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Abstract: - In order to present realistic scenes and models, complex triangle meshes comprising large numbers 

of triangles are often used to describe 3D models. However, with an increase in the number of triangles, storage 

and computation costs will raise. To preserve more geometric features of 3D models, Zhanhong and Shutian 

employed the curvature factor of collapsing edge, Gaussian Curvature, to improve the Quadric Error Metrics 

(QEM) simplification. Their method allows the QEM not only to measure distance error but also to reflect 

geometric variations of local surface. However, the method can only estimate the curvature factors of vertices 

in manifold surfaces due to Gaussian Curvature. To overcome this problem, we propose a new simplification 

method, called Extended Shape Operator. The Extended Shape Operator estimates the local surface variation 

using three-rings shape operator. The Extended Shape Operator can be applied in the simplification of manifold 

and non-manifold surfaces. In our experiment, we employed the error detection tool, Metro, to compare errors 

resulting from simplification. The results of the experiment demonstrate that when the model has been 

simplified, the proposed method is superior to the simplification method proposed by Zhanhong and Shutian. 
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1 Introduction 
The increased prevalence of information devices 

in recent years has increased the use of 3D modeling 

[14, 15, 16, 17]. Many 3D models comprise 

hundreds of thousands or even millions of triangles; 

for mobile devices, processing the large quantities 

of data in these models may affect the execution 

speed of programs or games, and therefore, the most 

direct solution is to reduce the number of triangles 

used to describe the 3D model, the process of which 

is called surface simplification [3, 4]. 

The ultimate objective of surface simplification 

in 3D models is to reduce the number of triangles in 

the model without reducing the quality [5, 6, 12]. In 

addition, the characteristic contours of the model 

must also be taken into consideration during the 

process of simplification to avoid excessive damage 

to the resulting contours. Many simplification 

methods have been proposed [2, 13], including 

vertex decimation [10], vertex clustering [9], edge 

contraction [7], triangle contraction [8], and quadric 

error metrics simplification [1]. Among these 

approaches, Quadric Error Metrics (QEM) 

simplification is considered the closest to optimal. 

The Curvature Factor [14] is based on the QEM 

simplification. This method used Gaussian 

Curvature to define the concept of curvature factors 

of collapsing edge and embed it into the original 

QEM proposed by Garland. This method can 

prevent more geometric features than original QEM. 

However, only the vertices of the full disc in the 

manifold meshes can this method estimate, shown in 

Fig.1. 

 

 
Fig. 1: Full disc in manifold mesh 

 

According to the definition of Chen et al.[18], a 

surface is a manifold if each point has a 

neighborhood homeomorphic to a disc in the real 

plane. They take some examples of common mesh 

structures that are incompatible with the manifold 

definition are shown in Fig. 2. 
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Fig. 2: Some examples of non-manifold meshes [18] 

 

In fact, QEM simplification also supports non-

manifold surface models besides manifold ones. 

Although the curvature factor [14] is based on the 

QEM simplification, it cannot be used to calculate 

the curvature factors of the vertices in non-manifold 

meshes, even the boundary vertices. 

To overcome this problem, we proposed a new 

curvature estimation method, called Extended Shape 

Operator (ESO). The ESO estimates the curvature 

factors using the shape operators between the vertex 

and its neighbor vertices. Additionally, the ESO also 

extends the size of estimation from 1-ring 

neighborhood of the Curvature Factor to three rings. 

Experimental results show the ESO can not only 

keep the geometric features but also decrease more 

errors caused by simplification. 

 

 

2 Related Work 

 

 

2.1 Quadric Error Metrics Simplification 

This method involves contracting vertex v1 and 

vertex v2 into a new vertex, vp, the location of which 

is obtained using the distance values of a vertex and 

the conjoining triangles. The minimum distance 

value determines the location of the new vertex vp. 

The estimated distance value also represents the 

resulting error of simplification. In this manner, the 

QEM simplification moderately maintains the outer 

shape of the model while reducing the number of 

triangles within, thereby reducing the resulting 

errors. The estimated position of vp also strongly 

influences changes in the surrounding triangles (Fig. 

3). 

 
Fig. 3: Quadric Error Metrics Simplification 

 

In a three-dimensional space, suppose the 

equation of plane p is ax+by+cz+d=0, where 

a2+b2+c2=1. The distance between this plane and 

any vertex v=[vx vy vz 1]
T
 is thus as shown in Eq. (1): 

[1] 

vKv)pp(v)vp()v( p
TTTT  22

pD  (1) 

Garland used quadric error metrics for the 

measurement of error in model simplification, 

defining error as: 
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where Kp can be expressed as: 

 













































2

2

2

2

dcdbdad

cdcbcac

bdbcbab

adacaba

dcba

d

c

b

a

TpppK

 (3) 

In the application of Kp to measure surface error 

in QEM simplification, the error that each 

qualifying vertex pair may potentially cause after 

simplification must be estimated; simplification is 

then applied to the vertex pairs that will result in the 

least error. In this way, excessive damage can be 

prevented and the contour of the object can be 

preserved. In addition, this action is repeatable for 

surface simplification. 

The main advantage of this simplification 

method is fast and keeps low average error. 

However, this method considered only its distance 

metric, it is not suitable for simplifying models with 

sharp angles. To solve this problem, Zhanhong and 

Shutian proposed the Curvature Factor method to 

reserve quite a number of important shape features 

and reduce visual distortion effectively. [14] 

 

2.2 Curvature Factor 
In order to preserve the sharp features after 

simplifying, Zhanhong and Shutian defined an 

edge curvature factor. This factor is estimated by the 

Gaussian Curvature proposed by Meyer et al., the 

Gaussian Curvature formula as follow [19]: 
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where A(vi) presents the area sum of adjacent 

triangle of vi, θj is the angle of the j-th face at the 

vertex vi, and #f denotes the number of faces around 

this vertex. 

v1 

v2 vp 
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Fig. 4: Estimation of the Gaussian Curvature of vi 

 

The edge curvature factor is defined as follow: 
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where v1 and v2 are the vertices of an edge, A(v1) and 

A(v2) present the area sum of adjacent triangle of v1 

and v2 respectively, θj is the angle of the j-th face at 

the vertex v1, θk is the angle of the k-th face at the 

vertex v2, and #fv1 and #fv2 denote the number of 

faces around v1 and v2 respectively. 

The edge curvature factor used the Gaussian 

Curvature to improve the quadric error metrics and 

kept more sharp features. The latter can simplify the 

manifold and non-manifold meshes, but the former 

is only suitable to be applied to the manifold ones. 

If the edge curvature factor is used to simplify 

the non-manifold meshes, the Eq.5 could not find 

out suitable curvature values. The examples that are 

unsuitable to use the Eq.5 are as follows: 

1. An edge meeting the estimated vertex is shared 

by three triangles: 

Every edge in a manifold mesh should be 

shared by only two triangles. Therefore, if an 

edge meeting the estimated vertex is shared by 

three triangles, the angle sum of all faces at the 

estimated vertex would  be more than 2π, as 

shown in Fig.5. That is, the estimation of 

Gaussian Curvature value would be minus if the 

surface the estimated vertex lies on is an even 

one. This value would present the surface 

variation incorrectly. 

 

 
Fig. 5: An edge meeting the estimated vertex o is 

shared by three triangles [18] 

 

2. Boundary vertex: 

When the estimated vertex is a boundary 

vertex, some edges will have only one incident 

triangle. That is, the angle sum of all faces at the 

estimated vertex would  be far less than 2π , 

even though the surface that the estimated vertex 

lies on is an even one. This case will take low-

curvature surfaces for high-curvature surfaces. 

 

 
Fig. 6: The estimated vertex o is a boundary vertex 

[18] 

 

3. There are two incident cones on the estimated 

vertex: 

According to the definition of manifold 

surfaces, each vertex should have only one 

incident cone. Therefore, if there are two 

incident cones on the same estimated vertex, the 

angle sum of all faces at the estimated vertex 

would  be far more than 2π, even up to 4π. 

This case will impact the determination of the 

edge curvature factor when collapsing edge. 

 
Fig. 7: There are two incident cones on the 

estimated vertex o [18] 

 

To overcome these problems, we propose a new 

simplification method, called Extended Shape 

Operator. Our method can not only estimation 

surface variation on non-manifold meshes, but also 

decrease more errors caused by simplification than 

the one proposed by Zhanhong and Shutian. 

 

 

3 Shape Operator 
Suppose p is a point on surface M, and v is the 

tangent vector to M at p. The shape operator for 

tangent vector v at p can thus be defined as Sp(v): 

UvS vp )(  (6) 

where U is the normal vector field in the 

neighborhood of p on M (Fig. 8); the shape operator 

Sp(v) represents the variation in normal vector U at p 

on M in the direction of v (Fig. 9). 
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Fig. 8: Normal vector field on surface M [2] 

 
Fig. 9: Shape operator estimation for tangent vector 

v at point p on surface M [2] 

 

The shape operator refers to the variation in the 

normal vector field in the direction of vector v at 

point p on surface M. To calculate surface changes 

in the neighborhood of p, Jong et al. [2, 13] used 

variations in the normal vectors of p and its 

neighboring points for estimation. Suppose the k 

neighboring points of p are p1, p2, p3,…, and pk, and 

the tangent vectors of p toward each neighboring 

point are t1, t2, t3,…, and tk . Calculations from Eq. 6 

provide the shape operators Sp(t1), Sp(t2), Sp(t3),…, 

and Sp(tk) at p in the directions of t1, t2, t3,…, and tk. 

Integrating all of the shape operators enables the 

derivation of the following formula to estimate 

variations in the surface surrounding p: 
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Fig. 10: Shape operators of point p using the tangent 

vectors to each neighboring point to estimate local 

surface variation 

 

In practice, this is based on a tangent plane. 

Suppose there is a tangent plane TPp at point p; the 

projections of 1pp , 2pp , 3pp ,…, and kpp  are 

used to obtain the required tangent vectors t1, t2, 

t3,…, and tk, which are then employed to derive the 

shape operators at p in the direction of said vectors. 

Using the shape operators enables the estimation of 

overall variations in the local surface area. 

Examples of implementation results are presented in 

Fig. 11. 

 

    
Fig. 11: Surface variation estimation; green 

represents areas of minor variation, whereas red 

indicates areas of major variation 

 

The shape operator is used to estimate surface 

variations by neighboring vertices on 3D models 

prior to vertex-pair contraction in order to reduce 

the error caused by simplification. Nevertheless, for 

the simplification of models at lower resolutions, 

considering only the first ring of neighboring 

vertices is far from adequate. When simplification 

results in a smaller number of triangles, the 

simplified vertices cover a larger area. For this 

reason, the range under consideration should also be 

extended. This study proposes the Extended Shape 

Operator to reduce error resulting from the 

simplification to the fewest possible number of 

triangles. 

 

 

4 Extended Shape Operator 
 

 

4.1 Analyzing the Impact Area of Simplified 

Vertices 
To analyze the impact areas of simplified vertices, 

we perform an experiment to calculate the moving 

distance of each simplified vertex. This experiment 

uses four models, including a cow, a dragon, a 

femur and an isis. The half edge collapse [1] is 

adopted to record the moving path of each 

simplified vertex in the simplification process 

because it will allow the vertex moving to the other 

one in the collapsing edge. 

high 

 

low 
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In this experiment, we simplify the above models 

into five different resolutions, include 40%, 30%, 

20%, 10% and 5%. The experimental results are 

shown in Tables 1 to 4. In these tables, the moving 

length presents the moving times of vertex when it 

is simplified. Taking the cow model (Table 1) as an 

example, when the cow model is simplified into 

forty percent of triangles, 1315 vertices are moved 

one time, 387 vertices are moved two times, 38 

vertices are move three times, 2 vertices are moved 

more than 3 times, and 1162 vertices still stay at 

their original positions.  

 

Table 1: Moving length analysis of simplified vertex 

(cow model; the number of vertices =2904) 

SP 5% 10% 20% 30% 40% 

ML The number of vertices 

0 148 293 583 873 1162 

1 651 971 1272 1359 1315 

2 1021 1025 810 566 387 

3 726 490 218 102 38 

>3 358 125 21 4 2 

AML 2.19 1.72 1.25 0.97 0.76 

SP : simplification percentage 

ML : moving length 

AML : average moving length 

 

Table 2: Moving length analysis of simplified vertex 

(dragon model; the number of vertices=25418) 

SP 5% 10% 20% 30% 40% 

ML The number of vertices 

0 1277 2546 5084 7622 10160 

1 6095 9147 12308 13320 12906 

2 9691 9617 6862 4026 2036 

3 6327 3501 922 226 92 

>3 2028 607 242 224 224 

AML 2.11 1.66 1.21 0.94 0.75 

 

Table 3: Moving length analysis of simplified vertex 

(femur model; the number of vertices=76794) 

SP 5% 10% 20% 30% 40% 

ML The number of vertices 

0 3873 7715 15397 23074 30748 

1 17366 26040 34774 37525 36496 

2 28309 29082 22278 14739 9025 

3 20201 12088 4108 1421 519 

>3 7045 1869 237 35 6 

AML 2.13 1.67 1.21 0.93 0.73 

 

Table 4: Moving length analysis of simplified vertex 

(isis model; the number of vertices=100002) 

SP 5% 10% 20% 30% 40% 

ML The number of vertices 

0 5002 10002 20002 30002 40002 

1 23494 35670 48645 52994 51925 

2 38204 38757 27985 16393 7990 

3 25715 14100 3322 612 85 

>3 7587 1473 48 1 0 

AML 2.08 1.61 1.15 0.88 0.68 

 

According to the experimental results, the 

average moving lengths are less than three, even if 

the models are simplified into only five percent of 

the number of triangles. Additionally, the percent of 

the number of vertices that the moving lengths are 

less than or equal three are almost over ninety 

percent, as shown in Table 5. Therefore, we extend 

the range from one ring to three rings for the 

estimation of surface variation. 

 

Table 5: The percent of the number of vertices with 

moving length<=3 in different simplification 

percentage 

SP 5% 10% 20% 30% 40% 

Models 
The percent of the number of vertices 

with moving length<=3  (%) 

cow 87.67 95.70 99.28 99.86 99.93 

dragon 92.02 97.61 99.05 99.12 99.12 

femur 90.83 97.57 99.69 99.95 99.99 

isis 92.41 98.53 99.95 100 100 

SP: simplification percentage 

 

4.2 The Proposed Algorithm 
Shape operators generally only consider the 

neighboring points of p, as shown in Fig. 12(a). To 

obtain a low-resolution model of higher quality after 

simplification, this study expanded the estimation 

range to N rings of neighboring points. As shown in 

Fig. 12(b), p1,1, p1,2, p1,3,…, and p1,M1 represent the 

first ring of points neighboring p; p2,1, p2,2, p2,3,…, 

and p2,M2 are the second ring of points neighboring p, 

and p3,1, p3,2, p3,3,…, and p3,M3 comprise the third 

ring of points neighboring p. Likewise, we can 

define the Nth ring of points neighboring p as pN,1, 

pN,2, pN,3,…, and pN,MN. As simplification of the 
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model proceeds, the number of triangles in the mesh 

of the model dwindles. In other words, the impact 

range of each vertex expands and the data that each 

vertex encompasses increases as well. For example, 

as shown in Fig. 13, point p is a vertex on a dragon 

model; during the first simplification, the area that p 

influences lies within the first ring of neighboring 

points. During the second simplification, the area 

that p may influence extends to the second ring of 

neighboring points, and so forth. After several 

iterations, the area influenced by each vertex 

expands. Therefore, we extended the estimation 

range of the shape operator to the Nth ring. The 

formula to estimate the N-rings shape operator of 

the area where p is located is: 

 
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where 

N : the number of rings; 

pj,i : the ith point neighboring p in the  jth ring; 

U(pj,i) : the normal vector at point pj,i; 

Mj: the number of points neighboring p in the jth 

ring. 

 

The variations in the normal vectors of each ring are: 
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(a) the first ring 

 
(b) the first to third rings 

Fig. 12: N rings centered at p (N=1…3) 

 

Basically, the Extended Shape Operator 

simplification is an improved algorithm for the 

QEM simplification. Prior to estimating the QEM, 

we first find out the N-rings shape operator 
N

pS  for 

each point p, calculate the surface variation within 

the range of N rings neighboring p, and then use 
N

pS  as the weight value to improve the QEM. The 

Extended Shape Operator can reduce the error 

caused by simplification when the model is 

simplified to lower resolutions. 
 

 
Fig. 13: The N-rings neighboring points of point p 
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The primary calculation steps of the proposed 

simplification approach are as follows: 

1. Calculate the shape operator of each vertex {(p1,1, 

p1,2,…, p1,M1), (p2,1, p2,2,…, p2,M2),…, (pN,1, pN,2,…, 

pN,MN)}. Using Eq. (8), estimate the N-rings shape 

operator 
N

pS  of p and change the QEM 

estimation formula to: 

 f

N

p KSpQ )(  (9) 

where 

f is the plane encompassing the triangles 

with p as a vertex; 

Kf represents the 44  matrix of plane f. 

2. Select each qualifying vertex pair (v1,v2), and 

calculate the minimum error resulting from 

simplification. 

3. Select the vertex pair (v1,v2) with the minimum 

error for simplification. 

4. Contract vertex pair (v1,v2) into v , and calculate 

the QEM of v  using Q=(Q1+Q2), where Q1 and 

Q2 are the QEMs of v1 and v2 , respectively. 

5. Update the information regarding the points 

neighboring v1 and v2. 

6. Repeat the steps above until the designated 

number of triangles is reached. 

 

 

5 Experimental Results 
This study implemented an experiment with three 

rings to verify the Extended Shape Operator (ESO) 

simplification method proposed in this study. We 

conducted comparisons with the Curvature Factor. 
Four models were employed for the simplification 

experiment: a cow, a dragon, a femur, and an isis. 

The number of vertices and triangles are shown in 

Table 6.  

 

Table 6: Information of Experimental Models 

Model Vertices Triangles 

Cow 2904 5804 

Dragon 25419 50761 

Femur 76794 153322 

Isis 100002 200000 

 

This study employed Hausdorff Distance 

implemented in Metro [11] to measure the error 

caused by simplification and understand the 

variations in the shapes of the models before and 

after simplification. Errors occurring in the 

Curvature Factor (CF) [14] were also measured. 

The results of the four methods were then compared. 

The results of the experiment show that the 

proposed method is more effective than the 

Curvature Factor method in reducing error. In the 

cow model, for example, the number of triangles 

was reduced from 5804 to 2321, 1741, 1160, 580 

and 290. The Curvature Factor resulted in errors of 

0.02146, 0.02552, 0.02985, 0.02948, and 0.04829, 

respectively, whereas the proposed method only 

caused errors of 0.00415, 0.00497, 0.00636, 

0.01126, and 0.01813. This accounted for 

improvements of 80.68%, 80.53%, 78.71%, 61.81%, 

and 62.46% compared to the Curvature Factor, 

respectively, as shown in Table 7, Fig.14 and Fig.21. 

 

Table 7: Hausdorff Distance Comparison 

(unit : 10−2) – cow model 

SP Triangles CF ESO IR 

40% 2321 2.146 0.415 80.68% 

30% 1741 2.552 0.497 80.53% 

20% 1160 2.985 0.636 78.71% 

10% 580 2.948 1.126 61.81% 

5% 290 4.829 1.813 62.46% 

SP : Simplification Percentage 

IR : Improvement Rate 

 

 
Fig. 14: Error measurement for cow model 

 

Besides taking the cow model for verification, 

the dragon, femur and isis models are taken for 

experimental testing. In the dragon model, the 

original model contains 25419 vertices and 50761 

triangles. Figure 22 shows the simplification results. 

Table 8 and Fig. 15 compare the error 

measurements with the Curvature Factor and the 

proposed method; the table shows that the proposed 

method can achieve an 45.95–81.08% error 

reduction. In the femur and isis models, the original 

models contain 153322 and 200000 triangles 

respectively. Figures 23 and 24 show the 

simplification results of the femur and isis models. 

Tables 9, 10 and Figs. 16, 17 compare the error 

measurements with the Curvature Factor and the 
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proposed method; the tables show that the proposed 

method can achieve 88.29–98.66% and 71.95–

84.08% error reductions for the simplifications of 

the femur and isis models respectively. 

 

Table 8: Hausdorff Distance Comparison 

(unit : 10−3) – dragon model 

SP Triangles CF ESO IR 

40% 20304 2.622 0.496 81.08% 

30% 15228 3.517 0.651 81.49% 

20% 10152 4.055 1.002 75.29% 

10% 5076 5.272 1.369 74.03% 

5% 2538 5.384 2.910 45.95% 

SP : Simplification Percentage 

IR : Improvement Rate 

 

 
Fig. 15: Error measurement for dragon model 

 

Table 9: Hausdorff Distance Comparison 

(unit : 10−3) – femur model 

SP Triangles CF ESO IR 

40% 61328 17.206 0.231 98.66% 

30% 45996 17.210 0.414 97.59% 

20% 30664 17.264 0.649 96.24% 

10% 15332 17.258 0.648 96.25% 

5% 7666 17.202 2.015 88.29% 

 

 
Fig. 16: Error measurement for femur model 

 

Table 10: Hausdorff Distance Comparison 

(unit : 10−3) –isis model 

SP Triangles CF ESO IR 

40% 80000 1.583 0.252 84.08% 

30% 60000 1.986 0.408 79.46% 

20% 40000 2.583 0.369 85.71% 

10% 20000 2.830 0.683 75.87% 

5% 10000 3.540 0.993 71.95% 

 

 
Fig. 17: Error measurement for isis model 

 

In terms of feature preservation, Fig. 18 shows 

the comparison results of the QEM, the CF and the 

proposed method for simplifying the cow model 

into one with 580 triangles. Apparently, regarding 

the cow horn features, the CF can preserve the 

model features better than the QEM. However, the 

former also impact on the outline of cow neck. The 

proposed method can not only preserve the outline 

of cow horn, but also retain the shape of cow neck. 

In addition, Fig. 19 shows the comparison results of 

the CF and the proposed method for simplifying the 

dragon model into one with 5076 triangles. The 

figure shows that our method can retain more teeth 

and eye features of the dragon model than the CF. 

 
(a) original model 

    
 (b) QEM (c) CF (d) ESO 

Fig. 18: Comparison of the features of cow horns 

and neck (580 triangles). 
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 (a) original model (b) CF (c) ESO 

Fig. 19: Comparison of the features of dragon teeth 

(5076 triangles). 

 

Moreover, the Curvature Factor method will also 

destroy the features of hole easily due to the 

improper angle estimation on non-manifold surfaces. 

Taking the femur model as an example, although the 

boundary vertices by the hole are not on a high-

curvature surface, the triangles meeting these 

vertices are still destroyed easily due to being taken 

for on a high-curvature surface. 

 

 
 (a) original model 

   
 (b) CF (c) ESO 

Fig. 20: Comparison of the hole features of femur 

(7666 triangles). 

 

 

6 Conclusions 
The primary objective of 3D model simplification is 

to maintain the characteristic contours of the model 

despite reducing the resolution. The Curvature 

Factor method employs the Gaussian Curvature to 

preserve features of simplified models. However, it 

can only be used to simplify manifold models. To 

preserve the features of non-manifold model, this 

study proposes a novel method, called the Extended 

Shape Operator. The proposed method uses three-

rings Shape Operator to estimate the surface 

variation and preserves more features than the 

Curvature Factor. Experimental results show that 

the Extended Shape Operator can also reduce the 

error caused by simplification. 
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 (a) 5804 triangles (original model) (b) 2321 triangles (40%) (c) 1741 triangles (30%) 

   
 (d) 1160 triangles (20%) (e) 580 triangles (10%) (f) 290 triangles (5%) 

Fig. 21: Simplification results of the cow model using the ESO. 

 

    
 (a) 50761 triangles (original model) (b) 20304 triangles (40%) (c) 15228 triangles (30%) 
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 (d) 10152 triangles (20%) (e) 5076 triangles (10%) (f) 2538 triangles (5%) 

Fig. 22: Simplification results of the dragon model using the ESO. 

 

       
 (a) (b) (c) (d) (e) (f) 

Fig. 23: Simplification results of the femur model using the ESO. (a) 153322 triangles (original model), (b) 

61328 triangles, (c) 45996 triangles, (d) 30664 triangles, (e) 15332 triangles, (f) 7666 triangles. 

 

       
 (a) (b) (c) (d) (e) (f) 

Fig. 24: Simplification results of the isis model using the ESO. (a) 200000 triangles (original model), (b) 80000 

triangles, (c) 60000 triangles, (d) 40000 triangles, (e) 20000 triangles, (f) 10000 triangles. 
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