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Abstract: - Real-time database systems (RTDBS) have received growing attention in recent years. RTDBS is a 
database system where transactions have explicit timing constraints such as deadlines. The performance and the 
correctness of RTDBS are highly dependent on how well these deadlines can be met. Scheduling of 
transactions is driven by priority considerations rather than fairness considerations. Concurrency control is one 
of the main issues in the studies of RTDBS. Optimistic concurrency control methods have the properties of 
being non-blocking and deadlock-free which are attractive for RTDBS. Furthermore, in the actual applications, 
real-time database systems require not only ensuring transactions finished in the specified time limits 
(deadlines), but also guaranteeing temporal consistency of data objects accessed by transactions. In this paper 
we propose an optimistic concurrency control method based on Similarity, Importance of transaction and 
Dynamic Adjustment or Serialization Order called OCC-SIDASO. This method uses dynamic adjustment of 
serialization order, operation similarity and the transaction importance, for maintaining transaction timeliness 
level, minimizing transactions wasted restart, and guaranteeing temporal consistency of data and transactions. 
 
Key-Words: - Real-time Database Systems, Optimistic Concurrency Control (OCC), Temporal Consistency, 
Serialization Order 
 
1 Introduction 
In conventional database systems, concurrency 
control ensures the correct executions for concurrent 
transactions T1, ..., Tn. Two solutions are possible to 
ensuring the correctness of concurrent transactions: 
(i) serial executions and (ii) serializable executions.  
In serial execution, the transactions T1, ..., Tn are not 
concurrent because each transaction is executed to 
completion before the next one. A serializable 
execution of the transactions T1,...,Tn  are concurrent 
and computationally equivalent to a serial execution 
and produces the same output and has the same 
effect on the database as a serial execution. The 
main objective of concurrency control is to process 
all transactions in serializable way.  
However, in Real-Time Database System (RTDBS), 
the transactions must be processed within definite 
time bounds, usually defined as a deadline. Failure 
to complete transactions before their deadlines 
greatly decreases the usefulness of the transactions. 
Deadlines may be lost due to problems in 
scheduling or transaction data contention. In the 
literature, a considerable research works has been 
devoted to designing concurrency control methods 
for RTDBS and to evaluating their performance. 
Most of these algorithms use serializability as 
correctness criteria and are based on one of the two 

basic concurrency control mechanisms: Pessimistic 
Concurrency Control [3, 12] or Optimistic 
Concurrency Control [2, 4, 5, 6, 11].  However, 2PL 
has some inherent problems such as the possibility 
of deadlocks as well as long and unpredictable 
blocking times. These problems appear to be serious 
in real-time transaction processing since real-time 
transactions need to meet their timing constraints, in 
addition to consistency requirements. Optimistic 
concurrency control methods have the properties of 
non-blocking and deadlock-free which make them 
especially attractive for RTDBS.  
Another important aspect of real-time databases to 
be considered is temporal data consistency. RTDBS 
often process both temporal data objects whose state 
(value) may become invalid with the passage of 
time, and persistent data objects that remain valid 
regardless of time. A temporal validity interval is 
associated with the state (value) of a temporal data 
object. The values of temporal data objects lose 
validity after their. A temporal data object models a 
real world entity, for example, the position of an 
aircraft, and is updated by a periodic sensor 
transaction. The values of temporal data objects 
must reflect the change of the real world entities 
correctly and timely. Otherwise, decisions based on 
such data objects will be wrong, even disastrous. In 
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RTDBS, application transactions obtain the current 
states of the real world entities by real-time access 
to temporal data objects and further trigger the 
corresponding control actions for decision [8]. The 
traditional real-time concurrency methods [11] 
ensure logical consistency of data as well as meeting 
transaction deadlines, while neglect that the 
temporal consistency of temporal data objects must 
be guaranteed in real-time applications [8, 10]. 
In this paper, we propose an optimistic concurrency 
control method called OCC-SIDASO based on 
dynamic adjustment of serialization order using 
timestamp interval. This method uses importance of 
transaction and operation similarity and can ensure a 
very well real-time performance by minimizing 
transactions wasted restart, under circumstances of 
guaranteeing logical and temporal consistency of 
data. The remainder of this paper is organized as 
follows: in section 2 we review the most important 
existing real time concurrency control methods 
proposed in the literature and we provide a 
comparison between the described methods 
according to different criteria widely known in 
RTDBS. Afterward, the section 3 introduce the 
proposed method OCC-SIDASO, by presenting and 
explaining in detail the task of each step of this 
method. In section 4, we present performance 
evaluation of proposed method. Finally, section 5 
includes the conclusion of our works and our future 
perspectives. 
 
 
2 Related Works 
Many researchers have been devoted to design 
appropriate concurrency control methods for 
RTDBS. Most concurrency control methods can be 
classified in one of the following mechanisms: 
 The pessimistic concurrency control (PCC) 

method detects conflicts before making access to 
the data object.  

 The optimistic concurrency control (OCC) method 
detects conflicts after transactions have accessed 
the data object. 

 
The remainder of this section is organized as 
following: firstly, we describe the PCC. Secondly, 
we present the OCC. Thirdly, we describe several 
OCC methods. Finally, this section is ended by a 
comparison of OCC methods. 
 
 
2.1 Pessimistic Concurrency Control 
Pessimistic concurrency control methods are based 
on data access locking techniques which will 

possibly cause deadlocks and starvation problem 
when two transactions are querying two conflicting 
locks on the same data item [1]. The High Priority 
Two Phase Locking (HP-2PL) [15] resolves data 
conflicts in favor of transactions with higher priority 
by aborting the lower priority transaction and 
consequently may avoid deadlocks and thereby, 
eliminates the overhead of deadlock detection and 
deadlock solution. The favored transaction, the 
winner of the data conflict, is allowed then to lock 
the requested data object. HP-2PL is a primitive and 
non efficient concurrency control method which 
does not respect the temporal consistency of data 
and transactions. Furthermore, the use of locking 
technique will cause deadlocks in the case of mutual 
blocking of two or more transactions; this is why it 
is not suitable for real time transactions. 
In order to take in account the temporal consistency, 
an approach based on Temporal Consistency High 
Priority-Two Phase Locking (TCHP-2PL) was 
proposed in [8], which is a real-time concurrency 
control method that can guarantee temporal 
consistency of data and transactions.TCHP-2PL 
uses priority of transactions attribute to choose 
between conflicting transactions and uses 
information about temporal consistency of data and 
transactions which are defined as follow: 
(i) Temporal consistency of data is satisfied if the 
following two factors are valid: 
 External consistency: a temporal data object is 

said to meet external consistency at a time t if its 
value is still valid according to its predefined 
temporal validity interval. 

 Mutual consistency: It is the temporal 
consistency of a mutual relevance set which is a 
group of defined temporal data objects, which are 
used together to make decisions or derive new 
data. 

(ii) A transaction is temporally consistent if every 
variable, independently, in its data set satisfies 
temporal consistency, and its mutual relevance sets 
satisfies mutual consistency. 

Comparing with HP-2PL [15], the TCHP-2PL 
integrates the checking of temporal consistency so it 
can guarantee temporal consistency of transactions 
which is not possible with HP-2PL. However both 
methods use locking techniques and may suffer 
from starvation problem that can result from the 
repeated restart or blocking of a transaction in favor 
of a conflicting one, as well as from lock table 
overhead in system memory. 
The THCP-2PL is enhanced by introducing 
similarity in order to increase concurrency level. 
The Similarity Based Temporal Consistency High 
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Priority Two Phase Locking (STCHP-2PL) first 
judges whether the conflicting operations meet 
operation similarity (i.e. if two different transactions 
operations operate on the same data variable X and 
returns similar values of it), then it allows them to 
execute concurrently. Therefore it uses an extended 
type of locks called share lock which does not 
conflict with any lock (Read or Write type locks). 
Therefore, in addition to the priority of transactions 
and temporal consistency checking, The STCHP-
2PL uses operation similarity factor to guarantee 
temporal consistency of transactions and increase 
concurrency. 
 
 
2.2 Optimistic Concurrency Control 
The basic idea of an optimistic concurrency control 
mechanism is that the execution of a transaction 
consists of three phases: read, validation and write 
phases [11]. In the OCC, conflict detection and 
resolution are both done at the validation phase 
when a transaction completes its execution 
 
2.2.1 Validation phase in OCC  
In the validation phase of transaction iT , the method 
checks that iT  does not interfere with any 
committed transactions or with any other 
transactions currently in their validation phase. In 
the OCC methods, the validation phase can be 
performed in one of two ways: 
 Backward validation: in methods that perform 

backward validation, the validating transaction 
either commits or aborts depending on whether it 
has conflicts with transactions that have already 
committed. So this scheme does not allow us to 
take transaction characteristics into account and 
it is not suitable for real time database. 

 Forward validation: in methods that perform 
forward validation, the validating transaction or 
the conflicting ongoing transactions can be 
aborted to resolve conflicts. This scheme can be 
extended to real time database since the timing 
characteristics of transaction can be considered 
and proper decision can be taken in aborting, 
delaying the committing transaction or aborting 
the conflicting ongoing transactions [6]. 

 
 
2.2.2 Dynamic adjustment of serialization 
order 
The major performance problem with OCC methods 
is the late transaction restart. Thus, one important 
way to improve the performance of OCC methods is 
to reduce the number of transaction restarts. One 

way to reduce the number of transaction restarts is 
to dynamically adjust the serialization order of the 
conflicting transactions [4]. When some data 
conflict with the validating transaction is detected, 
there is no need to restart the conflicting transaction 
immediately. Instead, a serialization order can be 
dynamically defined as follows: a forward 
validation is applied when we have a read-write 
conflict or write-write conflict between vT  and jT  
respectively, and a backward validation is applied 
when we have write-read conflict between vT  and 

jT  respectively.  
To preserve serializability with OCC methods, if 
validating transaction vT  has to be serialized before 
active transaction jT , the following two conditions 
must be satisfied [13]: 
 No overwriting: The writes of vT  should not 

overwrite the writes of jT  
 No read dependency: The writes of vT  should 

not affect the read phase of jT  
There are three possible types of data conflicts 
which can induce serialization order between a 
validating transaction vT  and a conflicting 
transaction jT  : 
  )()( jv TWSTRS  (Read-Write conflict): 

Read-Write conflict between vT  and jT  can 
be resolved by adjusting the serialization 
order between vT  and jT as jv TT  . It 
means that the read of vT  cannot be affected 
by jT ’s write. This type of serialization 
adjustment is called forward ordering. 

  )()( jv TRSTWS (Write-Read conflict): 

Write-Read conflict between vT  and jT can 
be resolved by adjusting the serialization 
order between vT  and jT as vj TT  . It 
means that the read phase of jT  is placed 
before the write of vT . This type of 
serialization adjustment is called backward 
ordering. 

  )()( jv TWSTWS  (Write-Write 
conflict): Write-Write conflict between vT  
and jT  can be resolved by adjusting the 
serialization order between vT  and jT as 

jv TT   such that write of vT  cannot 
overwrite jT ’s write.  
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To support dynamic adjustment of serialization 
order, a dynamic timestamp assignment method is 
used. For each transaction, iT  there is a timestamp 
called the latest commit timestamp )(iLCT  to 
indicate its serialization order relative to other 
transactions. Initially, the value of )(iLCT  is set to 
be ∞. If iT  has been backward adjusted, )(iLCT  is 
also used to detect whether iT  has accessed any 
invalid data at its validation test. Upon successfully 
passing its validation test, the validating transaction 

iT  is assigned a final serialization timestamp. 
 
 
2.3 OCC methods 
The different OCC methods proposed in the 
literature differ in the way of conflict resolution 
during the validation phase. Below, we describe 
shortly the most important optimistic methods in 
literature. Table 1 shows the different terms and 
parameters applied in OCC methods. 
 
 
2.3.1 OCC method using Dynamic adjustment of 
serialization order using timestamp interval 
(OCC-DATI) 
In [4], a method called OCC-DATI is presented 
allowing to minimize the number of transaction 
restarts by adjusting the serialization order 
dynamically between conflicting and validating 
transaction. In OCC-DATI all the checking is 
performed at the validation phase of each 
transaction, where it will be either forward or 
backward adjusted based on the conflict type. A 
serious conflict occurs when a conflicting active 
transaction has to be both backward and forward 
adjusted. The validating transaction is allowed to 
commit if the validity of all its accessed data are still 
sound and there is no serious conflict. 
At the beginning of the validation, the final 
timestamp of the validating transaction )( vTTS  is 
determined from the timestamp interval allocated to 
the transaction vT . The timestamp intervals of all 
other concurrently running and conflicting 
transactions must be adjusted to reflect the 
serialization order. We set )( vTTS  to the validation 
time if it belongs to the time interval of vT  or to 
maximum value from the time interval otherwise. 
The adjustment of timestamp intervals of active 
transactions iterates through the ReadSet (RS) and 
WriteSet (WS) of validating transaction. When 
access has been made to the same objects both in 
validating transaction and in the active transaction, 

the time interval of the active transaction is 
adjusted. Non-serializable execution is detected 
when the timestamp interval of an active transaction 
shuts out and transaction is restarted. 
 
The OCC-DATI is enhanced by using the the 
importance of transactions found from transaction 
object attributes [7]. A real-time transaction object 
includes the attributes priority, deadline, and 
importance. The conflict resolution section uses 
dynamic adjustment of serialization order similarly 
to OCC-DATI but with the following conditions: 
- Transactions of high importance should not be 

restarted because of data conflict with 
transactions of low importance when forward 
adjustment is applied. 

- Transactions of high importance should not be 
backward adjusted, but conflicting lower 
importance should be restarted when backward 
adjustment is applied. 

 
Using importance or criticalness of the transaction 
in place of the priority in the conflict resolution of 
OCC method avoids the dilemma of priority based 
conflict resolution, because transactions with very 
short deadline (i.e. very high priority) are not 
necessarily more critical than transactions with high 
importance. 
A method which is similar to OCC-DATI is 
proposed in [16]. The conflict resolution in this 
method uses real-time serializability and the 
importance of transaction attribute. A transaction of 
higher importance should precede a transaction of 
lower importance in real-time history. Therefore, the 
transaction of higher importance should not be 
forward adjusted after a transaction of lower 
importance. Thus, if this is the case a transaction of 
lower importance is restarted. As well, in backward 
adjustment, we must ensure real-time serializable 
execution. Therefore, transactions of high 
importance should not be backward adjusted; 
instead, conflicting transactions having lower 
importance should be restarted. 
 
 
2.3.2 Real-time OCC Method with Dynamic 
Adjustment of Serialization Order (OCC-DASO) 
A method called OCC-DASO was proposed in [13] 
using the Thomas' write rule for updating the 
database with the writes of the validating 
transactions during the write phase. In this method, 
the number of transaction restarts is reduced by 
using dynamic adjustment of serialization order, 
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which is supported with the use of a dynamic 
timestamp assignment scheme, and the Thomas' 
write rule. 
The validation phase of OCC-DASO is divided into 
four steps: The first step of the validation phase is to 
test whether vT  has accessed any invalidated data. 
Second step detects the read-write conflicts between 
the set of the active transactions, jT  and the 
validating transaction vT . The third step is to detect 
whether a backward-adjusted transaction jT , also  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
needs forward adjustment with respect to the 
validating transaction vT . In the final step of the 
validation test, If vT has not been selected for restart; 
we have to assign the final values to the conflicting 
and the validating transactions’ tables, and update 
the read and write timestamps of data. By applying 
Thomas' write rule in its write phase, vT  will only 
update the database with its writes on the 
appropriate data item (with the valid timestamp). 

 
Table 1. List of parameters used in OCC 
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The OCC-DASO is enhanced in [11] by using a 
parameter called transaction finish degree (TFD) 
which can avoid the near-to-complete transactions 
restarts. TFD values are calculated for the set of 
transactions that have conflict with the validating 
transaction vT , and whose deadlines are smaller than

vT ’s deadline. TFD can depict if an adjustment of 
serialization order is necessary or can be avoided 
and both the conflicting transactions can meet their 
deadlines. The validation phase is divided into 
preparation phase and adjustment phase. In 
preparation phase, TFD values are computed and 
serious conflict is checked. The reordering of 
transaction commitment is performed in adjustment 
phase. According to the VTFD values, the 
commitment order is decided; either forward 
ordering jv TT  or backward ordering vj TT  , in 
condition that a serious conflict does not exist. If a 
serious conflict occurs between vT  and jT  then the 
variable versions read by the transactions are 
modified. 
 
 
2.3.3 OCC method for accessing temporal data 
based on Validation factor and transaction 
deferrable time (OCC-VFTDT) 
In [10], the proposed method is designed in which a 
checking algorithm is carried out to guarantee the 
use of validate data that fit with the transaction 
scheduling process. The checking process ensures 
that all temporal data in the read set of a transaction 
remain valid during all its execution time which will 
guarantee the temporal consistency of this 
transaction. 
Afterward, the key factor concurrency control 
algorithm is adjusting validation rules during 
validation phase, which schedules the priority 
transactions that are near to complete by asserting 
validation factor. The validation algorithm 
calculates the validation factor of the validating 
transaction, which is a variable calculated from the 
current time, the start time and the deadline time of 
the transaction, and calculates the temporal 
deferrable time of the transaction )(Ttsdt . 
 
2.3.4 OCC with virtual run policy 
To support real-time transaction processing, a 
method is proposed by integrating the new criteria 
and issues of CPU and I/O scheduling, and the time 
cognizant conflict resolution scheme into the OCC 
method [6]. This method considers the timing 
characteristics of transaction and proper decision 
can be taken in aborting, delaying the committing 

transaction or aborting the conflicting ongoing 
transactions. Three schemes are presented in [6] 
such as: 
 OCC-forward validation with virtual run 

policy: In this scheme (OCC-FV) the transaction 
that reaches its validation phase is allowed to 
commit if it is not a virtual first run transaction 
and all the active conflicting transactions which 
are in their read phases are immediately aborted 
and restarted if they are rerun transactions. In 
case some of the conflicting read phase 
transactions are in their first run, instead of 
aborting them they enter their virtual run and 
continue their read phase so as to bring data 
objects required to buffer, assuming the system 
buffer has a high retention effect, then a 
transaction in its second run and onward does not 
need to access the disk since the data objects are 
already in memory.  When the virtual run 
transaction completes its read phase, it is aborted 
and resubmitted to the system to start its real 
second run. It is clear that there is no point to 
allow restarted rerun transaction to complete its 
read phase in virtual mode since all its data items 
are already in memory. This scheme does not 
take the transactions timing constraints into 
account and favors the validating one to save the 
amount of progress done by the validating 
transaction since it is near completion and will 
definitely complete if it is not restarted. 

 OCC-sacrifice with virtual run policy: In this 
scheme (OCC-OS) when a transaction reaches its 
validation phase, it is aborted if one or more 
conflicting transactions have higher priority than 
the validating one; otherwise it commits and all 
the conflicting read phase transactions are 
restarted immediately. This method uses 
transaction priority (timing constraints) in such a 
way that the validating transaction sacrifices 
itself for the sake of conflicting ones with higher 
priority. 

 OCC-abort 50 with virtual run policy: In this 
scheme (OCC-A50) when a transaction reaches 
its validation phase, its priority is checked 
against those conflicting transactions in the read 
phase. If more than 50% of the transactions in 
their read phase have higher priority than the 
transaction in its validation phase, the validating 
transaction is aborted and all other transactions 
are allowed to continue. If the number of 
transactions in the read phase having higher 
priority than validating transaction is less than or 
equal to 50%, the validating transaction is 
allowed to commit and all the other transactions 
are restarted. 
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2.4   Comparison of OCC and PCC methods 
In this section we compare the described methods 
according to different parameters shown in Table 2. 
In OCC methods, either the validating transaction or 
the conflicting ongoing transaction can be aborted to 
resolve conflict. Moreover, dynamic adjustment of 
serialization order is used to reduce the number of 
transaction restarts caused by conventional OCC 
and to take the proper decision in aborting or 
delaying the committing transaction or aborting the 
conflicting ongoing transaction. Most of the 
literature methods based on OCC-DATI don’t 
support temporal consistency of data and 
transactions except for one (OCC-VFTDT), and 
many of them favor transactions with higher 
importance. Our proposed algorithm using the 
OCC-DATI technique, supports temporal 
consistency of data and transactions, and takes in 
consideration the importance of transactions and the 
criticalness factor of data. The algorithm also 
attempts to outperform the previous methods by 
reducing the number of transaction restarts and 
increasing the concurrency level while maintaining 
the data valid as much as possible. 
 
 
3 OCC method using Similarity and 
Importance of transaction and 
Dynamic Adjustment of Serialization 
In this section, we describe an Optimistic 
Concurrency Control using Similarity and 
Importance of transaction and Dynamic Adjustment 
of Serialization Order called OCC-SIDASO.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This method respects the temporal consistency of 
data items as well as real time transactions. 
Furthermore, we introduce the concept of similarity 
and data criticalness factor to obtain a better real-
time performance while guaranteeing temporal and 
logical consistency. Moreover OCC-SIDASO takes 
into consideration the importance of transaction 
during conflict resolution and applies a dynamic 
adjustment of serialization order only if the 
temporal consistency of data and transactions are 
not being violated. In addition, we relax 
serializability criterion by introducing data 
similarity and operation similarity, by allowing two 
conflicting operation to commit if they meet 
operation similarity which means when they are 
slightly different we consider them as acceptable. 
The OCC-SIDASO method resolves conflicts using 
time intervals of the transactions. Every transaction 
must be executed within a specific time slot.  
When an access conflict occurs, it is resolved using 
the read and write sets of the conflicting transactions 
together with the allocated time slot. Time slots are 
adjusted when a transaction commits. In this 
protocol, every transaction in the read phase is 
assigned a timestamp interval. This interval is used 
to record a temporary serialization order induced 
during the execution of the transaction. At the start 
of the execution, the timestamp interval of a 
transaction T is initialized as  )(),( TdTS . 
Whenever the serialization order of the transaction 
is induced by its data operation or the validation of 
other transactions, its timestamp interval is adjusted 
to represent the dependencies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Criteria/methods 

Supports real-tim
e 

transactions 

Supports data tem
poral 

consistency 

Support transactions tem
poral 

consistency 

U
ses locking techniques 

(pessim
istic m

ethod)- risk of  
D

eadlocks 

U
ses optim

istic concurrency 
control 

C
PU

 and I/O
 scheduling 

Causes system
 m

em
ory 

overhead 

U
ses dynam

ic adjustm
ent 

Favors transactions with high 
im

portance or priority 

OCC-DASO √    √  √ √  
THCP-2PL (PCC) √ √ √ √   √  √ 
STHCP-2PL (PCC) √ √ √ √   √  √ 
OCC-VFTDT √ √ √  √  √ √  
OCC-DATI √    √  √ √  
OCC-PDATI √    √  √ √ √ 
MVOCC-TFD √    √  √ √  
OCC-FV with virtual run policy     √ √    
OCC-sacrifice with virtual run policy √    √ √   √ 
OCC-abort50 with virtual run policy √    √ √   √ 

 
Table 2.   Parameters used to compare OCC and PCC methods 
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Fig 1. Validation algorithm of OCC-SIDASO 
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Commit ܹܵ( ௩ܶ) to database; 
} 

Fig 2. Forward Adjustment of OCC-SIDASO 

)	ݐݎܽݐݏܴ݁ ௩ܶ); 

ࢊ࢘ࢇ࢝࢘ࡲ − ,ࢇࢀ)࢚ࢋ࢚࢙࢛ࢊࢇ ,࢜ࢀ  } (ࡰ

)݉ܫ)ܨܫ ௩ܶ) ≥ )݉ܫ ܶ)){  
(ܦ)ܥ)൫ܨܫ  = )	ܦܰܣ(݁ݏ݈ܽܨ ܱ)ܸ| , (ܦ − ௩ܱ)ܸ , )หܦ 	 ≤  (		(ߙ

   {  
Commit ܹܵ( ௩ܶ) to database; 
Return;  
} 

Else IF (ܥ(ܦ) = )ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ	ܦܰܣ	݁ݑݎܶ ܶ) 	=   OR (	݁ݑݎܶ	
(ܦ)ܥ) = ܱ)ܸ|	ܦܰܣ	݁ݏ݈ܽܨ , −	(ܦ ௩ܱ)ܸ , |(ܦ >  AND ߙ	
)ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ  ܶ) 	=  (݁ݑݎܶ	

 
)ܫܶ    ܶ) 	= )ܫܶ	 ܶ)	∩	[ܶܵ( ௩ܶ)	+ 	1	,∞	[;     
  Else 
)	ݐݎܾܣ    ܶ);	
                  } 

Else  
 

} 

WSEAS TRANSACTIONS on COMPUTERS Walid Moudani, Nicolas Khoury, Mohamad Hussein

E-ISSN: 2224-2872 426 Issue 12, Volume 11, December 2012



In the remain of this section we present the : (i) 
validation phase algorithm of OCC-SIDASO, (ii) 
Operation similarity and data criticalness and  (iii) 
temporal consistency checking algorithm. 
 
 
3.1 Validation phase algorithm of OCC-
SIDASO 
This section presents the algorithm of validation 
phase OCC-SIDASO shown in figure 1. At the 
beginning of the validation, the final timestamp of 
the validating transaction )( vTTS  is determined 
from the timestamp interval allocated to the 
transaction vT . The timestamp intervals of all other 
concurrently running and conflicting transactions 
must be adjusted to reflect the serialization order. 
We set )( vTTS  to the validation time if it belongs to 
the time interval of vT or to maximum value from 
the time interval otherwise. 
The adjustment of timestamp intervals of an active 
transaction iterates through the readset (RS) and 
writeset (WS) of validating transaction. When 
access has been made to the same objects both in 
validating transaction and in the active transaction 
and at least one of the operations is a write 
operation, then we have a conflict and the following 
procedures should be called accordingly: 
- The forward-adjustment procedure is called if

   )()()()( vaivai TWSTWSDorTRSTWSD  . 
- The backward-adjustment procedure is called if

 )()( vai TWSTRSD  . 
 
Non-serializable execution is detected when the 
timestamp interval of an active transaction shuts out, 
which means that it has to be both forward and 
backward adjusted, and then the transaction has to 
be restarted. 
 
 
3.1.1 Forward adjustment of serialization order  
During the validation phase of OCC-SIDASO 
method, the conflict type between validating 
transaction vT  and active transaction aT  is detected. 
When conflict data iD  is such that

   )()()()( vaivai TWSTWSDORTRSTWSD  , the 
forward-adjustment algorithm shown in figure 2 is 
called. If the active conflicting transaction is more 
important from the validating one then the 
validating transaction is restarted. If it is not the 
case, the two conflicting operations aOp  and vOp
are allowed to commit concurrently if there are 
operation similarity and the conflict data item iD  is 

not critical. Otherwise, a forward adjustment of 
serialization order is applied to the active conflicting 
transaction aT  by adjusting the timestamp interval 
of aT . This adjustment of timestamp interval of the 
active transaction iterates through the readset (RS) 
and writeset (WS) of validating transaction vT . Note 
that, forward adjustment will only be allowed if the 
forwarding of the conflicting transaction aT does not 
violate the temporal consistency of data and 
transactions. This temporal consistency check is 
done by the CHECK_POTENTIAL_TC( aT ) 
procedure which will be explained later in this 
section. 
 
 
3.1.2   Backward adjustment of serialization 
order 
During the validation phase, if the conflict type 
between validating transaction ௩ܶ and active 
conflicting transaction aT , is such that conflicting 
data	ܦ ∈	 (ܴܵ( ܶ)		∩ 	ܹܵ( ௩ܶ)), the backward-
adjustment ( ) procedure shown in figure 3 is called. 
If the active conflicting transaction is more 
important from the validating one then the 
validating transaction is restarted. If it is not the 
case, the two conflicting operations ܱ and ܱ௩ 
are allowed to commit concurrently if there are 
operation similarity and the conflict data item ܦ is 
not critical. Otherwise, a backward adjustment of 
serialization order is applied to the active conflicting 
transaction	 ܶ by adjusting the timestamp interval of 
ܶ.This adjustment of timestamp interval of the 

active transaction iterates through the readset (RS) 
and writeset (WS) of validating transaction	 ௩ܶ. Note 
that, backward adjustment will only be allowed if 
the backwarding of the conflicting transaction 
ܶ	does not violate the temporal consistency of data 

and transactions. This temporal consistency check is 
done by the CHECK_POTENTIAL_TC( aT ). 
 
 
3.2   Operation similarity and data 
criticalness 
The OCC-SIDASO method introduces the concept 
of similarity (operation similarity) for non-critical 
temporal data items which is defined as follows: 
Suppose mt  and nt are a pair of concurrent 
transactions, mi tOp  , nj tOp   and iOp and jOp  
operate on the same non-critical data object D 
(conflicting operations). If the following condition 
is satisfied:  
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 ),(),( DOpVDOpV ji  (  is the threshold 
value whose value depends on the application 
semantics,), then iOp  and jOp  are said to be 
operation similarity, notated by ji OpOp  A 
temporal data D  is critical  TRUEDC )(  if 
catastrophic results occur when 

 ),(),(0 DOpVDOpV ji While, a temporal 

data D  is non-critical  FALSEDC )(  if no 
catastrophic results occur when 

 ),(),(0 DOpVDOpV ji . 
 
 
3.3   Temporal consistency checking  
In our method, the maintenance of data temporal 
consistency and transactions is done in 2 phases: 
phase A and phase B. 
 
Phase A: Before each temporal data access by the 
running transaction, the algorithm Check_TC() 
shown in figure 4 is called to check the temporal 
validity of accessed data and to guarantee the 
correct data is being scheduled. Check_TC () takes 

as input the temporal data readset ܴܵ
to
t (ܶ)of a 

transaction T and for every member Di the following 
condition is checked: 
|（ܦ）	ܾ݅ݒܽ	－（ܦ）	݁݅ݒܽ	|	݂ܫ 	< 	݇, then 
temporal data X is fugitive, otherwise it is steady. 
The value k is the length of transaction absolute 
validate interval.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next the algorithm checks whether the transaction 
can commit before its data-deadline ݀݀௧(ܶ)	and 
before its timestamp interval ending. If it is the case, 
temporal consistency is then satisfied thus we 
change the value of k as the length of temporal data 
absolute validate interval and the function will 
return a TRUE value. Otherwise, the transaction 
will be aborted. So every fugitive data will be 
checked for the temporary consistency by the 
algorithm, which guarantee the transaction can 
commit correctly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ࢊ࢘ࢇ࢝ࢉࢇ − ,ࢇࢀ)࢚ࢋ࢚࢙࢛ࢊࢇ ,࢜ࢀ  }    (ࡰ
)݉ܫ)ܨܫ ௩ܶ) ≥ )݉ܫ ܶ)) {  

(ܦ)ܥ)൫ܨܫ = )	ܦܰܣ(݁ݏ݈ܽܨ ܱ)ܸ| , (ܦ − ௩ܱ)ܸ , )หܦ 	≤  }               (		(ߙ
   Commit ܹܵ( ௩ܶ) to database; 

Return;  
    } 

Else IF(ܥ(ܦ) = )ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ	ܦܰܣ	݁ݑݎܶ ܶ) 	=   OR (	݁ݑݎܶ	
(ܦ)ܥ) = ܱ)ܸ|	ܦܰܣ	݁ݏ݈ܽܨ , (ܦ − ௩ܱ)ܸ , |(ܦ > )ܥܶ_ܮܣܫܶܰܧܱܶܲ_ܭܥܧܪܥ AND	ߙ	 ܶ) 	=
    (݁ݑݎܶ	

)ܫܶ    ܶ) 		= )ܫܶ	 ܶ) 	∩	 [0	, ܶܵ( ௩ܶ)	− 	1	];	
    Else 

Abort (Ta); 
} 

  Else  
)	ݐݎܽݐݏܴ݁    ௩ܶ); 
} 

Fig 3. Backward adjustment of OCC-SIDASO 

ܴܵtot 	(ܶ) = 	ܴܵtot 	(ܶ)	–  ;{ܦ}

																			݂݅	(	݀݀௧(ܶ) < (ܶ)݁݅ݐ	ܴܱ	(ܶ)௧ܥ 	<  (	(ܶ)௧ܥ

CHECK_TC (T)     

INPUT: ܴܵ tos(t)	(ܶ) = ܦ	} , 	{ܦ…,ଶܦ

{݇ = ∞; ܰ	 = ܮ	
to
s(t); ݅ = 1; 

    While (ܴܵ
to
t (ܶ)   ) { 

 T accesses	ܦfrom	ܴܵ(ܶ); 

݅ݒܽ	|	݂ܫ												 |（ܦ）	ܾ݅ݒܽ	－（ܦ）݁	 	 < 	݇  Then 

Return False;  
     Else  

                              ݇ = ݇
i

j 1

(ܦ)݁݅ݒܽ| − 	;|(ܦ)ܾ݅ݒܽ

݅ = ݅ + 1;   } 
Return True; 
} 

Fig 4. Temporal consistency checking algorithm 
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Phase B: At the validation time and as we 
mentioned above, in forward-adjustment and 
backward-adjustment procedures, no transaction 
serialization order can be adjusted without 
maintaining the temporal consistency of data and 
transactions. This condition is insured by the 
function CHECK_POTENTIAL_TC() showed in 
figure 5 which is similar to the previous 
CHECK_TC() with a difference that presumptive 
timestamp interval and completion time of the 
conflicting transaction are calculated and used in the 
function to check the transaction temporal 
consistency in case it is dynamically adjusted .Those 
two calculated  values will replace the real 
timestamp interval and completion time of ܶif it 
passes the temporal consistency checking. 
 
 
3.4   Analysis  
In this section, we have proposed the OCC-SIDASO 
method based on the dynamic adjustment of 
serialization order, the importance of transaction 
and the operation similarity factor. The method 
maintains the temporal consistency of data items 
and real time transactions simultaneously. OCC-
SIADSO has a main advantage over the earlier 
optimistic concurrency control techniques, which is 
the presumptive temporal consistency checking that 
avoids unnecessary and inaccurate adjustment of 
transactions. This critical feature correctness will be 
verified later in the performance evaluation section. 
 
 
4   Performance Evaluation 
The scheduling decision of conflicting transactions 
is taken according to the conflict type , the 
importance of conflicting transactions, the similarity 
and temporal consistency factors. In order to 
evaluate the performance of  OCC-SIDASO 
methods, we present the simulation results of  OCC-
SIDASO for two different numeric scenarios, each 
containing two transactions with data items and an 
execution schedule with their specific attributes. To 
demonstrate the efficiency of our proposed 
algorithm, we will simulate the same two scenarios 
with two existing methods from literature which are: 
STCHP-2PL and OCC-VFTDT. These methods are 
chosen for the reason that they both respect and 
maintain the temporal consistency of data and 
transactions. In addition, STCHP-2PL introduces 
the concept of similarity and OCC-VFTDT makes 
use also of the same temporal consistency checking 
function that we use in our proposed method. The 
simulation result will be compared and discussed to 

prove the correctness and the outperformance of our 
proposed method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1   Simulation prototype 
In order to validate our proposed method, we 
develop a simulation proptotype  of the proposed 
algorithm built on Microsoft Visual Studio 2005 
developement environment and the C++ 
programming language. The main objective of the 
prototype is to simulate the OCC-SIDASO on a 
given schedule and then generating a serializable 
execution of the schedule respecting transactions 
deadlines and importance and maintaining data 
temporal consistency. 
 
 
4.2   Simulation scenarios 
In our simulation, we use two scenarios including 
two transactions: T1 and T2. Each transaction 
contains read and write operations, and three data 
items: X, Y and Z. The tables 3 and 4 presents the 
transactions attributes: importance or priority, start 
time, execution time, completion time, deadline (or 
timestamp interval end) and timestamp interval.  

)′ܫܶ ܶ) 	= )ܫܶ	 ܶ)	∩ 	 [ܶܵ( ௩ܶ)	+ 	1	,∞[; 

)′ܫܶ ܶ) 	= )ܫܶ	 ܶ) 	∩	 [0, ܶܵ( ௩ܶ) − 	1	]	;		 

′௧ܥ ( ܶ) 	= 	 )′ܾ݅ݐ ܶ)	+ )ܧ	 ܶ)	

ܴܵtot 	(ܶ) = 	ܴܵtot 	(ܶ)	–  ;{ܦ}

																					݂݅	(	݀݀௧(ܶ) < (ܶ)′݁݅ݐ	ܴܱ	(ܶ)′௧ܥ 	<  (	(ܶ)′௧ܥ

݇ = ݇
i

j 1

(ܦ)݁݅ݒܽ| − 	;|(ܦ)ܾ݅ݒܽ

    (ࢀ)	ࢀ_ࢇ࢚ࢋ࢚ࡼ_ࡷࡱࡴ

INPUT: ܴܵ tos(t)	(ܶ) = ܦ	} , …,ଶܦ 	{ܦ

// If we have a forward-adjustment procedure 
 

// If we have a backward-adjustment procedure 
 

{݇ = ∞; ܰ	 = ܮ	
to
s(t); ݅ = 1; 

    While (ܴܵ
to
t (ܶ)   ) {     

T accesses ܦfromܴܵ(ܶ); 

|（ܦ）	ܾ݅ݒܽ	－（ܦ）	݁݅ݒܽ	|	݂ܫ 	< 	݇  Then 

                              Return False;  
                    Else  

										݅ = ݅ + 1;		}	
  

Return True; 
    } 

Fig 5. Potential temporal consistency checking 
algorithm 
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Furthermore, tables 3 and 4 presents data items 
attributes are: read timestamp, write timestamp, 
criticalness, start time and validity interval. We 
notice that for the pessimistic method (STCHP-
2PL), we consider that an operation requires two 
time units: one for acquiring the requested lock and 
one for execution. In the figure 6 and 7, we give for 
each of the two scenarios a timeline graph to 
illustrate its time relativity. 
 
 
4.3   Simulation results applied on scenario 1 
In this section, we present the simulation results 
based on scenario 1 for three methods: OCC-
SIDASO, OCC-VFTDT and STCHP-2PL. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
4.3.1   Simulation result with OCC-SIDASO 
In the schedule of the first scenario and at time t5 
when Tଶ is validating, the validation procedure is 
called where it decides to backward adjust the 
conflicting transaction T1. Afterward, according to 
the conflict type detected between the validating 
transaction 	 ଶܶ  and the conflicting transaction T1, the 
OCC-SIDASO algorithm decides to call the 
backward-adjustment procedure that checks the 
properties and the attributes of the schedule and its 
elements (transactions and operations) and chooses 
the appropriate conflict resolution method which is Fig. 6. Timeline of scenario 1 in optimistic methods 

Fig. 7: Timeline of scenario 2 in optimistic methods 
 

Scenario 1 

ଵܶ: W1(X) R1(Y)           ߙ = 1					ܴ௩ = 1 
Imp( ଵܶ) =P( ଵܶ)= 3, C( ଵܶ) = t6, S(T1) = t3      
E( ଵܶ) = 3    d( ଵܶ) = tie( ଵܶ) = t12, TI( ଵܶ) = [3,12] 

ଶܶ: W2(Y) W2(Z) R2(Z) 
Imp( ଶܶ) =P( ଶܶ)= 5, C( ଶܶ) = t10, S( ଶܶ) = t1  
E( ଶܶ) = 9, d( ଶܶ) = tie( ଶܶ) = t14, TI( ଶܶ) = [1,14]    

X=5, RTS(X)=1, WTS(X)=1  
C(X)=TRUE, ST(X)=1, VI(X)=13 

Y=3, RTS(Y)=1, WTS(Y)=1  
C(Y)=TRUE, ST(Y)=0, VI(Y)=13

Z=6, RTS(Z)=1, WTS(Z)=1  
C(Z)=FALSE, ST(Z)=4, VI(Z)=2 

Operands +2 +1 +3  
    Schedule : W2(Y) W2(Z) W1(X) R2(Z) V2 C2 R1(Y) V1 C1 

Time in OCC t1 t2 t3 t4 t5      
Timeline STCHP-2PL t1,t2 t3,t4 t5,t6 t6,t7   t8,t9   

 
Table 3. Transactions, data items and schedule information of scenario 1 

Scenario 1 

ଵܶ: R1(Y) W1(X)            ߙ = 1											ܴ௩ = 1 
Imp( ଵܶ) =P( ଵܶ)= 3, C( ଵܶ) = t8, S( ଵܶ) = t2    
E( ଵܶ) = 6,  d( ଵܶ) = tie( ଵܶ) = t10, TI( ଵܶ) = [2,10] 

ଶܶ: W2(X) R2(Z) 
Imp( ଶܶ) =P( ଶܶ)= 1, C( ଶܶ) = t6, S( ଶܶ) = t1  
E( ଶܶ) = 5, d( ଶܶ) = tie( ଶܶ)=t11, TI( ଶܶ) = [1,11] 

X=2,RTS(X)=1,WTS(X)=1 
C(X)=TRUE, ST(X)=1, VI(X)=13 

Y=4,RTS(Y)=1,WTS(Y)=1 
C(Y)=TRUE,ST(Y)=0, VI(Y)=13 

Z=6,RTS(Z)=1,WTS(Z)=1 
C(Z)=FALSE,ST(Z)=2, VI(Z)=10 

Operands +2 +0 +0 +5  
    Schedule : W2(X) R1(Y) R2(Z) W1(X) V1 

Time in OCC t1 t2 t3 t4 t5 t6     
Timeline STCHP-2PL t1,t2 t3,t4 t5,t6 t6,t7      

 
Table 4. Transactions, data items and schedule information of scenario 2 
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on our case aborting the conflicting transaction 
T1.Moreover, during the Backward-adjustment 
( ଵܶ, ଶܶ ,ܻ), a backward adjustment of the serialization 
order of the conflicting transaction T1 is allowed 
only if it does not violate the temporal consistency 
of accessed data items and transactions. In this 
scenario, this criterion is not verified according to 
the ܥܶ_݈ܽ݅ݐ݊݁ݐܲ_ܭܥܧܪܥ	( ଵܶ). 
 
According the simulation result applied on scenario 
1, the OCC-SIDASO algorithm decides to abort the 
active conflicting transaction T1for the favor of the 
validating transaction	 ଶܶ. This decision was taken 
due to the following reasons: 
 The importance of 	 ଶܶ is greater than the 

importance of ଵܶ	 which means 	 ଶܶshould not be 
restarted. 

 Conflict data item ܻ is critical which means no 
operation similarity is allowed. 

 A presumptive ܶܫᇱ( ଵܶ)and ܥ௧ᇱ( ଵܶ) are calculated 
to check later the temporal consistency of ଵܶ	 in 
case it is backward adjusted. 

 Further, the presumptive temporal consistency 
checking shows that the backward adjustment of 
ଵܶ	 will violate the transaction temporal 

consistency, therefore ଵܶ	 is aborted and 	 ଶܶ 
commits to database. 

 
 

4.3.2   Simulation result with OCC-VFTDT 
In this section, we present the simulation result of 
the first scenario under the method OCC-VFTDT in 
order to compare its results with OCC-SIDASO. In 
the schedule of this scenario at time t5 when 	 ଶܶ is 
validating, the OCC-VFTDT algorithm is called. 
First, the algorithm calculates the following 
parameters that will be used in the conflict resolution 
decision taking: 
 

)௧ହܨܸ ଶܶ) 	= –	ݐ	 )ݏ	 ଶܶ)	/	݀( ଶܶ)	– )ݏ	 ଶܶ) 	
= 	 (5	– 	1)	/	(14	– 	1) 	= 	0.3 

 
݀݀௧ହ( ଶܶ) 	= 	13	 < 	݀( ଶܶ) 	= 	14 then 
)௧ହ݀ݏݐ ଶܶ) 	 = 	݀݀௧ହ( ଶܶ)	–	ܥ௧ହ( ଶܶ) 	= 	13	– 	10	 = 	3	 

 
݀݀௧ହ( ଵܶ) = 	14		݀( ଵܶ) = 	12 then 

)௧ହ݀ݏݐ ଵܶ) 	= 	݀( ଵܶ)	–	ܥ௧ହ( ଵܶ) 	= 	12	– 	6	 = 	6 
 
Second, the OCC-VFTDT algorithm chooses the 
method of conflict resolution by deciding the type of 
serialization order to follow according to the 
conflict type detected between the validating 
transaction 	 ଶܶ and the conflicting transaction ଵܶ, 
when 	 ଶܶ is validating at time t5, OCC-VFTDT 
detects a data conflict on item Y such that	 

ܴܵ( ଵܶ) ∩ܹܵ( ଶܶ) = ܻ. The validation factor of 
transaction 	 ଶܶ is calculated which is not greater or 
equal than 1 then the condition is not validated and 
the execution order will be ଵܶ, 	 ଶܶ which means that 
ଵܶ will be backward adjusted. Conversely, the same 

transaction was aborted by OCC-SIDASO algorithm 
due to its temporal consistency violation in case it is 
adjusted. 
 
 
4.3.3   Simulation result with STCHP-2PL 
In this section, we present the simulation result of 
the first scenario under the method STCHP-2PL to 
compare later its result with the one of OCC-
SIDASO. Under STCHP-2PL, the schedule in 
scenario 1 will be running according to the 
following timeline (Figure 8). 
In this scenario, ଵܶ requests for a read lock on data 
item Y which has been locked with an exclusive 
write lock by 	 ଶܶ. The STCHP-2PL does not detect 
any operation similarity in history between the 
conflicting operations therefore one of the 
conflicting transactions must be aborted or blocked. 
The requesting transaction ଵܶhas a lower importance 
than 	 ଶܶ which is holding the requested lock and the 
set of data items that ଵܶ has accessed or willing to 
access meets mutual consistency, then the algorithm 
decides to block ଵܶ and to keep on executing	 ଶܶ. 
 

 
 
 
 
4.4   Simulation results applied on scenario 2 
In this section, we present the simulation results 
based on scenario 2 for three methods: OCC-
SIDASO, OCC-VFTDT and STCHP-2PL. 
 
 
4.4.1   Simulation result with OCC-SIDASO 
In the schedule of the second scenario at time t5 
when T1 is validating, the validation procedure is 
called where it decides to forward adjust or 

Fig 8. Timeline of scenario 1 applied in STCHP-2PL 
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backward adjust or restart the conflicting transaction 
T2. Afterward, according to the conflict type 
detected between the validating transaction T1  and 
the conflicting transaction T2, the OCC-SIDASO 
algorithm decides to call the Forward-adjustment 
procedure that checks the properties and the 
attributes of the schedule and its elements 
(transactions and operations) and chooses the 
appropriate conflict resolution method which is on 
our case forward adjusting the conflicting 
transaction T2. Moreover, during the Forward-
adjustment (T2, T1, X) procedure a forward 
adjustment of the serialization order of the 
conflicting transaction  T2 is allowed only if it does 
not violate the temporal consistency of accessed 
data items and transactions. In this scenario this 
criterion is verified according to the 
CK_Potential_TC	(Tଶ) . 
According the simulation applied on scenario 2, the 
OCC-SIDASO algorithm decides to forward adjust 
the serialization order of the conflicting transaction 
Tଶand to keep the schedule of T1 as it is. This 
decision was taken due to the following reasons: 
 The importance of T1 is greater than the 

importance of T2 which means T1 should not be 
restarted. 

 Conflict data item ܺ is critical which means no 
operation similarity is allowed. 

 A presumptive ܶܫᇱ( ଶܶ) and ܥ௧ᇱ( ଶܶ) are calculated 
to check later the temporal consistency of  T2 in 
case it is forward adjusted. 

 Further, the temporal consistency checking shows 
that the forward adjustment of ଶܶ will maintain 
the transaction and data temporal consistency, 
therefore ଶܶ will be rescheduled to time t6 and T1 
commits to database 

 
4.4.2   Simulation result with OCC-VFTDT 
In this section, we present the simulation result of 
the second scenario under the method OCC-VFTDT 
to compare its results with OCC-SIDASO. In the 
schedule of the second scenario, and at time t5 when 
T1 is validating, the OCC-VFTDT algorithm is 
called. The algorithm calculates the following 
parameters that will be used in the conflict 
resolution decision taking: 

)௧ହܨܸ ଵܶ) 	= –	ݐ	 )ݏ	 ଵܶ)	/	݀( ଵܶ)	– )ݏ	 ଵܶ) 	
= 	 (5	– 	2)	/	(10	– 	2) 	= 	0.3 

 
݀݀௧ହ( ଵܶ) 	= 	14		݀( ଵܶ) 	= 	10 then 

)௧ହ݀ݏݐ ଵܶ) 	= 	݀( ଵܶ)	–	ܥ௧ହ( ଵܶ) 	= 	10	– 	8	 = 	2	 
 
݀݀௧ହ( ଶܶ) 	= 	14		݀( ଶܶ) 	= 	11 then 

)௧ହ݀ݏݐ ଶܶ) 	= 	݀( ଶܶ)	–	ܥ௧ହ( ଶܶ) 	= 	11	– 	6	 = 	5 

In this scenario, when T1 validates at time t5 a data 
conflict is detected on item ܺ such that ܹܵ( ଶܶ) ∩
ܹܵ( ଵܶ) = ܺ. The validation factor of transaction ଵܶ  
is calculated which is less than 1 and the transaction 
temporal deferrable time of  T1 is not greater than 
the one of  T2, then the condition is not validated 
and the execution order will be T1, T2 which means 
T2 will be forward adjusted. Similarly, OCC-
SIDASO decides to forward adjust T2 after checking 
its presumptive temporal consistency. 
 
 
4.4.3   Simulation result with STCHP-2PL 
In this section, we present the simulation of the 
second scenario under the method STCHP-2PL to 
compare its results with the ones of OCC-SIDASO. 
Under STCHP-2PL, the schedule in scenario 2 will 
be running according to the following timeline 
(Figure 9). 

 
 
 
 
In this scenario, T1 requests for a write lock on data 
item X which has been locked with an exclusive 
write lock by ଶܶ. The STCHP-2PL does not detect 
any operation similarity in history between the 
conflicting operations therefore one of the 
conflicting transactions must be aborted or blocked. 
The requesting transaction T1 has a higher 
importance than ଶܶ which is holding the requested 
lock and the set of data items that T1 has accessed or 
willing to access meets mutual consistency, then the 
algorithm decides to abort ଶܶ and grant T1 the 
requested lock. However, in the first scenario, OCC-
SIDASO decides to forward adjust the serialization 
order of the active conflicting transaction T2 and to 
keep on validating T1. 
 
 
 
 
 

Fig 9. Timeline of scenario 2 applied in STCHP-2PL 
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4.5   Discussion 
The two scenarios simulation results prove that our 
proposed method can take more accurate decisions 
in the conflict resolution between real-time 
transactions than two existing outperforming 
methods in literature which are STCHP-2PL and 
OCC-VFTDT. As we can see in table 5, the reasons 
behind this dominance are the weak points of 
STCHP-2PL method which are the unsafe restart 
and the wasted abort, as well as the issues caused by 
OCC-VFTDT algorithm which are the incorrect 
adjustment and the inaccurate adjustment. 
Furthermore, OCC-SIDASO makes use of the 
importance of transactions, the operation similarity 
factor, the simultaneous and the presumptive 
temporal consistency checking, to get to the most 
precise decision which can cover the maximum 
number of data conflict scenarios. Consequently, we 
conclude that our method is equivalent to the other 
existing methods in some cases and outperforms 
them in other cases. 
 
 
4 Conclusion and perspectives 
In this paper, we proposed an optimistic 
concurrency control called OCC-SIDASO with the 
capability of predicting the correctness of the 
transactions history in case it is rescheduled.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, we used the concept of similarity 
between conflicting operations to obtain a better 
real-time performance, and the transaction 
importance criterion in order to favor transactions 
with higher importance in data conflict resolution. 
Also, a simulation implementation and a 
performance comparison between OCC-SIDASO 
and two real-time concurrency control methods 
from literature show that our method can ensure a 
very well real-time performance while guaranteeing 
temporal consistency and can even outperform these 
methods in some cases.   
Future work could include the use of fuzzy logic 
techniques by creating a set of fuzzy rules that will 
form the fuzzy logic engine in order to deal with the 
importance, the criticalness and the similarity 
attributes. By using these rules, fuzzy logic will try 
to provide an easy conflict resolution method 
between transactions. 
Moreover, we can try to implement our proposed 
method on a real-time database test platform like 
MMRTDBTP (Main-Memory Real-Time Database 
Platform), and on a real database management 
system to obtain more accurate results.  
 
 
 
 

Table 5. OCC-SIDASO, STCHP-2PL and OCC-VFTDT simulations results comparison 

 
 OCC-SIDASO STCHP-2PL OCC-VFTDT 

Sc
en

ar
io

 1
 Conflict transaction 

is aborted for 
violating temporal 
consistency if 
adjusted 

Unsafe restart: the conflicting 
transaction is blocked, which 
will allow restarting it later 
and violating the temporal 
consistency of data and 
transaction. 

Incorrect Adjustment: the conflicting 
transaction is backward adjusted which 
is a wrong decision because this 
transaction  will be violating its 
temporal consistency according to the 
result of Check_Potential_TC() 
checking function in OCC-SIDASO. 

Sc
en

ar
io

 2
 

Conflict transaction 
is forward adjusted 
after validating its 
presumptive 
temporal 
consistency 

Wasted abort: the transaction 
holding the lock is aborted and 
the lock is granted to the 
requesting (conflicting) 
transaction. This is a wasted 
abort which is prevented by 
our proposed method where 
the validating transaction 
keeps on executing. 

Inaccurate adjustment: the conflicting 
transaction is forward adjusted and it 
has a deferrable time greater than the 
validating transaction. This condition is 
not accurate for adjusting a transaction 
because it is possible that this 
transaction would not have the 
sufficient time to complete before its 
deadline or data deadline. 
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