
An Optimistic Concurrency Control Approach Applied to Temporal
Data in Real-time Database Systems

Walid MOUDANI, Nicolas KHOURY, Mohamad HUSSEIN

Business Computer Department
Lebanese University

LEBANON
wmoudani@ul.edu.lb

Abstract: - Real-time database systems (RTDBS) have received growing attention in recent years. RTDBS is a
database system where transactions have explicit timing constraints such as deadlines. The performance and the
correctness of RTDBS are highly dependent on how well these deadlines can be met. Scheduling of
transactions is driven by priority considerations rather than fairness considerations. Concurrency control is one
of the main issues in the studies of RTDBS. Optimistic concurrency control methods have the properties of
being non-blocking and deadlock-free which are attractive for RTDBS. Furthermore, in the actual applications,
real-time database systems require not only ensuring transactions finished in the specified time limits
(deadlines), but also guaranteeing temporal consistency of data objects accessed by transactions. In this paper
we propose an optimistic concurrency control method based on Similarity, Importance of transaction and
Dynamic Adjustment or Serialization Order called OCC-SIDASO. This method uses dynamic adjustment of
serialization order, operation similarity and the transaction importance, for maintaining transaction timeliness
level, minimizing transactions wasted restart, and guaranteeing temporal consistency of data and transactions.

Key-Words: - Real-time Database Systems, Optimistic Concurrency Control (OCC), Temporal Consistency,
Serialization Order

1 Introduction
In conventional database systems, concurrency
control ensures the correct executions for concurrent
transactions T1, ..., Tn. Two solutions are possible to
ensuring the correctness of concurrent transactions:
(i) serial executions and (ii) serializable executions.
In serial execution, the transactions T1, ..., Tn are not
concurrent because each transaction is executed to
completion before the next one. A serializable
execution of the transactions T1,...,Tn are concurrent
and computationally equivalent to a serial execution
and produces the same output and has the same
effect on the database as a serial execution. The
main objective of concurrency control is to process
all transactions in serializable way.
However, in Real-Time Database System (RTDBS),
the transactions must be processed within definite
time bounds, usually defined as a deadline. Failure
to complete transactions before their deadlines
greatly decreases the usefulness of the transactions.
Deadlines may be lost due to problems in
scheduling or transaction data contention. In the
literature, a considerable research works has been
devoted to designing concurrency control methods
for RTDBS and to evaluating their performance.
Most of these algorithms use serializability as
correctness criteria and are based on one of the two

basic concurrency control mechanisms: Pessimistic
Concurrency Control [3, 12] or Optimistic
Concurrency Control [2, 4, 5, 6, 11]. However, 2PL
has some inherent problems such as the possibility
of deadlocks as well as long and unpredictable
blocking times. These problems appear to be serious
in real-time transaction processing since real-time
transactions need to meet their timing constraints, in
addition to consistency requirements. Optimistic
concurrency control methods have the properties of
non-blocking and deadlock-free which make them
especially attractive for RTDBS.
Another important aspect of real-time databases to
be considered is temporal data consistency. RTDBS
often process both temporal data objects whose state
(value) may become invalid with the passage of
time, and persistent data objects that remain valid
regardless of time. A temporal validity interval is
associated with the state (value) of a temporal data
object. The values of temporal data objects lose
validity after their. A temporal data object models a
real world entity, for example, the position of an
aircraft, and is updated by a periodic sensor
transaction. The values of temporal data objects
must reflect the change of the real world entities
correctly and timely. Otherwise, decisions based on
such data objects will be wrong, even disastrous. In

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 419 Issue 12, Volume 11, December 2012

RTDBS, application transactions obtain the current
states of the real world entities by real-time access
to temporal data objects and further trigger the
corresponding control actions for decision [8]. The
traditional real-time concurrency methods [11]
ensure logical consistency of data as well as meeting
transaction deadlines, while neglect that the
temporal consistency of temporal data objects must
be guaranteed in real-time applications [8, 10].
In this paper, we propose an optimistic concurrency
control method called OCC-SIDASO based on
dynamic adjustment of serialization order using
timestamp interval. This method uses importance of
transaction and operation similarity and can ensure a
very well real-time performance by minimizing
transactions wasted restart, under circumstances of
guaranteeing logical and temporal consistency of
data. The remainder of this paper is organized as
follows: in section 2 we review the most important
existing real time concurrency control methods
proposed in the literature and we provide a
comparison between the described methods
according to different criteria widely known in
RTDBS. Afterward, the section 3 introduce the
proposed method OCC-SIDASO, by presenting and
explaining in detail the task of each step of this
method. In section 4, we present performance
evaluation of proposed method. Finally, section 5
includes the conclusion of our works and our future
perspectives.

2 Related Works
Many researchers have been devoted to design
appropriate concurrency control methods for
RTDBS. Most concurrency control methods can be
classified in one of the following mechanisms:
 The pessimistic concurrency control (PCC)

method detects conflicts before making access to
the data object.

 The optimistic concurrency control (OCC) method
detects conflicts after transactions have accessed
the data object.

The remainder of this section is organized as
following: firstly, we describe the PCC. Secondly,
we present the OCC. Thirdly, we describe several
OCC methods. Finally, this section is ended by a
comparison of OCC methods.

2.1 Pessimistic Concurrency Control
Pessimistic concurrency control methods are based
on data access locking techniques which will

possibly cause deadlocks and starvation problem
when two transactions are querying two conflicting
locks on the same data item [1]. The High Priority
Two Phase Locking (HP-2PL) [15] resolves data
conflicts in favor of transactions with higher priority
by aborting the lower priority transaction and
consequently may avoid deadlocks and thereby,
eliminates the overhead of deadlock detection and
deadlock solution. The favored transaction, the
winner of the data conflict, is allowed then to lock
the requested data object. HP-2PL is a primitive and
non efficient concurrency control method which
does not respect the temporal consistency of data
and transactions. Furthermore, the use of locking
technique will cause deadlocks in the case of mutual
blocking of two or more transactions; this is why it
is not suitable for real time transactions.
In order to take in account the temporal consistency,
an approach based on Temporal Consistency High
Priority-Two Phase Locking (TCHP-2PL) was
proposed in [8], which is a real-time concurrency
control method that can guarantee temporal
consistency of data and transactions.TCHP-2PL
uses priority of transactions attribute to choose
between conflicting transactions and uses
information about temporal consistency of data and
transactions which are defined as follow:
(i) Temporal consistency of data is satisfied if the
following two factors are valid:
 External consistency: a temporal data object is

said to meet external consistency at a time t if its
value is still valid according to its predefined
temporal validity interval.

 Mutual consistency: It is the temporal
consistency of a mutual relevance set which is a
group of defined temporal data objects, which are
used together to make decisions or derive new
data.

(ii) A transaction is temporally consistent if every
variable, independently, in its data set satisfies
temporal consistency, and its mutual relevance sets
satisfies mutual consistency.

Comparing with HP-2PL [15], the TCHP-2PL
integrates the checking of temporal consistency so it
can guarantee temporal consistency of transactions
which is not possible with HP-2PL. However both
methods use locking techniques and may suffer
from starvation problem that can result from the
repeated restart or blocking of a transaction in favor
of a conflicting one, as well as from lock table
overhead in system memory.
The THCP-2PL is enhanced by introducing
similarity in order to increase concurrency level.
The Similarity Based Temporal Consistency High

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 420 Issue 12, Volume 11, December 2012

Priority Two Phase Locking (STCHP-2PL) first
judges whether the conflicting operations meet
operation similarity (i.e. if two different transactions
operations operate on the same data variable X and
returns similar values of it), then it allows them to
execute concurrently. Therefore it uses an extended
type of locks called share lock which does not
conflict with any lock (Read or Write type locks).
Therefore, in addition to the priority of transactions
and temporal consistency checking, The STCHP-
2PL uses operation similarity factor to guarantee
temporal consistency of transactions and increase
concurrency.

2.2 Optimistic Concurrency Control
The basic idea of an optimistic concurrency control
mechanism is that the execution of a transaction
consists of three phases: read, validation and write
phases [11]. In the OCC, conflict detection and
resolution are both done at the validation phase
when a transaction completes its execution

2.2.1 Validation phase in OCC
In the validation phase of transaction iT , the method
checks that iT does not interfere with any
committed transactions or with any other
transactions currently in their validation phase. In
the OCC methods, the validation phase can be
performed in one of two ways:
 Backward validation: in methods that perform

backward validation, the validating transaction
either commits or aborts depending on whether it
has conflicts with transactions that have already
committed. So this scheme does not allow us to
take transaction characteristics into account and
it is not suitable for real time database.

 Forward validation: in methods that perform
forward validation, the validating transaction or
the conflicting ongoing transactions can be
aborted to resolve conflicts. This scheme can be
extended to real time database since the timing
characteristics of transaction can be considered
and proper decision can be taken in aborting,
delaying the committing transaction or aborting
the conflicting ongoing transactions [6].

2.2.2 Dynamic adjustment of serialization
order
The major performance problem with OCC methods
is the late transaction restart. Thus, one important
way to improve the performance of OCC methods is
to reduce the number of transaction restarts. One

way to reduce the number of transaction restarts is
to dynamically adjust the serialization order of the
conflicting transactions [4]. When some data
conflict with the validating transaction is detected,
there is no need to restart the conflicting transaction
immediately. Instead, a serialization order can be
dynamically defined as follows: a forward
validation is applied when we have a read-write
conflict or write-write conflict between vT and jT
respectively, and a backward validation is applied
when we have write-read conflict between vT and

jT respectively.
To preserve serializability with OCC methods, if
validating transaction vT has to be serialized before
active transaction jT , the following two conditions
must be satisfied [13]:
 No overwriting: The writes of vT should not

overwrite the writes of jT
 No read dependency: The writes of vT should

not affect the read phase of jT
There are three possible types of data conflicts
which can induce serialization order between a
validating transaction vT and a conflicting
transaction jT :
)()(jv TWSTRS (Read-Write conflict):

Read-Write conflict between vT and jT can
be resolved by adjusting the serialization
order between vT and jT as jv TT . It
means that the read of vT cannot be affected
by jT ’s write. This type of serialization
adjustment is called forward ordering.

)()(jv TRSTWS (Write-Read conflict):

Write-Read conflict between vT and jT can
be resolved by adjusting the serialization
order between vT and jT as vj TT . It
means that the read phase of jT is placed
before the write of vT . This type of
serialization adjustment is called backward
ordering.

)()(jv TWSTWS (Write-Write
conflict): Write-Write conflict between vT
and jT can be resolved by adjusting the
serialization order between vT and jT as

jv TT such that write of vT cannot
overwrite jT ’s write.

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 421 Issue 12, Volume 11, December 2012

To support dynamic adjustment of serialization
order, a dynamic timestamp assignment method is
used. For each transaction, iT there is a timestamp
called the latest commit timestamp)(iLCT to
indicate its serialization order relative to other
transactions. Initially, the value of)(iLCT is set to
be ∞. If iT has been backward adjusted,)(iLCT is
also used to detect whether iT has accessed any
invalid data at its validation test. Upon successfully
passing its validation test, the validating transaction

iT is assigned a final serialization timestamp.

2.3 OCC methods
The different OCC methods proposed in the
literature differ in the way of conflict resolution
during the validation phase. Below, we describe
shortly the most important optimistic methods in
literature. Table 1 shows the different terms and
parameters applied in OCC methods.

2.3.1 OCC method using Dynamic adjustment of
serialization order using timestamp interval
(OCC-DATI)
In [4], a method called OCC-DATI is presented
allowing to minimize the number of transaction
restarts by adjusting the serialization order
dynamically between conflicting and validating
transaction. In OCC-DATI all the checking is
performed at the validation phase of each
transaction, where it will be either forward or
backward adjusted based on the conflict type. A
serious conflict occurs when a conflicting active
transaction has to be both backward and forward
adjusted. The validating transaction is allowed to
commit if the validity of all its accessed data are still
sound and there is no serious conflict.
At the beginning of the validation, the final
timestamp of the validating transaction)(vTTS is
determined from the timestamp interval allocated to
the transaction vT . The timestamp intervals of all
other concurrently running and conflicting
transactions must be adjusted to reflect the
serialization order. We set)(vTTS to the validation
time if it belongs to the time interval of vT or to
maximum value from the time interval otherwise.
The adjustment of timestamp intervals of active
transactions iterates through the ReadSet (RS) and
WriteSet (WS) of validating transaction. When
access has been made to the same objects both in
validating transaction and in the active transaction,

the time interval of the active transaction is
adjusted. Non-serializable execution is detected
when the timestamp interval of an active transaction
shuts out and transaction is restarted.

The OCC-DATI is enhanced by using the the
importance of transactions found from transaction
object attributes [7]. A real-time transaction object
includes the attributes priority, deadline, and
importance. The conflict resolution section uses
dynamic adjustment of serialization order similarly
to OCC-DATI but with the following conditions:
- Transactions of high importance should not be

restarted because of data conflict with
transactions of low importance when forward
adjustment is applied.

- Transactions of high importance should not be
backward adjusted, but conflicting lower
importance should be restarted when backward
adjustment is applied.

Using importance or criticalness of the transaction
in place of the priority in the conflict resolution of
OCC method avoids the dilemma of priority based
conflict resolution, because transactions with very
short deadline (i.e. very high priority) are not
necessarily more critical than transactions with high
importance.
A method which is similar to OCC-DATI is
proposed in [16]. The conflict resolution in this
method uses real-time serializability and the
importance of transaction attribute. A transaction of
higher importance should precede a transaction of
lower importance in real-time history. Therefore, the
transaction of higher importance should not be
forward adjusted after a transaction of lower
importance. Thus, if this is the case a transaction of
lower importance is restarted. As well, in backward
adjustment, we must ensure real-time serializable
execution. Therefore, transactions of high
importance should not be backward adjusted;
instead, conflicting transactions having lower
importance should be restarted.

2.3.2 Real-time OCC Method with Dynamic
Adjustment of Serialization Order (OCC-DASO)
A method called OCC-DASO was proposed in [13]
using the Thomas' write rule for updating the
database with the writes of the validating
transactions during the write phase. In this method,
the number of transaction restarts is reduced by
using dynamic adjustment of serialization order,

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 422 Issue 12, Volume 11, December 2012

which is supported with the use of a dynamic
timestamp assignment scheme, and the Thomas'
write rule.
The validation phase of OCC-DASO is divided into
four steps: The first step of the validation phase is to
test whether vT has accessed any invalidated data.
Second step detects the read-write conflicts between
the set of the active transactions, jT and the
validating transaction vT . The third step is to detect
whether a backward-adjusted transaction jT , also

needs forward adjustment with respect to the
validating transaction vT . In the final step of the
validation test, If vT has not been selected for restart;
we have to assign the final values to the conflicting
and the validating transactions’ tables, and update
the read and write timestamps of data. By applying
Thomas' write rule in its write phase, vT will only
update the database with its writes on the
appropriate data item (with the valid timestamp).

Table 1. List of parameters used in OCC

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 423 Issue 12, Volume 11, December 2012

The OCC-DASO is enhanced in [11] by using a
parameter called transaction finish degree (TFD)
which can avoid the near-to-complete transactions
restarts. TFD values are calculated for the set of
transactions that have conflict with the validating
transaction vT , and whose deadlines are smaller than

vT ’s deadline. TFD can depict if an adjustment of
serialization order is necessary or can be avoided
and both the conflicting transactions can meet their
deadlines. The validation phase is divided into
preparation phase and adjustment phase. In
preparation phase, TFD values are computed and
serious conflict is checked. The reordering of
transaction commitment is performed in adjustment
phase. According to the VTFD values, the
commitment order is decided; either forward
ordering jv TT or backward ordering vj TT , in
condition that a serious conflict does not exist. If a
serious conflict occurs between vT and jT then the
variable versions read by the transactions are
modified.

2.3.3 OCC method for accessing temporal data
based on Validation factor and transaction
deferrable time (OCC-VFTDT)
In [10], the proposed method is designed in which a
checking algorithm is carried out to guarantee the
use of validate data that fit with the transaction
scheduling process. The checking process ensures
that all temporal data in the read set of a transaction
remain valid during all its execution time which will
guarantee the temporal consistency of this
transaction.
Afterward, the key factor concurrency control
algorithm is adjusting validation rules during
validation phase, which schedules the priority
transactions that are near to complete by asserting
validation factor. The validation algorithm
calculates the validation factor of the validating
transaction, which is a variable calculated from the
current time, the start time and the deadline time of
the transaction, and calculates the temporal
deferrable time of the transaction)(Ttsdt .

2.3.4 OCC with virtual run policy
To support real-time transaction processing, a
method is proposed by integrating the new criteria
and issues of CPU and I/O scheduling, and the time
cognizant conflict resolution scheme into the OCC
method [6]. This method considers the timing
characteristics of transaction and proper decision
can be taken in aborting, delaying the committing

transaction or aborting the conflicting ongoing
transactions. Three schemes are presented in [6]
such as:
 OCC-forward validation with virtual run

policy: In this scheme (OCC-FV) the transaction
that reaches its validation phase is allowed to
commit if it is not a virtual first run transaction
and all the active conflicting transactions which
are in their read phases are immediately aborted
and restarted if they are rerun transactions. In
case some of the conflicting read phase
transactions are in their first run, instead of
aborting them they enter their virtual run and
continue their read phase so as to bring data
objects required to buffer, assuming the system
buffer has a high retention effect, then a
transaction in its second run and onward does not
need to access the disk since the data objects are
already in memory. When the virtual run
transaction completes its read phase, it is aborted
and resubmitted to the system to start its real
second run. It is clear that there is no point to
allow restarted rerun transaction to complete its
read phase in virtual mode since all its data items
are already in memory. This scheme does not
take the transactions timing constraints into
account and favors the validating one to save the
amount of progress done by the validating
transaction since it is near completion and will
definitely complete if it is not restarted.

 OCC-sacrifice with virtual run policy: In this
scheme (OCC-OS) when a transaction reaches its
validation phase, it is aborted if one or more
conflicting transactions have higher priority than
the validating one; otherwise it commits and all
the conflicting read phase transactions are
restarted immediately. This method uses
transaction priority (timing constraints) in such a
way that the validating transaction sacrifices
itself for the sake of conflicting ones with higher
priority.

 OCC-abort 50 with virtual run policy: In this
scheme (OCC-A50) when a transaction reaches
its validation phase, its priority is checked
against those conflicting transactions in the read
phase. If more than 50% of the transactions in
their read phase have higher priority than the
transaction in its validation phase, the validating
transaction is aborted and all other transactions
are allowed to continue. If the number of
transactions in the read phase having higher
priority than validating transaction is less than or
equal to 50%, the validating transaction is
allowed to commit and all the other transactions
are restarted.

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 424 Issue 12, Volume 11, December 2012

2.4 Comparison of OCC and PCC methods
In this section we compare the described methods
according to different parameters shown in Table 2.
In OCC methods, either the validating transaction or
the conflicting ongoing transaction can be aborted to
resolve conflict. Moreover, dynamic adjustment of
serialization order is used to reduce the number of
transaction restarts caused by conventional OCC
and to take the proper decision in aborting or
delaying the committing transaction or aborting the
conflicting ongoing transaction. Most of the
literature methods based on OCC-DATI don’t
support temporal consistency of data and
transactions except for one (OCC-VFTDT), and
many of them favor transactions with higher
importance. Our proposed algorithm using the
OCC-DATI technique, supports temporal
consistency of data and transactions, and takes in
consideration the importance of transactions and the
criticalness factor of data. The algorithm also
attempts to outperform the previous methods by
reducing the number of transaction restarts and
increasing the concurrency level while maintaining
the data valid as much as possible.

3 OCC method using Similarity and
Importance of transaction and
Dynamic Adjustment of Serialization
In this section, we describe an Optimistic
Concurrency Control using Similarity and
Importance of transaction and Dynamic Adjustment
of Serialization Order called OCC-SIDASO.

This method respects the temporal consistency of
data items as well as real time transactions.
Furthermore, we introduce the concept of similarity
and data criticalness factor to obtain a better real-
time performance while guaranteeing temporal and
logical consistency. Moreover OCC-SIDASO takes
into consideration the importance of transaction
during conflict resolution and applies a dynamic
adjustment of serialization order only if the
temporal consistency of data and transactions are
not being violated. In addition, we relax
serializability criterion by introducing data
similarity and operation similarity, by allowing two
conflicting operation to commit if they meet
operation similarity which means when they are
slightly different we consider them as acceptable.
The OCC-SIDASO method resolves conflicts using
time intervals of the transactions. Every transaction
must be executed within a specific time slot.
When an access conflict occurs, it is resolved using
the read and write sets of the conflicting transactions
together with the allocated time slot. Time slots are
adjusted when a transaction commits. In this
protocol, every transaction in the read phase is
assigned a timestamp interval. This interval is used
to record a temporary serialization order induced
during the execution of the transaction. At the start
of the execution, the timestamp interval of a
transaction T is initialized as)(),(TdTS .
Whenever the serialization order of the transaction
is induced by its data operation or the validation of
other transactions, its timestamp interval is adjusted
to represent the dependencies.

Criteria/methods

Supports real-tim
e

transactions

Supports data tem
poral

consistency

Support transactions tem
poral

consistency

U
ses locking techniques

(pessim
istic m

ethod)- risk of
D

eadlocks

U
ses optim

istic concurrency
control

C
PU

 and I/O
 scheduling

Causes system
 m

em
ory

overhead

U
ses dynam

ic adjustm
ent

Favors transactions with high
im

portance or priority

OCC-DASO √ √ √ √
THCP-2PL (PCC) √ √ √ √ √ √
STHCP-2PL (PCC) √ √ √ √ √ √
OCC-VFTDT √ √ √ √ √ √
OCC-DATI √ √ √ √
OCC-PDATI √ √ √ √ √
MVOCC-TFD √ √ √ √
OCC-FV with virtual run policy √ √
OCC-sacrifice with virtual run policy √ √ √ √
OCC-abort50 with virtual run policy √ √ √ √

Table 2. Parameters used to compare OCC and PCC methods

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 425 Issue 12, Volume 11, December 2012

Fig 1. Validation algorithm of OCC-SIDASO

ܶܵ(௩ܶ) = ;݁݉݅ݐ_݊݅ݐ݈ܸܽ݀݅ܽ

ܶܵ(௩ܶ) = max൫ܶܫ(௩ܶ)൯ ;

		ܦ	∀)ݎܨ ∈ ܴܵ(௩ܶ) ∪ܹܵ(௩ܶ))

ܦ)ܨܫ ∈ ܴܵ(௩ܶ))

ܦ)ܨܫ ∈ ܹܵ(௩ܶ))

)ܫ൫ܶܨܫ ௩ܶ)൯ =)ݐݎܽݐݏ݁ݎ					([] ௩ܶ);

	∀)ݎܨ ܶ ∈)ݏ݊݅ݐܿܽݏ݊ܽݎݐ	݃݊݅ݐ݈݂ܿ݅݊ܿ	݁ݒ݅ݐܿܽ ௩ܶ))

ܦ)ܨܫ ∈ ൫ܹܵ(ܶ) ∩ ܴܵ(௩ܶ)൯)
݀ݎܽݓݎܨ −)ݐ݊݁݉ݐݏݑ݆݀ܽ ܶ , ௩ܶ , ;(ܦ

݀ݎܽݓݎܨ −)ݐ݊݁݉ݐݏݑ݆݀ܽ ܶ , ௩ܶ , ;(ܦ

ܦ൫ܨܫ ∈ ܴܵ(௩ܶ)൯
(ܦ)ܴܵܶ = max൫ܴܶܵ(ܦ), ܶܵ(௩ܶ)൯ ;

ܦ൫ܨܫ ∈ ܹܵ(௩ܶ)൯
(ܦ)ܹܵܶ = max൫ܹܶܵ(ܦ), ܶܵ(௩ܶ)൯ ;

OCC-SIDASO– VALIDATE (࢜ࢀ) {
݁݉݅ݐ_݊݅ݐ݈ܸܽ݀݅ܽ)ܨܫ ∈)ܫܶ ௩ܶ))

 Else

{

)ܫܶ ௩ܶ) =)ܫܶ ௩ܶ) ∩ ,(ܦ)ܹܵܶ] ∞[;

)ܫܶ ௩ܶ) =)ܫܶ ௩ܶ) ∩ ∩]∞,(ܦ)ܹܵܶ] ;]∞,(ܦ)ܴܵܶ]

 {

ܦ)ܨܫ ∈ ൫ܴܵ(ܶ) ∩ ܹܵ(௩ܶ)൯)
݀ݎܽݓ݇ܿܽܤ −)ݐ݊݁݉ݐݏݑ݆݀ܽ ܶ , ௩ܶ , ;(ܦ
ܦ)ܨܫ ∈ ൫ܹܵ(ܶ) ∩ ܹܵ(௩ܶ)൯)

)ܫ൫ܶܨܫ ܶ)൯ =)ݐݎܽݐݏ݁ݎ					([] ܶ);
 }

}
Commit ܹܵ(௩ܶ) to database;
}

Fig 2. Forward Adjustment of OCC-SIDASO

)	ݐݎܽݐݏܴ݁ ௩ܶ);

ࢊ࢘ࢇ࢝࢘ࡲ − ,ࢇࢀ)࢚ࢋ࢚࢙࢛ࢊࢇ ,࢜ࢀ } (ࡰ

)݉ܫ)ܨܫ ௩ܶ) ≥)݉ܫ ܶ)){
(ܦ)ܥ)൫ܨܫ =)	ܦܰܣ(݁ݏ݈ܽܨ ܱ)ܸ| , (ܦ − ௩ܱ)ܸ ,)หܦ 	 ≤ ((ߙ

 {
Commit ܹܵ(௩ܶ) to database;
Return;
}

Else IF (ܥ(ܦ) =)ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ	ܦܰܣ	݁ݑݎܶ ܶ) 	= OR (݁ݑݎܶ	
(ܦ)ܥ) = ܱ)ܸ|	ܦܰܣ	݁ݏ݈ܽܨ , −	(ܦ ௩ܱ)ܸ , |(ܦ > AND ߙ	
)ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ ܶ) 	= (݁ݑݎܶ	

)ܫܶ ܶ) 	=)ܫܶ	 ܶ)	∩	[ܶܵ(௩ܶ)	+ 	1	,∞	[;
 Else
)	ݐݎܾܣ ܶ);	
 }

Else

}

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 426 Issue 12, Volume 11, December 2012

In the remain of this section we present the : (i)
validation phase algorithm of OCC-SIDASO, (ii)
Operation similarity and data criticalness and (iii)
temporal consistency checking algorithm.

3.1 Validation phase algorithm of OCC-
SIDASO
This section presents the algorithm of validation
phase OCC-SIDASO shown in figure 1. At the
beginning of the validation, the final timestamp of
the validating transaction)(vTTS is determined
from the timestamp interval allocated to the
transaction vT . The timestamp intervals of all other
concurrently running and conflicting transactions
must be adjusted to reflect the serialization order.
We set)(vTTS to the validation time if it belongs to
the time interval of vT or to maximum value from
the time interval otherwise.
The adjustment of timestamp intervals of an active
transaction iterates through the readset (RS) and
writeset (WS) of validating transaction. When
access has been made to the same objects both in
validating transaction and in the active transaction
and at least one of the operations is a write
operation, then we have a conflict and the following
procedures should be called accordingly:
- The forward-adjustment procedure is called if

)()()()(vaivai TWSTWSDorTRSTWSD .
- The backward-adjustment procedure is called if

)()(vai TWSTRSD .

Non-serializable execution is detected when the
timestamp interval of an active transaction shuts out,
which means that it has to be both forward and
backward adjusted, and then the transaction has to
be restarted.

3.1.1 Forward adjustment of serialization order
During the validation phase of OCC-SIDASO
method, the conflict type between validating
transaction vT and active transaction aT is detected.
When conflict data iD is such that

)()()()(vaivai TWSTWSDORTRSTWSD , the
forward-adjustment algorithm shown in figure 2 is
called. If the active conflicting transaction is more
important from the validating one then the
validating transaction is restarted. If it is not the
case, the two conflicting operations aOp and vOp
are allowed to commit concurrently if there are
operation similarity and the conflict data item iD is

not critical. Otherwise, a forward adjustment of
serialization order is applied to the active conflicting
transaction aT by adjusting the timestamp interval
of aT . This adjustment of timestamp interval of the
active transaction iterates through the readset (RS)
and writeset (WS) of validating transaction vT . Note
that, forward adjustment will only be allowed if the
forwarding of the conflicting transaction aT does not
violate the temporal consistency of data and
transactions. This temporal consistency check is
done by the CHECK_POTENTIAL_TC(aT)
procedure which will be explained later in this
section.

3.1.2 Backward adjustment of serialization
order
During the validation phase, if the conflict type
between validating transaction ௩ܶ and active
conflicting transaction aT , is such that conflicting
data	ܦ ∈	 (ܴܵ(ܶ)		∩ 	ܹܵ(௩ܶ)), the backward-
adjustment () procedure shown in figure 3 is called.
If the active conflicting transaction is more
important from the validating one then the
validating transaction is restarted. If it is not the
case, the two conflicting operations ܱ and ܱ௩
are allowed to commit concurrently if there are
operation similarity and the conflict data item ܦ is
not critical. Otherwise, a backward adjustment of
serialization order is applied to the active conflicting
transaction	 ܶ by adjusting the timestamp interval of
ܶ.This adjustment of timestamp interval of the

active transaction iterates through the readset (RS)
and writeset (WS) of validating transaction	 ௩ܶ. Note
that, backward adjustment will only be allowed if
the backwarding of the conflicting transaction
ܶ	does not violate the temporal consistency of data

and transactions. This temporal consistency check is
done by the CHECK_POTENTIAL_TC(aT).

3.2 Operation similarity and data
criticalness
The OCC-SIDASO method introduces the concept
of similarity (operation similarity) for non-critical
temporal data items which is defined as follows:
Suppose mt and nt are a pair of concurrent
transactions, mi tOp , nj tOp and iOp and jOp
operate on the same non-critical data object D
(conflicting operations). If the following condition
is satisfied:

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 427 Issue 12, Volume 11, December 2012

),(),(DOpVDOpV ji (is the threshold
value whose value depends on the application
semantics,), then iOp and jOp are said to be
operation similarity, notated by ji OpOp A
temporal data D is critical TRUEDC)(if
catastrophic results occur when

),(),(0 DOpVDOpV ji While, a temporal

data D is non-critical FALSEDC)(if no
catastrophic results occur when

),(),(0 DOpVDOpV ji .

3.3 Temporal consistency checking
In our method, the maintenance of data temporal
consistency and transactions is done in 2 phases:
phase A and phase B.

Phase A: Before each temporal data access by the
running transaction, the algorithm Check_TC()
shown in figure 4 is called to check the temporal
validity of accessed data and to guarantee the
correct data is being scheduled. Check_TC () takes

as input the temporal data readset ܴܵ
to
t (ܶ)of a

transaction T and for every member Di the following
condition is checked:
|（ܦ）	ܾ݅ݒܽ	－（ܦ）	݁݅ݒܽ	|	݂ܫ 	< 	݇, then
temporal data X is fugitive, otherwise it is steady.
The value k is the length of transaction absolute
validate interval.

Next the algorithm checks whether the transaction
can commit before its data-deadline ݀݀௧(ܶ)	and
before its timestamp interval ending. If it is the case,
temporal consistency is then satisfied thus we
change the value of k as the length of temporal data
absolute validate interval and the function will
return a TRUE value. Otherwise, the transaction
will be aborted. So every fugitive data will be
checked for the temporary consistency by the
algorithm, which guarantee the transaction can
commit correctly.

ࢊ࢘ࢇ࢝ࢉࢇ − ,ࢇࢀ)࢚ࢋ࢚࢙࢛ࢊࢇ ,࢜ࢀ } (ࡰ
)݉ܫ)ܨܫ ௩ܶ) ≥)݉ܫ ܶ)) {

(ܦ)ܥ)൫ܨܫ =)	ܦܰܣ(݁ݏ݈ܽܨ ܱ)ܸ| , (ܦ − ௩ܱ)ܸ ,)หܦ 	≤ } ((ߙ
 Commit ܹܵ(௩ܶ) to database;

Return;
 }

Else IF(ܥ(ܦ) =)ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ	ܦܰܣ	݁ݑݎܶ ܶ) 	= OR (݁ݑݎܶ	
(ܦ)ܥ) = ܱ)ܸ|	ܦܰܣ	݁ݏ݈ܽܨ , (ܦ − ௩ܱ)ܸ , |(ܦ >)ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ AND	ߙ	 ܶ) 	=
 (݁ݑݎܶ	

)ܫܶ ܶ) 		=)ܫܶ	 ܶ) 	∩	 [0	, ܶܵ(௩ܶ)	− 	1];	
 Else

Abort (Ta);
}

 Else
)	ݐݎܽݐݏܴ݁ ௩ܶ);
}

Fig 3. Backward adjustment of OCC-SIDASO

ܴܵtot 	(ܶ) = 	ܴܵtot 	(ܶ)	– ;{ܦ}

																			݂݅	(݀݀௧(ܶ) < (ܶ)݁݅ݐ	ܴܱ	(ܶ)௧ܥ 	< ((ܶ)௧ܥ

CHECK_TC (T)

INPUT: ܴܵ tos(t)	(ܶ) = ܦ	} , 	{ܦ…,ଶܦ

{݇ = ∞; ܰ	 = ܮ	
to
s(t); ݅ = 1;

 While (ܴܵ
to
t (ܶ)) {

 T accesses	ܦfrom	ܴܵ(ܶ);

݅ݒܽ	|	݂ܫ												 |（ܦ）	ܾ݅ݒܽ	－（ܦ）݁	 	 < 	݇ Then

Return False;
 Else

 ݇ = ݇
i

j 1

(ܦ)݁݅ݒܽ| − 	;|(ܦ)ܾ݅ݒܽ

݅ = ݅ + 1; }
Return True;
}

Fig 4. Temporal consistency checking algorithm

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 428 Issue 12, Volume 11, December 2012

Phase B: At the validation time and as we
mentioned above, in forward-adjustment and
backward-adjustment procedures, no transaction
serialization order can be adjusted without
maintaining the temporal consistency of data and
transactions. This condition is insured by the
function CHECK_POTENTIAL_TC() showed in
figure 5 which is similar to the previous
CHECK_TC() with a difference that presumptive
timestamp interval and completion time of the
conflicting transaction are calculated and used in the
function to check the transaction temporal
consistency in case it is dynamically adjusted .Those
two calculated values will replace the real
timestamp interval and completion time of ܶif it
passes the temporal consistency checking.

3.4 Analysis
In this section, we have proposed the OCC-SIDASO
method based on the dynamic adjustment of
serialization order, the importance of transaction
and the operation similarity factor. The method
maintains the temporal consistency of data items
and real time transactions simultaneously. OCC-
SIADSO has a main advantage over the earlier
optimistic concurrency control techniques, which is
the presumptive temporal consistency checking that
avoids unnecessary and inaccurate adjustment of
transactions. This critical feature correctness will be
verified later in the performance evaluation section.

4 Performance Evaluation
The scheduling decision of conflicting transactions
is taken according to the conflict type , the
importance of conflicting transactions, the similarity
and temporal consistency factors. In order to
evaluate the performance of OCC-SIDASO
methods, we present the simulation results of OCC-
SIDASO for two different numeric scenarios, each
containing two transactions with data items and an
execution schedule with their specific attributes. To
demonstrate the efficiency of our proposed
algorithm, we will simulate the same two scenarios
with two existing methods from literature which are:
STCHP-2PL and OCC-VFTDT. These methods are
chosen for the reason that they both respect and
maintain the temporal consistency of data and
transactions. In addition, STCHP-2PL introduces
the concept of similarity and OCC-VFTDT makes
use also of the same temporal consistency checking
function that we use in our proposed method. The
simulation result will be compared and discussed to

prove the correctness and the outperformance of our
proposed method.

4.1 Simulation prototype
In order to validate our proposed method, we
develop a simulation proptotype of the proposed
algorithm built on Microsoft Visual Studio 2005
developement environment and the C++
programming language. The main objective of the
prototype is to simulate the OCC-SIDASO on a
given schedule and then generating a serializable
execution of the schedule respecting transactions
deadlines and importance and maintaining data
temporal consistency.

4.2 Simulation scenarios
In our simulation, we use two scenarios including
two transactions: T1 and T2. Each transaction
contains read and write operations, and three data
items: X, Y and Z. The tables 3 and 4 presents the
transactions attributes: importance or priority, start
time, execution time, completion time, deadline (or
timestamp interval end) and timestamp interval.

)′ܫܶ ܶ) 	=)ܫܶ	 ܶ)	∩ 	 [ܶܵ(௩ܶ)	+ 	1	,∞[;

)′ܫܶ ܶ) 	=)ܫܶ	 ܶ) 	∩	 [0, ܶܵ(௩ܶ) − 	1]	;		

′௧ܥ (ܶ) 	=)′ܾ݅ݐ ܶ)	+)ܧ	 ܶ)	

ܴܵtot 	(ܶ) = 	ܴܵtot 	(ܶ)	– ;{ܦ}

																					݂݅	(݀݀௧(ܶ) < (ܶ)′݁݅ݐ	ܴܱ	(ܶ)′௧ܥ 	< ((ܶ)′௧ܥ

݇ = ݇
i

j 1

(ܦ)݁݅ݒܽ| − 	;|(ܦ)ܾ݅ݒܽ

 (ࢀ)	ࢀ_ࢇ࢚ࢋ࢚ࡼ_ࡷࡱࡴ

INPUT: ܴܵ tos(t)	(ܶ) = ܦ	} , …,ଶܦ 	{ܦ

// If we have a forward-adjustment procedure

// If we have a backward-adjustment procedure

{݇ = ∞; ܰ	 = ܮ	
to
s(t); ݅ = 1;

 While (ܴܵ
to
t (ܶ)) {

T accesses ܦfromܴܵ(ܶ);

|（ܦ）	ܾ݅ݒܽ	－（ܦ）	݁݅ݒܽ	|	݂ܫ 	< 	݇ Then

 Return False;
 Else

										݅ = ݅ + 1;		}	

Return True;
 }

Fig 5. Potential temporal consistency checking
algorithm

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 429 Issue 12, Volume 11, December 2012

Furthermore, tables 3 and 4 presents data items
attributes are: read timestamp, write timestamp,
criticalness, start time and validity interval. We
notice that for the pessimistic method (STCHP-
2PL), we consider that an operation requires two
time units: one for acquiring the requested lock and
one for execution. In the figure 6 and 7, we give for
each of the two scenarios a timeline graph to
illustrate its time relativity.

4.3 Simulation results applied on scenario 1
In this section, we present the simulation results
based on scenario 1 for three methods: OCC-
SIDASO, OCC-VFTDT and STCHP-2PL.

4.3.1 Simulation result with OCC-SIDASO
In the schedule of the first scenario and at time t5
when Tଶ is validating, the validation procedure is
called where it decides to backward adjust the
conflicting transaction T1. Afterward, according to
the conflict type detected between the validating
transaction 	 ଶܶ and the conflicting transaction T1, the
OCC-SIDASO algorithm decides to call the
backward-adjustment procedure that checks the
properties and the attributes of the schedule and its
elements (transactions and operations) and chooses
the appropriate conflict resolution method which is Fig. 6. Timeline of scenario 1 in optimistic methods

Fig. 7: Timeline of scenario 2 in optimistic methods

Scenario 1

ଵܶ: W1(X) R1(Y) ߙ = 1					ܴ௩ = 1
Imp(ଵܶ) =P(ଵܶ)= 3, C(ଵܶ) = t6, S(T1) = t3
E(ଵܶ) = 3 d(ଵܶ) = tie(ଵܶ) = t12, TI(ଵܶ) = [3,12]

ଶܶ: W2(Y) W2(Z) R2(Z)
Imp(ଶܶ) =P(ଶܶ)= 5, C(ଶܶ) = t10, S(ଶܶ) = t1
E(ଶܶ) = 9, d(ଶܶ) = tie(ଶܶ) = t14, TI(ଶܶ) = [1,14]

X=5, RTS(X)=1, WTS(X)=1
C(X)=TRUE, ST(X)=1, VI(X)=13

Y=3, RTS(Y)=1, WTS(Y)=1
C(Y)=TRUE, ST(Y)=0, VI(Y)=13

Z=6, RTS(Z)=1, WTS(Z)=1
C(Z)=FALSE, ST(Z)=4, VI(Z)=2

Operands +2 +1 +3
 Schedule : W2(Y) W2(Z) W1(X) R2(Z) V2 C2 R1(Y) V1 C1

Time in OCC t1 t2 t3 t4 t5
Timeline STCHP-2PL t1,t2 t3,t4 t5,t6 t6,t7 t8,t9

Table 3. Transactions, data items and schedule information of scenario 1

Scenario 1

ଵܶ: R1(Y) W1(X) ߙ = 1											ܴ௩ = 1
Imp(ଵܶ) =P(ଵܶ)= 3, C(ଵܶ) = t8, S(ଵܶ) = t2
E(ଵܶ) = 6, d(ଵܶ) = tie(ଵܶ) = t10, TI(ଵܶ) = [2,10]

ଶܶ: W2(X) R2(Z)
Imp(ଶܶ) =P(ଶܶ)= 1, C(ଶܶ) = t6, S(ଶܶ) = t1
E(ଶܶ) = 5, d(ଶܶ) = tie(ଶܶ)=t11, TI(ଶܶ) = [1,11]

X=2,RTS(X)=1,WTS(X)=1
C(X)=TRUE, ST(X)=1, VI(X)=13

Y=4,RTS(Y)=1,WTS(Y)=1
C(Y)=TRUE,ST(Y)=0, VI(Y)=13

Z=6,RTS(Z)=1,WTS(Z)=1
C(Z)=FALSE,ST(Z)=2, VI(Z)=10

Operands +2 +0 +0 +5
 Schedule : W2(X) R1(Y) R2(Z) W1(X) V1

Time in OCC t1 t2 t3 t4 t5 t6
Timeline STCHP-2PL t1,t2 t3,t4 t5,t6 t6,t7

Table 4. Transactions, data items and schedule information of scenario 2

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 430 Issue 12, Volume 11, December 2012

on our case aborting the conflicting transaction
T1.Moreover, during the Backward-adjustment
(ଵܶ, ଶܶ ,ܻ), a backward adjustment of the serialization
order of the conflicting transaction T1 is allowed
only if it does not violate the temporal consistency
of accessed data items and transactions. In this
scenario, this criterion is not verified according to
the ܥܶ_݈ܽ݅ݐ݊݁ݐܲ_ܭܥܧܪܥ	(ଵܶ).

According the simulation result applied on scenario
1, the OCC-SIDASO algorithm decides to abort the
active conflicting transaction T1for the favor of the
validating transaction	 ଶܶ. This decision was taken
due to the following reasons:
 The importance of 	 ଶܶ is greater than the

importance of ଵܶ	 which means 	 ଶܶshould not be
restarted.

 Conflict data item ܻ is critical which means no
operation similarity is allowed.

 A presumptive ܶܫᇱ(ଵܶ)and ܥ௧ᇱ(ଵܶ) are calculated
to check later the temporal consistency of ଵܶ	 in
case it is backward adjusted.

 Further, the presumptive temporal consistency
checking shows that the backward adjustment of
ଵܶ	 will violate the transaction temporal

consistency, therefore ଵܶ	 is aborted and 	 ଶܶ
commits to database.

4.3.2 Simulation result with OCC-VFTDT
In this section, we present the simulation result of
the first scenario under the method OCC-VFTDT in
order to compare its results with OCC-SIDASO. In
the schedule of this scenario at time t5 when 	 ଶܶ is
validating, the OCC-VFTDT algorithm is called.
First, the algorithm calculates the following
parameters that will be used in the conflict resolution
decision taking:

)௧ହܨܸ ଶܶ) 	= –	ݐ)ݏ	 ଶܶ)	/	݀(ଶܶ)	–)ݏ	 ଶܶ) 	
= 	 (5	– 	1)	/	(14	– 	1) 	= 	0.3

݀݀௧ହ(ଶܶ) 	= 	13	 < 	݀(ଶܶ) 	= 	14 then
)௧ହ݀ݏݐ ଶܶ) 	 = 	݀݀௧ହ(ଶܶ)	–	ܥ௧ହ(ଶܶ) 	= 	13	– 	10	 = 	3	

݀݀௧ହ(ଵܶ) = 	14		݀(ଵܶ) = 	12 then

)௧ହ݀ݏݐ ଵܶ) 	= 	݀(ଵܶ)	–	ܥ௧ହ(ଵܶ) 	= 	12	– 	6	 = 	6

Second, the OCC-VFTDT algorithm chooses the
method of conflict resolution by deciding the type of
serialization order to follow according to the
conflict type detected between the validating
transaction 	 ଶܶ and the conflicting transaction ଵܶ,
when 	 ଶܶ is validating at time t5, OCC-VFTDT
detects a data conflict on item Y such that	

ܴܵ(ଵܶ) ∩ܹܵ(ଶܶ) = ܻ. The validation factor of
transaction 	 ଶܶ is calculated which is not greater or
equal than 1 then the condition is not validated and
the execution order will be ଵܶ, 	 ଶܶ which means that
ଵܶ will be backward adjusted. Conversely, the same

transaction was aborted by OCC-SIDASO algorithm
due to its temporal consistency violation in case it is
adjusted.

4.3.3 Simulation result with STCHP-2PL
In this section, we present the simulation result of
the first scenario under the method STCHP-2PL to
compare later its result with the one of OCC-
SIDASO. Under STCHP-2PL, the schedule in
scenario 1 will be running according to the
following timeline (Figure 8).
In this scenario, ଵܶ requests for a read lock on data
item Y which has been locked with an exclusive
write lock by 	 ଶܶ. The STCHP-2PL does not detect
any operation similarity in history between the
conflicting operations therefore one of the
conflicting transactions must be aborted or blocked.
The requesting transaction ଵܶhas a lower importance
than 	 ଶܶ which is holding the requested lock and the
set of data items that ଵܶ has accessed or willing to
access meets mutual consistency, then the algorithm
decides to block ଵܶ and to keep on executing	 ଶܶ.

4.4 Simulation results applied on scenario 2
In this section, we present the simulation results
based on scenario 2 for three methods: OCC-
SIDASO, OCC-VFTDT and STCHP-2PL.

4.4.1 Simulation result with OCC-SIDASO
In the schedule of the second scenario at time t5
when T1 is validating, the validation procedure is
called where it decides to forward adjust or

Fig 8. Timeline of scenario 1 applied in STCHP-2PL

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 431 Issue 12, Volume 11, December 2012

backward adjust or restart the conflicting transaction
T2. Afterward, according to the conflict type
detected between the validating transaction T1 and
the conflicting transaction T2, the OCC-SIDASO
algorithm decides to call the Forward-adjustment
procedure that checks the properties and the
attributes of the schedule and its elements
(transactions and operations) and chooses the
appropriate conflict resolution method which is on
our case forward adjusting the conflicting
transaction T2. Moreover, during the Forward-
adjustment (T2, T1, X) procedure a forward
adjustment of the serialization order of the
conflicting transaction T2 is allowed only if it does
not violate the temporal consistency of accessed
data items and transactions. In this scenario this
criterion is verified according to the
CK_Potential_TC	(Tଶ) .
According the simulation applied on scenario 2, the
OCC-SIDASO algorithm decides to forward adjust
the serialization order of the conflicting transaction
Tଶand to keep the schedule of T1 as it is. This
decision was taken due to the following reasons:
 The importance of T1 is greater than the

importance of T2 which means T1 should not be
restarted.

 Conflict data item ܺ is critical which means no
operation similarity is allowed.

 A presumptive ܶܫᇱ(ଶܶ) and ܥ௧ᇱ(ଶܶ) are calculated
to check later the temporal consistency of T2 in
case it is forward adjusted.

 Further, the temporal consistency checking shows
that the forward adjustment of ଶܶ will maintain
the transaction and data temporal consistency,
therefore ଶܶ will be rescheduled to time t6 and T1
commits to database

4.4.2 Simulation result with OCC-VFTDT
In this section, we present the simulation result of
the second scenario under the method OCC-VFTDT
to compare its results with OCC-SIDASO. In the
schedule of the second scenario, and at time t5 when
T1 is validating, the OCC-VFTDT algorithm is
called. The algorithm calculates the following
parameters that will be used in the conflict
resolution decision taking:

)௧ହܨܸ ଵܶ) 	= –	ݐ)ݏ	 ଵܶ)	/	݀(ଵܶ)	–)ݏ	 ଵܶ) 	
= 	 (5	– 	2)	/	(10	– 	2) 	= 	0.3

݀݀௧ହ(ଵܶ) 	= 	14		݀(ଵܶ) 	= 	10 then

)௧ହ݀ݏݐ ଵܶ) 	= 	݀(ଵܶ)	–	ܥ௧ହ(ଵܶ) 	= 	10	– 	8	 = 	2	

݀݀௧ହ(ଶܶ) 	= 	14		݀(ଶܶ) 	= 	11 then

)௧ହ݀ݏݐ ଶܶ) 	= 	݀(ଶܶ)	–	ܥ௧ହ(ଶܶ) 	= 	11	– 	6	 = 	5

In this scenario, when T1 validates at time t5 a data
conflict is detected on item ܺ such that ܹܵ(ଶܶ) ∩
ܹܵ(ଵܶ) = ܺ. The validation factor of transaction ଵܶ
is calculated which is less than 1 and the transaction
temporal deferrable time of T1 is not greater than
the one of T2, then the condition is not validated
and the execution order will be T1, T2 which means
T2 will be forward adjusted. Similarly, OCC-
SIDASO decides to forward adjust T2 after checking
its presumptive temporal consistency.

4.4.3 Simulation result with STCHP-2PL
In this section, we present the simulation of the
second scenario under the method STCHP-2PL to
compare its results with the ones of OCC-SIDASO.
Under STCHP-2PL, the schedule in scenario 2 will
be running according to the following timeline
(Figure 9).

In this scenario, T1 requests for a write lock on data
item X which has been locked with an exclusive
write lock by ଶܶ. The STCHP-2PL does not detect
any operation similarity in history between the
conflicting operations therefore one of the
conflicting transactions must be aborted or blocked.
The requesting transaction T1 has a higher
importance than ଶܶ which is holding the requested
lock and the set of data items that T1 has accessed or
willing to access meets mutual consistency, then the
algorithm decides to abort ଶܶ and grant T1 the
requested lock. However, in the first scenario, OCC-
SIDASO decides to forward adjust the serialization
order of the active conflicting transaction T2 and to
keep on validating T1.

Fig 9. Timeline of scenario 2 applied in STCHP-2PL

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 432 Issue 12, Volume 11, December 2012

4.5 Discussion
The two scenarios simulation results prove that our
proposed method can take more accurate decisions
in the conflict resolution between real-time
transactions than two existing outperforming
methods in literature which are STCHP-2PL and
OCC-VFTDT. As we can see in table 5, the reasons
behind this dominance are the weak points of
STCHP-2PL method which are the unsafe restart
and the wasted abort, as well as the issues caused by
OCC-VFTDT algorithm which are the incorrect
adjustment and the inaccurate adjustment.
Furthermore, OCC-SIDASO makes use of the
importance of transactions, the operation similarity
factor, the simultaneous and the presumptive
temporal consistency checking, to get to the most
precise decision which can cover the maximum
number of data conflict scenarios. Consequently, we
conclude that our method is equivalent to the other
existing methods in some cases and outperforms
them in other cases.

4 Conclusion and perspectives
In this paper, we proposed an optimistic
concurrency control called OCC-SIDASO with the
capability of predicting the correctness of the
transactions history in case it is rescheduled.

Furthermore, we used the concept of similarity
between conflicting operations to obtain a better
real-time performance, and the transaction
importance criterion in order to favor transactions
with higher importance in data conflict resolution.
Also, a simulation implementation and a
performance comparison between OCC-SIDASO
and two real-time concurrency control methods
from literature show that our method can ensure a
very well real-time performance while guaranteeing
temporal consistency and can even outperform these
methods in some cases.
Future work could include the use of fuzzy logic
techniques by creating a set of fuzzy rules that will
form the fuzzy logic engine in order to deal with the
importance, the criticalness and the similarity
attributes. By using these rules, fuzzy logic will try
to provide an easy conflict resolution method
between transactions.
Moreover, we can try to implement our proposed
method on a real-time database test platform like
MMRTDBTP (Main-Memory Real-Time Database
Platform), and on a real database management
system to obtain more accurate results.

Table 5. OCC-SIDASO, STCHP-2PL and OCC-VFTDT simulations results comparison

 OCC-SIDASO STCHP-2PL OCC-VFTDT

Sc
en

ar
io

 1
 Conflict transaction

is aborted for
violating temporal
consistency if
adjusted

Unsafe restart: the conflicting
transaction is blocked, which
will allow restarting it later
and violating the temporal
consistency of data and
transaction.

Incorrect Adjustment: the conflicting
transaction is backward adjusted which
is a wrong decision because this
transaction will be violating its
temporal consistency according to the
result of Check_Potential_TC()
checking function in OCC-SIDASO.

Sc
en

ar
io

 2

Conflict transaction
is forward adjusted
after validating its
presumptive
temporal
consistency

Wasted abort: the transaction
holding the lock is aborted and
the lock is granted to the
requesting (conflicting)
transaction. This is a wasted
abort which is prevented by
our proposed method where
the validating transaction
keeps on executing.

Inaccurate adjustment: the conflicting
transaction is forward adjusted and it
has a deferrable time greater than the
validating transaction. This condition is
not accurate for adjusting a transaction
because it is possible that this
transaction would not have the
sufficient time to complete before its
deadline or data deadline.

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 433 Issue 12, Volume 11, December 2012

References:
[1] R. EL Masri, S. Navathe, Fundamentals of

database systems, Addison-Wesley, 6th
edition, 2011.

[2] L. Kwok-wa, L. Kam-yiu, H. Sheung-lun,
Real-time Optimistic Concurrency Control
protocol with Dynamic Adjustment of
Serialization Order, Conference Real-Time
Technology and Applications Symposium,
1995.

[3] P.A. Bernstein, N. Goodman, Concurrency
Control in Distributed Database Systems.
ACM, Computing Surveys, Vol. 13(2), 1981.

[4] J. Lindström, Dynamic Adjustment of
Serialization Order using Timestamp Interval in
Real-Time Databases, IEEE Conference on
Transaction Processing, 1999.

[5] H. Qilong, H. Zhongxiao, Real-time Optimistic
Concurrency Control based on Transaction
Finish Degree, Journal of Computer Science,
Vol. 1(4): 471-476, 2005.

[6] A. Abu-Ali, On Optimistic Concurrency
Control for Real-Time Database Systems,
American Journal of Applied Sciences, Vol. 3
(2), pp. 1706-1710, 2006.

[7] J. Lindström, K. Raatikainen, Using
Importance of Transactions and Optimistic
Concurrency Control in Firm Real-Time
Databases. Seventh International Conference
on Real-Time Computing Systems and
Applications (RTCSA'00), pp. 463-467, 2000.

[8] X. Ying-yuan, H. Zhang, W. Fa-yu,
Maintaining Temporal Consistency in Real-
Time Database Systems, International
Conference on Convergence Information
Technology, 2007.

[9] K. Ramamritham, H.S. Sang, L.C. DiPippo,
Real-Time Databases and Data Services,
Journal Real-Time Systems, Vol. 28, Issue 2-3,
pp. 179-215, 2004.

[10] H. Qilong, P. Haiwei, Y. Guisheng, A
Concurrency Control Algorithm Access to
Temporal Data in Real-time Database Systems,
International Multi-symposiums on Computer
and Computational Sciences, 2008.

[11] Baothman F., Sarje A.K. and Joshi R.C.: On
optimistic concurrency control for RTDBS.
American Journal of Applied Sciences, Vol. 3
(2): 1706-1710, 2006.

[12] A. Chiu, K. Ben, L. Kam-yiu, Comparing Two-
Phase Locking and Optimistic Concurrency
Control Protocols in Multiprocessor Real-Time
Databases, Proceeding of the 1997 Joint
Workshop on Parallel and Distributed Real-
Time Systems, 1997.

[13] J. Huang, J.A. Stankovic, K. Ramamrithan, D.
Towsley, Experimental evaluation of real-time
optimistic concurrency control schemes,
Proceedings of the 17th International
Conference on Very Large Data Bases, 1991.

[14] W. Peng, P. Zilong, Research on the
improvement of the concurrency control
protocol for real-time transactions,
International Conference on Machine Vision
and Human-machine Interface, 2010.

[15] C. Lau, V. Lee, Real Time Concurrency
Control For Data Intensive Applications,
Proceedings of the 11th IEEE International
Conference on Embedded and Real-Time
Computing Systems and Applications, 2005.

[16] J. Lindström, K. Raatikainen, Using Real-Time
Serializability and Optimistic Concurrency
Control in Firm Real-Time Databases.
University of Helsinki Report, 17th March
2000.

[17] W. Yongyan, W. Qiang, W. Hongan, D.
Guozhong, Dynamic Adjustment of Execution
Order in Real-Time Databases, Proceedings of
the 18th International Parallel and Distributed
Processing Symposium, 2004.

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 434 Issue 12, Volume 11, December 2012

