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Abstract: Widespread use of multi-core systems demand highly parallel applications and algorithms in everyday
computing. Parallel data structures, which are basic building blocks of concurrent algorithms, are hard to design
in a way that they remain both fast and simple. By using mutual exclusion they can be implemented with little
effort, but blocking synchronization has many unfavorable properties, such as delays, performance bottleneck
and being prone to programming errors. Non-blocking synchronization, on the other hand, promises solutions
to the aforementioned drawbacks, but often requires complete redesign of the algorithm and the underlying data
structure to accommodate the needs of atomic instructions. Implementations of parallel data structures satisfy
different progress conditions: lock based algorithms can be deadlock-free or starvation free, while non-blocking
solutions can be lock-free or wait-free. These properties guarantee different levels of progress, either system-wise
or for all threads. We present several parallel hash table implementations, satisfying different types of progress
conditions and having various levels of implementation complexity, and discuss their behavior. The performance
of different blocking and non-blocking implementations will be evaluated on a multi-core machine.

Key–Words: blocking synchronization, non-blocking synchronization, hash table, mutual exclusion, lock-free,
wait-free

1 Introduction
Parallel programs have been around for more than a
quarter of a century, and recently they have moved
into the focus of research again. The general avail-
ability of multi-core processors brings the demand
for high performance parallel applications into main-
stream computing promoting new design concepts in
parallel programming [1].

The most crucial decision when designing paral-
lel data structures and algorithms is finding an optimal
balance between performance and complexity. Shavit
in [1] argues that “concurrent data structures are diffi-
cult to design.” Performance enhancements often re-
sult in complicated algorithms requiring mathemati-
cal reasoning to verify their correctness, whereas sim-
pler solutions fall short of the required performance or
have other unfavorable properties.

Critical sections assure correct behavior by limit-
ing access to the shared resources. Every runtime en-
vironment supports various types of synchronization
primitives supporting this type of parallel program-
ming, and they usually require only a few changes in
code or data. Critical sections and other primitives
correspond to the level of abstraction of the program-

ming environment making the life of programmers
easier. But simplicity comes with the cost of unfa-
vorable properties, such as the risk of deadlocks, live-
locks, priority inversion, and unexpected delays due
to blocking [2, 3, 4, 5], not mentioning the increased
risk of programming errors [6].

Non-blocking synchronizations promote them-
selves as true alternatives to locking. Such algo-
rithms employ atomic read-modify-write operations
supported by most modern CPUs. The basic idea is
that instead of handling concurrency in a pessimistic
way using mutual exclusion, concurrent modifications
of a data structure are allowed as long as there is a
fail-safe guarantee for detecting concurrent modifica-
tion made by another thread. (Rinard used the term
“optimistic synchronization” to describe this behavior
[5].) Complex modifications are performed in local
memory and then in an atomic replace step they are
committed into the data structure.

The biggest advantage of non-blocking synchro-
nization is complete lock-freeness. As there are no
locks, the problems mentioned at blocking synchro-
nization do not arise. These methods also provide
better protection from programming errors and from
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faulty threads not releasing locks, resulting in higher
robustness and fault tolerance [7]. The tradeoff with
non-blocking algorithms is that they are more com-
plex and harder to design, even when they seem sim-
ple [8].

The right choice depends on the required perfor-
mance and expected guarantees. There are two types
of requirements: safety and liveness. Safety means
that data structures work “correctly” without losing
data or breaching data integrity. The result of con-
current operations performed on a parallel data struc-
ture are correct, according to the linearizability con-
dition [9, 10], if every operations appears to take ef-
fect instantaneously at some point between it’s invoca-
tion and its response. The liveness property captures
the fact whether the interfering parallel operations
will eventually finish their work. Liveness condi-
tions are different for blocking- and non-blocking al-
gorithms. For blocking algorithms, usually deadlock-
freedom or starvation-freedom are expected, while
non-blocking algorithms can be lock-free [11, 12] or
wait-free [13, 14].

In this paper hash tables are used to illustrate the
wide range of design options for parallel data struc-
tures. We discuss the implementation details and the
performance costs of applying various approaches de-
signing a concurrent hash table.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related literature of parallel al-
gorithms and hash tables. Lock based solutions are
discussed in Section 3 followed by the non-blocking
algorithms in Section 4. After the implementation
details, their performance is evaluated in Section 5
through experiments. The conclusions are discussed
in Section 6.

2 Blocking- and non-blocking syn-
chronization in hash tables

Hash tables [17] store and retrieve items identified
with a unique key. A hash table is basically a fixed-
size table, where the position of an item is determined
by a hash function. The hash function is responsible
for distributing the items evenly inside the table in or-
der to provide O(1) lookup time. The difference be-
tween the two basic types of hash tables (bucket- and
open address), is the way they handle collisions, i.e.
when more than one item is hashed (mapped) to the
same location. Bucket hash tables chain the colliding
items using external storage (external means not stor-
ing within the original hash table body), while open-
address hashing finds a secondary location within the
table itself.

Hash tables are perfect candidates for optimiza-

tion in parallel environments. The hash table itself
is an abstract concept and there are various imple-
mentation options, which all demand different paral-
lelization approaches. Best performance is observed
when the hash table uses arrays as external storage
[18, 19, 20], which will require structural changes in
case of a non-blocking implementaion.

The most notable downside of blocking synchro-
nization is the level of parallelism they provide; or
rather they fail to provide. Limiting the number of
parallel data accesses to a single thread at one time by
a single critical section guarding the entire hash table
significantly reduces overall performance. To over-
come this issue, finer grained locking can be applied.
Larson et al. in [21] use two lock levels: a global ta-
ble lock and a separate lightweight lock (a flag) for
each bucket. The implementation by Lea in [22] uses
a more sophisticated locking scheme with a smaller
number of higher level locks (allocated for hash table
blocks including multiple buckets) allowing concur-
rent searching and resizing of the table. When consid-
ering large hash tables with a couple million or more
buckets the use of locks in high quantities can be chal-
lenging. Most environments do not support this many
locks, and with custom implementations one has to
be concerned with memory footprint and false shar-
ing limiting the efficiency of caches [24, 25, 26].

There is no general consensus about blocking
synchronization. Some argue that mutual exclusion
locks degrade performance without any doubt [5, 11]
and scale poorly [16], while others state that con-
tention for the locks is rare in well designed systems
[2, 27], therefore contention does not really impact
performance [28]. The strongest reservation about
blocking synchronization, and what is probably most
relevant for advocating non-blocking solutions, is that
they build on assumptions, such as critical sections are
short, and the operating system scheduler is not likely
to suspend the thread while it is in the critical section.
These assumptions, however, may not always hold.

To ensure greater robustness and less depen-
dency on the operating system a parallel data struc-
ture can be implemented using the compare-and-
exchange/compare-and-swap (CAS) operations. This
method is founded on the fact that all modern archi-
tecture provide hardware support for atomic combined
read-write operations (e.g the CMPXCHG instruction
in the x86 architecture) that allow the non-destructive
manipulation (setting the value of a memory location
with somehow preserving its old content) of a single
machine word. Herlihy describes the basic concept of
transforming sequential algorithms into non-blocking
protocols this way [29]: first the object to be modified
is copied into local memory in its current state, then
the modifications are performed on this local copy in-
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Figure 1: Progress conditions of parallel data structures described by Herlihy and Shavit [33].

stance, and finally the change is committed back us-
ing the CAS instruction. If another thread has mod-
ified the same data in the meantime, the operation is
retried.

With this method complete lock-free data struc-
tures and algorithms can be built, as it was to linked
list by Harris [30], Valois [12] and Michael [25],
whose works were further extended to resizable hash
tables by Shalev and Shavit in [31]. Both Gao el al.
[8] and Purcell and Harris [32] built a lock-free open
address hash tables.

Non-blocking algorithms are generally hard to
design. This is in fact the case for parallel hash tables
built on the CAS primitives. The entire organization
of the data has to be revised: arrays having given the
best performance in single threaded case are no longer
a storage option as an additional level of indirection
has to be introduced into accessing an element in or-
der to allow transactional modification with a single
CAS operation. Failing to perform CAS successfully
the complete transaction has to be retried which re-
quires restructuring of code to allow this fallback exe-
cution path. All in all, a completely new hash table is
required with careful design of placement and align-
ment in memory.

Other concerns about non-blocking implementa-
tions include the fact that atomic operations are more
expensive than simple writes [8]. Michael even went
as far as saying that they are “inefficient” [11], and so
are the algorithms, that avoid the use of locks [16].

There is an inherent hierarchy, or rather struc-
ture among both the blocking and the non-blocking
algorithms with regards to the assumptions they are
based on, and the level of progress they provide. Sev-
eral liveness conditions are known in the literature for
quite some time, yet there has been no handle on their
relation until recently. Herlihy and Shavit presented a
“unified explanation” [33] of the progress properties.
They placed these properties in a two-dimensional
structure, where one axis defines maximal or min-
imal progress (informally: expect at least a single

thread minimal, or all threads to complete actions -
maximal); the other axis defines the assumptions of
the operating system scheduler. Algorithms are either
blocking or non-blocking, and they can depend on the
scheduler or can guarantee the level of progress re-
gardless of schedulers support. Fig. 1 describes this
structure of progress conditions (as in [33]).

This system of classification of parallel algo-
rithms helps with comparing different implementa-
tions focusing on their merits both in terms of perfor-
mance and in robustness. Wait-free algorithms are the
“best” but usually the most complex, while lock-free
algorithms are simpler to create. There is a similar re-
lationship between starvation-free and deadlock-free
algorithms, given that they are also more dependent
on the operating system. The practical importance of
the obstruction-free and clash-free conditions is yet to
be discovered.

3 Blocking hash tables
Blocking synchronization mechanisms are usually
easier to implement. Locks and critical sections are
inherent part of all programming languages and en-
vironments and they are described on an abstraction
level the programmer is familiar with, therefore is is
straightforward to use them.

3.1 Deadlock-free hash table
Being conceptually simpler does not mean that block-
ing algorithms require no design. The basic ex-
pectation from lock-based data structures is to be
deadlock-free, that is, threads cannot delay each other
forever. The simplest way of guaranteeing deadlock-
freedom is using a single lock in the data structure,
which basically serializes all accesses. This single
lock protects the data structure at each entry point.
Alg. 1 shows the implementation of the insert method
in a deadlock-free hash table. A similar guard is to be
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Algorithm 1 Deadlock-free concurrent hash table using a single table lock.
initialize:

table_lock: mutex

insert( data ):
table_lock.enter() // acquire lock, blocks until successful
insert_internal( data ) // perform the insert as usual
table_lock.release() // release the lock

Algorithm 2 Deadlock-free concurrent hash table using fine-grained locking.
initialize:

bucket_locks[]: mutex

insert( data ):
bucketIdx = hash( data ) // maps the item to a bucket
bucket_locks[bucketIdx].enter() // acquire lock, blocks until successful
insert_internal( data ) // perform the insert as usual
bucket_locks[bucketIdx].release() // release the lock

placed around each operation to make the data struc-
ture completely thread-safe and deadlock-free.

More sophisticated locking mechanisms use mul-
tiple locks. Fine-grained locking can deliver much
better level of parallelism and performance. For ex-
ample in case of bucket hash tables each bucket can be
protected with a dedicated lock. Since each basic op-
eration (except for rename) works in a single bucket,
the implementation is still deadlock-free. In case of
large hash tables, it might not be feasible to use tens
of thousands, or even millions of locks. In such cases,
the buckets can be assigned to groups, where each
bucket is only member of one group but one group
contains multiple buckets [23]. Protecting each group
with a single lock delivers good level of parallelism
(depending on the number of threads and the number
of groups). Alg. 2 shows the deadlock-free hash table
with fine-grained locking.

The only requirement about the locks used in
the aforementioned implementations is that they work
correctly, that is, they allow a single thread to reside
within the critical section. There is no fairness guaran-
tee, such as allowing the access to the critical section
only in the same order as it was requested. Simple
spin-locks (also known as busy-wait loops) spinning
on a test-and-set instruction [34, 24] as well as mu-
texes offered by the programming environment can be
used. Other options include using reader-writer locks,
which allow concurrent readers and a single writer.
This type of lock, as long as only a single one is ac-
cessed by each operation, is still deadlock-free; the
only difference is that the appropriate type of access
(shared or exclusive) is determined by the operation
(i.e. find requires read access while insert requires
write access).

3.2 Starvation-free hash table

Deadlock-freedom guarantees only that there are
threads that make progress (specifically the one that
currently owns the lock). It does not specify that all
threads must complete their operations. A more re-
strictive condition is starvation-freedom, which re-
quires that all threads get the access to the critical sec-
tion eventually. With test-and-set locks this cannot be
guaranteed, as it is possible that a thread always looses
in the race for the lock.

In order to guarantee starvation freedom with mu-
tual exclusion, threads should enter the critical sec-
tion in the same order as they request it. Queue-locks
satisfy this requirement. Using Mellor-Crummey and
Scott’s ticket lock [24] the bucket hash table is mod-
ified as shown in Alg. 3 for a single table lock; fine-
grained bucket level locks can be implemented sim-
ilarly. (The interlocked-inc instruction increases the
value of the integer in an atomic step and returns the
new value.)

4 Non-blocking hash tables

Their undesired properties often limit the usability
of blocking synchronizations. Even in the absence
of deadlocks and starvation, the level of parallelism
is limited: threads hinder each others progress caus-
ing priority inversion and problems that occur when a
thread crashes and does not release a lock by error.
Non-blocking synchronization mechanisms promote
themselves as alternatives to lock based methods of-
fering better scalability and robustness.
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Algorithm 3 Starvation-free concurrent hash table using a single table lock.
initialize:

currently_served: int, initially 1
ticket_counter: int, initially 0

insert( data ):
my_ticket = interlocked_increment( ticket_counter ) // get ticket
while( my_ticket != currently_served ) // wait until my ticket is served

nop // no operation, spin-wait
insert_internal( data ) // perform the insert as usual
interlocked_increment( currently_served ) // notify next in line

4.1 Linked list-based lock-free bucket hash
table

The sensitive operation within the hash table is com-
mitting a new entry into the bucket, or removing an
entry. Using a linked list for realizing the buckets
the hash table can be implemented in a non-blocking
fashion. Alg. 4 shows the CAS based linked-list
lock-free bucket hash table algorithm. This algorithm
works only if there are no deletes from the hash table.
Deletes can be supported as well, with some modifi-
cations [12].

It is easy to see that this implementation is lock-
free. There are no locks or mutual exclusion in the
code, hence there are no indefinite delays. That is to
say, there is one case: the CAS operation can fail if the
target memory location has been changed by another
thread. It will, however, always succeed for a single
thread, thus the data structure is lock-free. As for cor-
rectness, this algorithm is linearizable, the CAS be-
ing the linearization point (where the changes appear
atomically for the entire system).

4.2 Array based lock-free bucket hash table
Linked-lists are not always the best choice for bucket
hash tables. Data prefetch mechanisms and cache
lines containing multiple items mask the memory ac-
cess latency when iterating through the items in arrays
while prefetching is of no use when traversing a linked
list. This can yield an increase in the amount of cache
misses deprecating performance.

The incompatibility between compare-and-swap
and arrays lies in the fact that CAS works with ma-
chine word size values only, meaning that an item in
the array larger than 4 or 8 bytes cannot be written
atomically. The compromise is as follows. The buck-
ets are implemented with arrays, but when a new item
is to be added, a new array is allocated copying the
previous contents and adding the new one, then CAS-
ing the pointer to this new array into the hash table
body (see Alg. 5). Only one concurrent insert will
succeed causing the other one to retry. Deleting items
works the same way, except the new array will not

contain the item to remove. Search operations are not
affected by this as long as they hold the pointer to the
bucket as they know it.

This implementation is, similarly to the linked-
list based one, lock-free but not wait-free for the same
reasons discussed previously. The linearization point
is the CAS operation.

This approach wastes the new array allocation
and copy operation in case of contention for the same
bucket, which is an obvious performance drawback.
The gain on the other hand is the faster searching ca-
pability in the array.

De-allocating the unused arrays is also a problem.
When a new array replaces the previous one, the old
one should be de-allocated, given that no one else uses
it. In garbage collected systems this is handled by the
environment, but in other cases this is the responsibil-
ity of the programmer. The solution is either reference
counting, or if possible, not deallocated memory un-
til it is safe (after parallel operations have been com-
pleted).

4.3 Wait-free hash table
The last hash table presented in this section takes a dif-
ferent approach compared to all previously discussed
implementations. All the solutions above required, to
some extent, the modification of the hash table code:
placing the locks and the critical sections, reorganiz-
ing the entire table into linked lists or use the compare-
and-exchange operation. Let us present an algorithm,
which uses no locks and is not only non-blocking but
completely wait-free, and requires no modifications
inside the hash table. To our knowledge this is the
first wait-free hash table in the literature.

The main problem with parallelism from the point
of view of data structures is concurrent modification
of the same storage slot. If different threads worked
with different hash tables, this would not be a problem
anymore. Instead of the traditional scenario where
each thread is capable of executing any work we spe-
cialize our threads by assigning individual work ar-
eas to them in a way that these working areas do
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Algorithm 4 CAS based lock-free concurrent bucket hash table with linked list.
typedef node: key, value, next

initialize:
buckets[]: pointer to node

insert( data ):
myItem = create( data ) // creates the node from the data
l = buckets[ hash( data ) ] // linked list representing the bucket
while( true ): // loop for CAS retries

curr = l;
while curr.next != NULL: // check each item in the list

if( matches( data, curr ) ):
return curr;

curr = curr.next
if( CAS( curr.next, myItem, NULL ) ) // link the new item to the end

return myItem // CAS succeeded (item is inserted) or retry

Algorithm 5 CAS based lock-free concurrent bucket hash table with array.
initialize:

buckets[]: pointer to array

insert( data ):
while( true ): // loop for CAS retries

h = hash( data )
myArray = buckets[ h ] // the current bucket
idx = find_in_array( myArray, data ) // check the current data
if idx != -1: // found

return myArray[ idx ]
newArray = allocate_new_copy( myArray, data ) // create new array, copy existing

// data and insert new
if( CAS( buckets[ h ], newArray, myArray ) ) // replace bucket

return // CAS succeeded (item is inserted)
// or retry

not overlap (separate functions, pipeline stages, spa-
tial domains or graph branches). A specific request
(insert/find) can only be served by one thread, and
it is up to the right selection of domains that pro-
vides the load balance. The selection rules are usually
based on data decomposition as functional decompo-
sition generally provides limited scalability and we
easily reface the bottleneck problem of critical sec-
tions on the level of control organization. According
to our knowledge this kind of cooperation is never
mentioned in the literature of shared memory algo-
rithms, but the idea is not unknown in distributed sys-
tems, where there low cost shared memory synchro-
nization is not available, thus a coarser grained coop-
eration must be maintained between the nodes by di-
rected point-to-point messages or implicit work allo-
cation rules (e.g. distributed file servers, horizontally
partitioned data bases, documents groups allocated to
separate web servers).

The universe of items that the concurrent hash
table stores is partitioned into several subtables, and
each of these hash table partitions is unambiguously
mapped to a single working thread. When a thread is
ready to perform work, it checks the next work item

in a central queue, and decides if it should process
it. The decision is completely decentralized, and all
threads must come to the same conclusion: one and
only one of them chooses the item for processing.
There is no communication between the threads, thus
no overhead.

The decision whether to process an item is based
on the item itself. Each item is unambiguously
mapped to a thread by calculating a hash value from
the data. In case of a hash table this is quite easy, as
the items have a key, which, by definition, uniquely
determines them. (This concept, however, we note, is
generalizable to other data structures and problems.
For example, sorting can be performed this way as
well: the hash function can divide the items by their
value: smaller than a threshold goes to one thread,
larger to another [35].)

The critical element in this case is the central
queue. It must be wait-free for the hash table sys-
tem to be wait-free, and it must map the items to the
requesting threads. There are wait-free queue algo-
rithms in the literature, such as the one by Michael et
al. [?]. Let n be the number of processing threads
(and consequently the number of hash tables). Using
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Algorithm 6 Wait-free algorithm for hash tables.
initialize:

hash_tables[]: hash table, one for each thread
queues[]: wait free queues, one for each thread

addRequest(data):
h = hash( data )
queues[h].enqueue( data )

processingThreadFunction():
while true

i = queues[threadId].dequeue() // get item from the threads queue
h = hash( i )
hash_tables[threadId].insert( i ) // insert into the table

n wait-free queues every processing thread receives a
dedicated queue. Assigning an item to a thread needs
to hash the data and add it to the right queue. The
overhead this time is the pre-calculation of the hash
by the process that would generally only insert the re-
quest into a queue. Algorithm 6 presents the solution.

The biggest advantage of this solution, besides
being wait-free, is that the internal hash tables are un-
aware that they are used in a multithreaded environ-
ment. Any hash table implementation could be used
and its source code does not need to be altered.

The difference between Alg. 6 and traditional par-
allel hash tables is that here the threads need to be
aware that they are accessing different hash tables.
It is not the responsibility of the hash table to han-
dle parallelism, but it is left up to the threads them-
selves. This can be viewed as a “relaxation” of the
requirements of the data structure, as Shavit calls it
[1]. It might require changes in the algorithms using
the hash table to support this behavior, but the gain is
wait-freedom. (We also note that data parallel algo-
rithms are likely to be easier to adopt to this behav-
ior as they already distribute work among threads in a
similar fashion.)

This wait-free implementations cannot be de-
scribed by any of the generally used correctness cri-
teria. It is not linearizable, as changes are not atomic.
It is not sequentially consistent [3] either, because it
is not clear which point is the invocation of a hash
table operation, and when the method returns: all op-
erations are split into two phases, first insertion into
the right queue, and the completing the work. This
type of operation is not compatible with the general
description of concurrent objects by histories, invoca-
tions and response events.

5 Performance evaluation
Vastly different hash table implementations were pre-
sented in the previous sections. Some are already

known in the literature, while others present new
ideas. They all feature different properties: the non-
blocking solutions are all more robust, while the lock
based tables are simpler. Let us examine how simplic-
ity and compromises in the implementation translates
into performance.

All off the parallel hash tables were implemented
in C++ with careful optimization. They are all of
the same structure: a bucket hash table with either a
linked list or an array representing the buckets. The ta-
bles were initialized by inserting 8 million items into
them, and a subsequent 8 million find queries were
executed. The wall-clock execution time was mea-
sured. The insert and find operations were executed
under two circumstances: in the first case the num-
ber of buckets of the hash tables was chosen to result
in a single item per bucket on average, thus the con-
tention for the buckets is small (Fig. 2); the latter case
used tenth of the number of buckets causing high con-
tention (Fig. 3). The results are an average of 5 in-
dependent executions on a state-of-the-art Intel Core
i7-2600 CPU with 8 (logical) execution units.

Using a single lock is not evaluated below as it
is expected to have very little speedup, if any due to
high contention for the single lock. The speedup is
measured by comparison to the single threaded execu-
tion of the same operations using a very similar hash
table implementation without locks or CAS; as a mat-
ter of fact, the very same table is used by rule based
cooperation.

The lock based (bucket lock w/ spin locks and
bucket lock w/ ticket lock) and the linked list based
w/ CAS have quite similar performance. The maxi-
mal speedup is between around 3-3.5 and 4-4.5 for 8
concurrent threads depending on the number of buck-
ets used by the table. The lock-free solutions are both
faster than the lock based solutions by a small mar-
gin under little contention, but the true power of the
lock-free solutions show with high contention: array
based w/ CAS is by far the best one reaching almost
6.5 speedup. Considering the overhead with the con-
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Figure 2: Speedup of the various parallel hash tables with little contention for the buckets.

Figure 3: Speedup of the various parallel hash tables with high contention for the buckets.
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Table 1: Hash table realizations for the various progress conditions of parallel data structures.
non-blocking, independent blocking, dependent

every method
makes progress

wait-free w/ queues table lock w/ ticket lock,
bucket lock w/ ticket lock

some method
makes progress

linked list-based w/ CAS,
array-based w/ CAS

table lock w/ spin lock, bucket
lock w/ spin lock

stant array allocations and copy operations can only be
due to the good cache behavior and prefetch friendli-
ness exhibited by the array.

The wait-free solution, rule based cooperation,
achieves a 2.5-3.5 speedup at its peek performance for
7 threads. It is not as fast as either the lock-based or
the lock-free solutions, but at the same time it guaran-
tees progress for all threads at all times and that inter-
nally it can work with arbitrary hash table implemen-
tations. The drop in performance under heavy loads
for 4 and 5 threads in Fig. 3 is due to uneven load bal-
ancing of items among the threads. This points out
another bottleneck in this wait-free implementation.

Lock-free solutions can deliver the same, if not
better performance than lock based solutions. The
cost is the complexity of the algorithms. The wait-
free algorithm requires restructuring of code, but not
the structure of the hash table, and in exchange for
global progress guarantee we pay with a significant
performance loss.

Guaranteeing stronger progress conditions, such
as starvation-freeness or wait-freeness, result in per-
formance loss. As an engineering choice the faster
but less resilient solutions seem like a good trade-
off, while the complicated progress guarantees should
only be chosen when they are indeed necessary. Per-
formance in lock-based solutions is manageable by
choosing the level of granularity for locking, which
is closer to an engineering solution, while there is
no such directly tunable parameter for lock-free algo-
rithms.

6 Conclusion
Parallel data structures are hard to design in a way
that they remain simple while delivering good perfor-
mance at the same time. Lock based solutions are sim-
pler, but cannot guarantee much in terms of safety and
robustness; non-blocking algorithms are much more
complicated, and a compromise is required to balance
performance and simplicity. In this paper we used
hash tables to illustrate the vast amount of options for
creating concurrent data structures. Their structure is
relatively simple and both locking and non-blocking
algorithms can be implemented with some effort. Ta-

ble 1 lists the various hash table types organized ac-
cording to the progress conditions they satisfy [33].

Lock based solutions, when designed carefully,
such as using fine-grained locking for regions in the
bucket hash table, have really good performance.
Such locking solutions are relatively lightweight and
inter-thread communication in multi-core machines
(via the locks) is very cheap allowing to achieve up
to 4.5 times speedup for 8 concurrent threads.

CAS based non-blocking solutions represent a
different type of parallel hash tables. Their inter-
nal structure require careful redesign, whereas, when
carefully tuned, they have the same performance as
the lock based solutions. The usual argument that they
are more robust is masked by the fact that they are
complex and therefore hard to verify.

The final options we presented, rule based coop-
eration is in our knowledge the first wait-free hash ta-
ble in the literature. It wraps the hash table with an
addition layer, which handles the parallel access, thus
requires no internal modifications of the original hash
table and is still able to achieve a reasonable speedup.
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