decision 
attribute can be expressed as follows. 
 For the first class (i.e., 1cd = ), 

)(861.0 XR A = },{ 43 xx and )(
861.0

XR A  = 

},,{ 543 xxx . 

 For the second class (i.e., 2cd = ), 

)(945.0 XR A = },{ 21 xx and )(
945.0

XR A = 
},,{ 621 xxx . 

The centroids of class one and two are calculated 
according to simple statistical mean and also given 
in the last rows of Table 4(a) and 4(b). In addition, 
the accuracies of class one and two are simply 

concluded as 667.0
3
2

},,{
},{

543

43861.0
1 ===

xxx
xx

α  

and 667.0
3
2

},,{
},{

621

21945.0
2 ===

xxx
xx

α . These 

measurements also reveal that class 1 and class 2 
both have 66.7% reliable information and 33.3% 
ambiguous information. 
 
Step III: Calculation of MV-index. 
The calculation of MV-index is sensitive to the 
test cluster number κ . In the case that 2=κ  is 
applied to the hypothetical dataset X, the 
compactness of two classes (i.e., term F) is 
measured as follows.  

WSEAS TRANSACTIONS on COMPUTERS Kuang Yu Huang, Hung-Yi Lin

E-ISSN: 2224-2872 201 Issue 5, Volume 12, May 2013



( )

( )

547.0   
335.0212.0   

0011

1100
   

945.0
2

24232221

861.0
1

14131211

4

1
945.0

2

2
4

1
861.0

1

1

2

1

4

1

=
+=

−⋅+−⋅+−⋅+−⋅
+

−⋅+−⋅+−⋅+−⋅
=

−×
+

−×

=
−×

=

∑∑

∑∑

==

= =

α

α

α
δ

α
δ

α
δ

β

zxzxzxzx

zxzxzxzx

zxzx

zx
F

j

j

j

j

i j i

ij

  
On the other hand, the separation between these 
two classes (i.e., term D) is simply measured 
from the Euclidean distance between (1.5, 0.5) 
and (1, 0.25). That is, D=0.559. Finally, 

)2(MV is measured as 511.0
547.02

559.0
=

×
. 

The same procedures from step I to III are 
applied to X when κ increases to 3. The 
measurement of )3(MV  is 0.341 and the 
detailed calculations are omitted here. Now that 

)2(MV  is greater than )3(MV , the decision 
table achieved by 2=κ  provides a more 
reliable information basis than that achieved by 

3=κ . We terminate all procedures for the 
measurements of other MV-indexes. Inversely, 
if )2(MV  is less than )3(MV , these procedures 
continue to execute and the comparison 
between )3(MV and )4(MV is used to 
determinate the consequent handle. The 
following algorithm is employed to determine 
the optimal cluster number κ  and generate the 
most reliable decision table for a given dataset. 
 
Using the index function given in Section 2.1, each 
conditional or decision attribute cluster to which 
each attribute of each record belong is determined. 
Algorithm )(κMV  
Input: the training dataset X 
Output: the cluster number κ  and the decision 
table containing discrete attribute values 
1. 21 ←κ       /* Initiate 1κ for the first round 

of MV-index calculation. */ 
2. 112 +←κκ    /* Designate 2κ for the second 

round of MV-index calculation. */ 
3. While )()( 21 κκ MVMV <  and Ψ≤2κ  do 

4.     21 κκ ←  
5.     122 +←κκ  
6. End While 
7. Return 1κ  and )( 1κMV  

 
In line 3 of this algorithm, Ψ is the maximum 
permission cluster number for testing. User can 
designate this number upon their practical 
demands. A reasonable value of Ψ is assigned 
to be 10. 
 
4 Experimental results 
The lower approximate sets validated by the 
proposed index method contain the reliable 
instances while exclude the ambiguous 
instances. The goal of such information 
identification is to solve the problems severely 
degraded by the presence of noisy information. 
The instances categorized in the lower 
approximate sets can advantage classifiers 
being trained under the situation with high 
consistent information. Experiments are 
conducted in this study to assess classification 
performances between distinct classifiers 
trained by the information systems with and 
without the prior handle of information 
identification. Three datasets are employed in 
this paper. The first dataset is Australian credit 
approval extracted from [1] and denoted as 
DB1.The second dataset is a subset of the 1987 
National Indonesia contraceptive prevalence 
survey extracted from [2] and denoted as DB2. 
The third is a dataset of determinants of wages 
from the 1985 current population survey 
extracted from [3] and denoted as DB3. Table 5 
is the abstract of these datasets. 
To avoid biased condition, common 10-fold 
cross-validation is adopted and there are 621, 
1326, and 480 training instances respectively 
selected from DB1 to DB3. For each round of 
the 10 sub-experiments, the training instances 
are saved into many individual files so that they 
could be reused for building distinct classifiers 
for comparison studies. All decision models 
were implemented in Matlab programming 
languages executed on a workstation with an 
Intel Core 2 dual 2.4 GHz processor. To verify 
our design, four classification methods 
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including C4.5, SVM, Logistic Regression 
(LR), and Simple CART are selected from the 
10 most influential algorithms [38] and used in 
our comparison experiments. Table 6 depicts 
the information about the quantity of reliable 
instances categorized in the datasets. The 
reduction ratios listed in the last row of the table 
are used to show the ambiguity degree in the 
training datasets. The higher the ratios, the 
higher amount of ambiguous instances are 
involved in the training process. For example, 
in DB2, almost a half of the amount of training 
instances is categorized as ambiguous. Our 
proposed method gets rid of these ambiguous 
instances and supplies the reliable and concise 
information for the training of robust classifiers. 
Inversely, if these ratios are near zero, our 
proposed method will have limited contribution 
to classification performance. For example, 
only 1% amount of instances are categorized as 
ambiguous in DB1. We can also conclude the 
instances preserved in this dataset are so typical 
that they all have helpful contribution to the 
classification task. 
To verify the effectiveness of the proposed 
method, the original datasets (denoted as Ω ) 
and the datasets refined by MV-index (denoted 
as Ω′ ) are separately employed to train distinct 
classifiers. In Table 7, classification accuracy is 
investigated and the ratio of improved accuracy 
denoted as ∆  is also listed in parentheses. As 
shown in Table 6, because a little amount of 
ambiguous instances is categorized in DB1, 
only slight accuracy improvements are achieved 
for four classifiers. Since instances in DB1 
appear to be consistent so that they constitute 
the reliable information basis for classification 
task. In view of all the experimental results 
shown in Table 7, DB1 really has the best 
accuracy performance over other datasets. 
Regarding DB2 or DB3, a considerable amount 
of ambiguous instances is detected and removed 
from the original dataset. The accuracies 
obtained from Ω′ generally outperform those 
from Ω  and the improvements are more 
significant. The last column of Table 7 shows 
that an average near 10% promotion is achieved 
by the MV-index in DB2 and DB3. According 
to overall observation, it is worthy to note that 
the performance of C4.5 algorithm can be 

highly sensitive to the presence of noisy and our 
method can benefit C4.5 more than other 
algorithms. 
The discrimination degree of classifiers is 
measured by the ROC area [17]. The ROC area 
is directly represented by plotting the fraction of 
true positives out of the positives (TPR = true 
positive rate) vs. the fraction of false positives 
out of the negatives (FPR = false positive rate). 
It is a comparison of two operating 
characteristics (TPR & FPR) as the criterion 
changes and therefore measures the 
discrimination capability of the classifier. The 
closer the curve is to the upper left-hand corner 
of the graph, the greater the area and the higher 
the discrimination capability [13]. The range of 
the ROC area is 0 to 1. 
Finally, Table 8 lists the ROC areas achieved by 
Ω  and Ω′  for the four classifiers and three 
datasets with the best results being highlighted. 
Our method does not seem to favor any 
classifier since the difference is insignificant. 
Although there still retains some improvement 
space, it is consistent with our previous 
assertion that the MV-index explicitly promote 
the discrimination powers of four classifiers. 
 
5 Conclusion 
 
MV-index proposed in this paper addresses three 
contributions to classification problems. First, all 
attributes are equally respected and the MV-index is 
good to handle a mixture of real-valued and 
categorical attributes without any selective priority. 
This eases the overhead costs for the processing of 
feature selection before implementing classification 
tasks. Second, the ambiguous instances are detected 
and removed from the original dataset. The MV-
index can supply training tasks with reduced 
datasets and in turn reduce the time complex of 
training process. Third, the reliable information 
basis derived from MV-index can support the 
construction of robust classifiers and promote the 
classification performance of classifiers in terms of 
accuracy and discrimination power. 
Future researches should be directed to the 
following aspects. The first is to apply different 
cluster analyses to different attributes and use a 
distinct number of clusters to assess every single 
attributes. We are motivated to raise the 
discrimination power of attributes to an even higher 
level. In addition, the cooperation of information 
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identification with attribute reduction could be 
another success in improving classification 
problems. Finally, the innovation of an all new 
classifier capable of fully boosting the superiorities 
of the MV-index is helpful to advance the data 
mining technique and greet the future challenges. 
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Table 1. Simple hypothetical dataset with four objects. 

Object-id a1 a2 a3 d 

x1 0.90 1 0.30 c2 

x2 1.10 1 0.20 c2 

x3 1.45 2 0.45 c1 

x4 1.55 2 0.55 c1 

x5 1.55 1 0.55 c1 

x6 1.55 1 0.55 c2 
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Table 2. Membership values for a1 and a3. 

Object-id 
a1 

c1      c2 

a2 a3 

c1      c2 
d 

x1 0.977 0.023 1 0.043 0.957 c2 

x2 0.945 0.055 1 0.023 0.977 c2 

x3 0.027 0.973 2 0.861 0.139 c1 

x4 0.002 0.998 2 0.995 0.005 c1 

x5 0.002 0.998 1 0.995 0.005 c1 

x6 0.002 0.998 1 0.995 0.005 c2 

 

Table 3. Decision table. 

Object-id a1 a2 a3 d 

x1 1 1 2 c2 

x2 1 1 2 c2 

x3 2 2 1 c1 

x4 2 2 1 c1 

x5 2 1 1 c1 

x6 2 1 1 c2 
 
 

Table 4. First and second classes for the hypothetical dataset. 

 

(a) 1cd = , 861.0=β  

 a1 a3 

x3 1.45 [0.973] 0.45 [0.861] 

x4 1.55 [0.998] 0.55 [0.995] 

1z  1.5 0.5 

(b) 2cd = , 945.0=β  

 a1` a3 

x1 0.9 [0.977] 0.3 [0.957] 

x2 1.1 [0.945] 0.2 [0.977] 

2z  1 0.25 
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Table 5. Abstract of the three datasets. 

Datasets DB1 DB2 DB3 

# of instances 690 1473 534 

# of real-valued attributes 6 2 4 

# of categorical attributes 8 7 6 

# of target classes 2 3 2 
 

Table 6. Abstract of the three datasets. 

Datasets DB1 DB2 DB3 

# of instances classified in lower approximate sets  614 721 368 

# of training instances 621 1326 480 

Reduction ratio 1% 46% 23% 
 
 

Table 7. Classification accuracies and improvements (%). 

 C4.5 

Ω    Ω′  (∆ ) 

SVM 

Ω    Ω′  (∆ ) 

LR 

Ω   Ω′  (∆ ) 

Simple CART 

Ω   Ω′  (∆ ) 
∆  

DB1 86.4  87.2 (0.9) 84.8  87.1 (2.7) 77.3  77.6 (0.4) 84.0  86.7 (3.2) 1.8 

DB2 47.8  53.6 (12.1) 54.2  58.9 (8.7) 55.0  58.5 (6.4) 53.6  57.0 (6.3) 8.4 

DB3 43.0  49.0 (14.0) 64.4  68.9 (7.0) 56.1  57.4 (2.3) 43.0  49.0 (14.0) 9.3 
 

Table 8. ROC areas (%) for four classifiers. 

 C4.5 

Ω   Ω′  

SVM 

Ω   Ω′  

LR 

Ω   Ω′  

Simple CART 

Ω   Ω′  
DB1 84.1  86.1 84.6  87.0 84.1  84.2 84.3  87.0 
DB2 62.5  73.9 66.8  70.9 72.4  75.9 70.1  78.4 
DB3 49.3  59.6 60.1  72.2 54.7  60.4 49.3  59.6 
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