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Abstract: - Intersection algorithms are very important in computation of geometrical problems. Algorithms for 

a line intersection with linear or quadratic surfaces are quite efficient. However, algorithms for a line 

intersection with other surfaces are more complex and time consuming. In this case the object is usually closed 

into a simple bounding volume to speed up the cases when the given line cannot intersect the given object. 

In this paper new formulations of the line-torus intersection problem are given and new specification of the 

bounding volume for a torus is given as well. The presented approach is based on an idea of a line intersection 

with an envelope of rotating sphere that forms a torus. Due to this approach new bounding volume can be 

formulated which is more effective as it enables to detect cases when the line passes the “hole” of a torus, too. 
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1 Introduction 
Intersection algorithms play a significant role in all 

geometric problems and CAD/CAM systems. 

Intersection algorithms are well documented for 

linear cases, e.g. line-plane or line-triangle etc., and 

also for some specific non-linear surfaces like line-

sphere intersection etc. However, there are other 

objects like bicubic parametric patches, torus etc. In 

this case computation of intersection points is more 

complex and usually complex formula or iterative 

formula are to be used.  

 

 
Figure 1: Torus 

(Courtesy of Wikipedia) 

 

Intersection of a line and closed surface can be 

considered as generalized well known clipping 

problem. Intersection of a line or ray with a surface 

is the key problem solved in all ray-tracing 

techniques. Due to the computational complexity a 

bounding volumes are used to detect cases when a 

line cannot intersect the given object.  

In this paper we present torus-line intersection 

problem [1] [2], which leads to a quartic equation 

[3] in principle, and show other possible 

formulations of the line-torus intersection problem 

which offer quite different representations of the 

problem. These reformulations lead to a formulation 

of a new problem – generalized line clipping by an 

envelope (convex or non-convex) of parametric 

closed surfaces. 

 

 

2 Torus Line Intersection 
Torus-line intersection is actually a solution of a line 

in E
3
 usually given in a parametric form as 

 
            

            
  

(1)  

and a torus, which is generally a surface of the  

4
th
 order and can be given as : 

 
                 

            
(2)  

An alternative formulation 

Note that the   axis is the rotational axis. The torus 

equation can be reformulated as  

 
                

           
(4)  

where  

                 
   
   
   

  (5)  

           
 
       (3)  
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As there will be some geometric transformations 

used latter on we can also scale the given torus and 

a line so that    , i.e. the torus is “normalized”. 

Now the intersection of a line and the torus is 

given as a solution of equations: 

             (6)  
and  

                (7)  
 

Substituting Eq.5 to Eq.6 we get 

 

 
        

              

        
          

(8)  

and finally we get 

 

                  
        

                   
   

        

(9)  

This equations is quite complex, but by detailed 

evaluation we get a quartic equation 

                    (10)  

where: 

 

                          

    
                      
            

 

                    

              

       
    

       

              

              

    
  
   

    
        

    
    

     
        

  

(11)  

It can be seen that the computation can be simplified 

for the case, when      , i.e. the directional 

vector of the line is normalized or the equation is 

divided by   . 

It means that we are getting a quartic equation in 

the from [4] 

                   (12)  
which can be simplified by substitution 

     
 

 
 (13)  

to 

               (14)  

where 

 

  
 

 
     

  
 

 
   

 

 
     

   
 

   
   

 

  
    

 

  
     

(15)  

If solution for    is found, then the solution of the 

original equation is given by Eq.12. To get a 

solution for   the following a qubic equation has to 

be solved 

    
 

 
      

      

 
   (16)  

Then the   values can be computed from real 

solution of the equation above as two quadratic 

equations as follows: 

If     then 

 
                    

                    
(17)  

If     then 

 
                    

                    
(18)  

It can be seen that the solution itself is not simple, 

but the formula is closed.  

On the opposite, an iterative method like 

Bisection or Newton method can be used. However 

there are up to 4 intersections of the line and the 

torus, so it is necessary to find relevant intervals 

for  , with one intersection only. 

 

 

2.1 Alternative Torus Representation 
There are other formulations of a torus as follows, 

but they are not convenient for our purposes. 

           
 
       (19)  

or a parametric form as 

 
                     

                     

              

(20)  

It can be seen that a solution of a line-torus 

intersection is not a simple task and it leads to a 

non-trivial computational problem.  

However, there are some other geometrically 

equivalent formulations which could be used for 

finding a solution. In the following we will consider 

only circular torus. 

 

 

2.2 Geometric Transformations 

Geometric transformations with points are defined 

in the projective space using homogeneous 

coordinates, i.e. in the projective extension of the 

Euclidean space. A point         in the 

Euclidean coordinates has homogeneous 

coordinates           ;   is the homogeneous 

coordinate. The conversion between the projective 

space and the Euclidean space is defined as 

   
 

 
        

 

 
         (21)  

It means that the projective representation is 

actually a one parametric set. A point in the 

Euclidean space E
2
 is represented as a line with the 
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origin of the coordinate system excluded in the 

projective space. Geometric transformations with 

points like rotation, translation, mirroring etc. can be 

than described by the   matrix as 

       (22)  

Note that     might have some physical meaning 

and units, e.g. [m], while   has no unit, it is just a 

“scaling factor”. That’s why we used “:” to separate 

the values in the vector notation. 

A line in E
2
 determined by two points given in 

the homogeneous coordinates can be computed 

using the cross product as [5], [6]. 

 

         
   
      

      

  

           

               

(23)  

Intersection of two lines    and    in E
2
 can be 

computes as 

 
         

   
      
      

   

           

(24)  

We can see that both computations are in the E
2
 case 

“dual”, i.e. line and points are dual [7]. In the E
3
 

case a point is dual to a plane and vice versa. It can 

be shown that a plane given by three points can be 

determined by the extended cross product as 

 

          

  

    
        

        

        

  

             

                  

(25)  

Again, an intersection of three planes can be 

computed as, see [7], [8], [9] for details 

 

          

  

    
        

        

        

  

             

(26)  

This approach is simple, easy to implement and 

convenient for GPU implementation as well. 

However, matrix transformations for points 

cannot be used for geometric transformations with 

lines in the E
2
 case nor with planes in the E

3
 case. It 

can be shown [6] that if a line   is given by two 

points    and    and those points are geometrically 

transformed using the   matrix, i.e. 

         (27)  
and  

      
    

          (28)  

then 

             (29)  

It can be shown that the matrix   is defined as 

                 (30)  

Because    are coefficients of an implicit equation 

we can simply write 

                        (31)  
As the implicit form is used, coefficients of a line 

can be multiplied by any non-zero constant and the 

line will be same. Therefore 

                   (32)  

where   means protectively equal. Similarly for a 

plane   

                     (33)  

It means that we can correctly manipulate with lines 

and planes, now. 

 

2.3 Bounding Volume 

Let us assume that the torus lies in the      plane, 

i.e. the   -axis is its rotational axis. Bounding 

volume, defined in [1], is based on an idea that torus 

is bounded by an intersection of a sphere and two 

half-spaces, Fig.2. 

 
Figure 2: Bounding volume 

 

The radius of the enclosing sphere is given as 

        (34)  

The bounding test computes intersection of a line 

with a sphere. If such intersections      and      

exist then the line does not intersect the torus if the 

following condition is valid [1] 

 

               

               

                        
                     

(35)  

It can be seen that the test does not eliminate cases 

when a line: 

 is passing the “hole inside of the torus” without 

touching or intersecting the torus – line    

 nearly touches the torus – line    – but there is 

a small probability 

r

x

tmin

pA
pC

pB

pD
t
max

R
1

R

y
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It should be noted that the Fig.2 presents general 

situation in the E
3
 case. 

 

 

2.4 Torus Transformation 

So far we have dealt with a general situation 

expecting that the torus is in its basic position, i.e. it 

lies in the     plane and the    axis is the 

rotational axis. In the case of torus general position 

the following transformations can be used: 

    

    
    
      

          

  (36)  

where:   defines   axis of the torus,    defines   

axis of the torus,     is used to get an 

orthonormal basis, and   is the torus centre. 

It can be seen that there are some interesting 

properties of the line-torus intersection problem, 

like  

 torus rotational symmetry,  

 if mirroring operation is used only one quadrant 

can be considered to solve the intersection 

problem. 

We will explore if those properties can contribute to 

simplification of computation in the following part. 

 

2.5 Intersections Classification 

As a torus is rotationally invariant we can rotate the 

given line about   axis so that it lies in a plane 

    , i.e. in a plane parallel to the      plane. 

There is no significant computational expense as the 

transformation matrix is accumulated with the   

matrix. Now we can distinguish three fundamentally 

different cases according to the    value: 

a)        : generally intersection with two 

independent parts have to be considered, i.e. for 

    and     and due to convexity each 

part could have up to 2 intersections only  

(2 convex envelopes are generated), 

b)          : this case is more complex as 

the envelope has only one part, but it is not 

convex as it can have an inflexion point and 3 

intersection points can be generated, 

c)          : the simplest case as only one 

convex envelope is generated. 

 
 

Figure 3: Torus plane intersection for         

 

The above mentioned three cases differ 

significantly. Unfortunately the envelope is not 

convex in all the cases. 

2.6 Vieta’s Formula 

Let us assume that      is a polynomial of degree   

 
        

       
     

        
(37)  

Then according to the Vieta’s formula the roots 

satisfy equations 

 

            
    

  
 

(                  
                

       
    

  
   

  

               
  

  
 

(38)  

In the quadratic equation case 

            (39)  

we obtain 

        
 

 
            

 

 
 (40)  

These formulas are not well known and will be used 

latter on. In the following we will show different 

approaches to the line – torus intersection problem. 

 

 

3 New Intersection Formulations 
In the previous part we have presented the 

“traditional” approach to the line–torus intersection 

detection and computation. Now, different 

equivalent formulations, which could lead to 

simpler and faster solutions, will be formulated in 

the following part. They can be briefly classified as 

follows: 

 a sphere is rotating about   axis (the envelope 

forms a torus) and intersection with the line in E
3
 

is computed directly, 

 a sphere is fixed on the   axis and intersection 

with the line rotating about   axis (i.e. it is 

actually an intersection of a sphere and double 

cone) in E
3
 is computed directly, 

 a sphere is rotating about   axis and intersection 

with the plane      in E
3
, on which the given 

line lies, results into circles in this plane, i.e. 

circles in E
2
, forming an envelope, i.e. a curve is 

given as an intersection of a torus with a plane. 

An intersection of the envelope of all circles and 

the line is computed in E
2
. 

This is actually a generalized line-clipping 

problem. 

Let us explore the first possible formulation more 

in detail, now. 
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3.1 Sphere Rotation - Intersection in E
3
 

Let us consider a situation in which a torus and line 

are in the same relative position, but using the above 

mentioned geometric transformation, the torus is in 

its basic position, i.e. in the     plane.  

A torus can be represented as a union all spheres 

with a radius   rotating about   axis in the     

plane with a radius  . It means that the torus can be 

defined as a union, i.e. an envelope, of all rotating 

spheres about   axis as 

 

                          

   

            

(41)  

where:           ,                       

Now the problem line-torus intersection is 

transformed to a generalized line clipping problem, 

when a line is clipped by an envelope of all rotating 

spheres   which forms the   torus, i.e. 

            

        

 
(42)  

where   and   are given constants of the torus. 

Due to the rotational symmetry about the   axis, 

the torus and the line can be rotated about   axis so 

that the line will lie in a plane parallel to the     

plane.  

Now, the given line is defined as  

             (43)  

A point    and a directional vector   of the line are 

defined as  

              
                

  (44)  

where:       as the line lies in a plane parallel to 

the     plane, i.e.         . 

The problem of a line-torus intersection problem 

is transformed to generalized line clipping problem 

in E
2
 actually, when a line is clipped by a parametric 

envelope.  

A line is given in the case of E
3
 as 

             (45)  
and a sphere 

                          (46)  
substituting we get 

 
                         

              
(47)  

i.e. 

 
                            

   
(48)  

where 

 

                   
                      

 

                  

(49)  

                   

 

 
            

       
      

   
          

(50)  

where:  

   
         

                              

                    

(51)  

and 

   
      

    
    

  (52)  

and 

 

  
      

                          

                  
(53)  

Therefore 

            

  
    

    
           
            

(54)  

The quadratic equation is now 

 

                  

           
   

    
    

  
                     

      

(55)  

In the case of the normalized directional vector  , 

i.e.      , resp.       , we get a quadratic 

equation parameterized by    as follows 

 

           

                          

               

(56)  

i.e. 

 
                        

   
(57)  

 where 

 

              

  

  

  

  

    

    
 

    
  

(58)  

and 

            
  (59)  

 

If the Vieta’s formula is used we get the following 

equivalent equations 

 
       

 

 
          

     
 

 
              

 

If a quadratic equation is considered as a quadratic 

function      of  , then the extreme value         

is given as 

            
     

 
          (60)  
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The point               is inside of the envelope; 

see Fig.4, if and only if                . 

Substituting          to the function       

 
                        

   
(61)  

we get 

 

          

                  

                

(62)  

i.e. 

                        (63)  
Substituting 

 
           

   

              
(64)  

This leads to: 

                        (65)  

Therefore  

                     (66)  

where   is an identity matrix and   is a tensor 

product producing a matrix.  

 

F(t)=at +bt+c
2

x1
x

2

x

y

 
Figure 4: Rotating sphere plane intersection and 

envelope 

As we recently set     in the quadratic equation, 

we can write 

                 (67)  

where       and       are the line parameter values 

for line sphere intersection.  

The second Vieta’s [2] equation can be used to 

determine intervals for φ with one root only for 

iterative solvers. 

 

In the classified case: 

 ad a) we can use mirroring operations and solve 

the intersection in one quadrant only twice for 

non-mirrored and for mirrored cases as there 

might be two tuples of intersections, 

 ad b) situation is complex as the envelope has 

an inflection point so there might be three 

intersections in one quadrant 

 ad c) this case is similar to the previous but only 

two intersection points might occur 

z=const

R-r R+r

z

x1 x2x0

x0 R

 
Figure 5: Rotating spheres 

 

However the intersection computation is still too 

complex. 

 

 

3.2 Line Rotation – Intersection in E
3
 

Another alternative approach is based on a fixed 

sphere position on the    axis and the given line 

rotates about   axis generally in E
3
. This approach is 

actually “dual” in some sense to the previous one 

and leads to an envelope given as an intersection of 

a sphere and double cone.  

There are two possible equivalent formulations: 

the center of a sphere is on the   axis and the 

rotating line is in a general position in E
3 

or 

geometric transformation is made so that the 

rotating line rotates about   axis and the vertex of a 

double cone is in the origin of the coordinate 

system; the center of a sphere is in the     plane, 

i.e. was moved up. 

 

A line in E
3
 is defined as 

             

           
  

(68)  

and a sphere on the   axis is defined as 

 
      

             

            
(69)  

As the line is rotated about y axis the rotation matrix 

  is expressed as 
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  (70)  

Then the rotating line forming a double cone in E
3
 

can be expressed as 

 
                    

               
(71)  

Substituting we get  

 

 
                     

  
                           

(72)  

or 

 

                            

   

                

(73)  

It means that a quadratic equation is obtained again, 

i.e. 

 

                

                        
   

(74)  

As the matrix      is orthonormal, i.e. 

              and directional vector can be 

normalized, i.e.       then we get a significant 

simplification 

 
                 

             
(75)  

Let us explore coefficients of this quadratic equation 

more in a detail. 

 

 

           
                    
                         

 

(76)  

As               we get 

 
             
               

(77)  

Using cross product symmetry we get 

 
             
       

        
 

(78)  

Now there is another simplification possible as 

            and            
  

 

       
        

                    
  

          

          
   

         
  

 
 
 
 

                    

(79)  

Now the last term of the equation 

 

           
            

            

   
            

    
           

    

(80)  

As               

 

           
   

      
           

    

   
      

          
    

(81)  

Using cross product symmetry we get 

 
           
  

       
          

    
(82)  

Again, there is another simplification possible as 

            and            
  

 

           
  

       
          

   

   
   

          
          

   
         

  

  

  

  
 

   

   
                      

    

(83)  

Putting all together we get 

 
            

          
    

          
      

      
(84)  

i.e. 

 

                         
   

          
              

(85)  

 

ρz=const

xS x

zS

z

R

0

r

f

 
Figure 6: Intersection plane-rotating sphere 
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3.3 Intersection with a Plane - Solution in E
2
 

It this part we will concentrate on the case, when 

sphere rotates about   axis and intersect a plane on 

which the given line lies and is parallel to the     

plane  

As the given line lies in a plane parallel to the 

    plane the rotating sphere intersect the plane, 

Fig.5, which results into circles in the     plane, 

Fig.6. 

       
             (86)  

 

Let us consider the line formulation. 

 

 
         

 
               

                      
(87)  

A sphere is rotating about   axis is described by 

i.e. 

 
                     
                          

(88)  

A plane on which the given line lies is defined 

as     . Then  

 

      
           

     
                         
    
   

                      
      

(89)  

As                   we get 

 

      
           

     
                 

           
   

          

(90)  

 

As the given line is defined as 

 
            
            

(91)  

we get 

 

  
           

     
  

           
    

                             
   

          

(92)  

i.e. a quadratic equation has a form 

 

   
    

     

                         

                       
   

    
 +  

          

(93)  

In the case of the normalized directional vector  , 

i.e.      , resp.       , we get a quadratic 

equation parameterized by    as follows 

 

          

                         

                         
   

    
 +  

        

(94)  

 

3.4 Hybrid method 
Let torus is represented as an envelope of rotating 

spheres about   axis again. Spheres intersect the 

plane      on which the given line lies and form 

circles in the plane     , on the plane parallel to 

    plane. Those circles on the plane are 

described by an equation 

As all the circles are on the plane      the 

equation can be simplified to 

       
          (95)  

where 

                           (96)  

Note that    represents rotation of the sphere about 

  axis, resulting circle is on the      plane. The 

  radius of a circle is given  

 
             

   
             

  
(97)  

The envelope of a plane-torus intersection is given 

as  

 
                  

         

           
     

(98)  

Let us consider the case, when       , Fig.7. 

 
Figure 7: An envelope given as union  

of plane-rotating sphere intersections 

 

Angles are determined as follows 

 

                 
  

                 
  

             
  

(99)  

The angle    is an angle when the first circle that 

contributes to an envelope; the angle    is for the 

last circle that contributes to the envelope and the 

angle    is for the largest circle inside the envelope. 

The given line lies in the      plane and is 

defined as 

 
            
            

(100)  

The line can be re-parameterized so that      

then circles are defined as: 

 
                   

    

              
    

(101)  

Now the problem is effectively transferred to E
2
. 
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3.5 New Bounding Volume 

The “standard” bounding volume [1] is based on a 

sphere in E
3
 and an intersection of two half spaces, 

Fig.2. As the line lies in the     plane for      

we can distinguish following fundamental cases: 

 ad a) we can use mirroring operations and solve 

the intersection in one quadrant only twice for 

non-mirrored and for mirrored cases as there 

might be two tuples of intersections, 

 ad b) situation is complex as the envelope has 

an inflection point so there might be three 

intersections in one quadrant, 

 ad c) this case is similar to the previous but 

only two intersection points might occur. 

However if many lines-torus intersections 

computation are needed, like in the ray tracing 

rendering technique, the more precise bounding 

volume is needed to increase the efficiency of 

computation. The “standard” bounding volume 

works fine for the case ad b). On the other hand it 

can be seen that  

 in the case ad a), i.e. when a line passes 

through the torus, i.e. through a “hole” and 

does not intersect the torus, detailed 

computation has to be made, that is 

computationally expensive.  

 in the case ad c), i.e. when a line intersects 

the torus in its “outer part”, i.e.      
    the distance between two planes can 

be smaller than   . 

Let us explore the first case as it leads to higher 

efficiency.  

 

 
AB

xA
x’

A
x

Bx’B x

y
k

k’
 

Figure 8: Torus-plane intersection and a ray 

 

Fig.8 presents an intersection plane-torus for 

          . It can be seen that a   circle (as 

we are in E
2
), with the center at    with the radius   

forms bounding surfaces together with the mirrored 

   circle by   axis. The    center of the circle is 

defined as follows:  

 
             

                    
(102)  

where  

      
  

 
 (103)  

or 

 
             

  

                    
  

(104)  

It can be seen that in the case of           a 

special case is obtained as there is no “hole” at all, 

Fig.9  

xAx’A x

y

 
Figure 9: A boundary situation 

 

 

 

 
Figure 10: Line-torus intersection for 

          , i.e. the case ad b) 

 

The test for the ad a) case can be formulated as: if 

the line intersects the   axis in the interval    
       

and does not intersect the circle   nor the circle   , 
then the line does not intersect the given torus. Fig.6 

presents two lines, in the case A, the line is not 

considered for intersection computation with torus, 

while in the cases B, the detailed intersection 

test/computation has to be made. 

 

 
Figure 11: Line-torus intersection and bounding for 

         , i.e. the case ad c) 

 

 

 

A

xA

x’
A

x

y

x

y

yA

y’A

e

A
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The test for the ad b) test remains as the original, 

Fig.10, as up to 3 intersections can occur in one 

quadrant as there is a point of inflexion.  

In the case ad c), i.e.          , there are 

only 2 intersection points possible, Fig.11. It can be 

seen that the distance between two planes, given by 

   and     values is now smaller than the original 

distance   . It can be seen that the new distance is 

given as 

               (105)  

 

 

4 Conclusion 
New alternative formulations for line-torus 
intersection problem have been presented. 
Unfortunately all the presented alternative 
formulations do not lead to simpler computational 
formulas. It seems to that an implicit form for the 
line-torus intersection is the most efficient one. 
There is still one possibility to use toroidal 
coordinate system; however the computational 
expense is too high. 

As a result of new geometrically equivalent 
formulations a new bounding object, actually circles 
in E

2
, for the line-torus intersection has been 

developed and described.  
The new bounding object increases line-torus 

intersection computation efficiency significantly as 
it also detects the cases when a line or ray is passing 
a “hole” of the torus. The efficiency of the new 

torus bounding test grows with the ratio    
  . 
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