
Hardware Modeling of Binary Coded Decimal Adder in FPGA 
 

MUHAMMAD IBN IBRAHIMY, MD. REZWANUL AHSAN AND IKSANNURAZMI B 

BAMBANG SOEROSO 

Department of Electrical and Computer Engineering, Faculty of Engineering 

International Islamic University Malaysia 

Jalan Gombak, Kuala Lumpur 53100 

MALAYSIA 

Email: ibrahimy@iium.edu.my http://staff.iium.edu.my/ibrahimy/ 
 

 

Abstract: - There are insignificant relevant research works available which are involved with the Field 

Programmable Gate Array (FPGA) based hardware implementation of Binary Coded Decimal (BCD) adder. 

This is because, the FPGA based hardware realization is quiet new and still developing field of research. The 

article illustrates the design and hardware modeling of a BCD adder. Among the types of adders, Carry Look 

Ahead (CLA) and Ripple Carry (R-C) adder have been studied, designed and compared in terms of area 

consumption and time requirement. The simulation results show that the CLA adder performs faster with 

optimized area consumption. Verilog Hardware Description Language (HDL) is used for designing the model 

with the help of Altera Quartus II Electronic Design Automation (EDA) tool. EDA synthesis tools make it easy 

to develop an HDL model and which can be synthesized into target-specific architectures. Whereas, the HDL 

based modeling provides shorter development phases with continuous testing and verification of the system 

performance and behavior. After successful functional and timing simulations of the CLA based BCD adder, 

the design has been downloaded to physical FPGA device. For FPGA implementation, the Altera DE2 board 

has been used which contains Altera Cyclone II 2C35 FPGA device. 

 

Key-Words: - Binary Coded Decimal Adder, Carry Look Ahead, Ripple Carry, Hardware Description 

Language, Field Programmable Gate Array 

 

1 Introduction 
Addition is used as primitive operation for 

computing most arithmetic functions, so that it 

deserves particular attention. The term adder in 

digital electronics means a circuit to execute 

addition of numbers. Arithmetic Logic Unit is the 

main component of central processing unit where 

the addition, multiplication, comparison and other 

logical operations are performed. It is typical that 

digital adders normally use binary numbers to 

perform addition. However, it is also possible to 

design an adder from other type of number 

representation like BCD. Without the modification 

of adder module, it can perform addition/subtraction 

of signed numbers by converting the numbers into 

1’s complement or 2’s complement. Nowadays, 

decimal system of rule is favored, especially when it 

is working with decimal arithmetic calculation. But, 

sometimes the decimal arithmetic based 

conventional software can not cope up with the 

performance requirement by the applications with 

widespread range of decimal arithmetic. Before 

sending the numbers to computer, they need to be 

converted into binary representation. Contrariwise, 

the output numbers have to be converted from 

binary to decimal form. For certain applications, 

such as business or economical applications 

required a huge numbers of input/output 

conversions. The efficiency and performance of the 

system is then become associated with the rapid 

conversion of numbers. The BCD system, however, 

facilitates very fast binary-decimal conversion 

through encoding each decimal digit separately as a 

structure of 4 binary bits [1].  

With the technological advancement, it is now 

gaining importance to embed the libraries required 

for hardware realization in recent commercialized 

general purpose processors. In classical algorithms, 

it is proved that the completion time of any program 

or circuit is dependent on the number of digits/bits 

available in the operands. Through reviewing a 

numbers of literatures, it is found that several ideas 

is proposed for minimizing computational time. 

Most of the modifications are related to the 

minimization of carry computation which may 

reduce proportionality constant [2]. However, the 

decimal addition has time consumption for carry 

propagation process within the same range as of 

binary. It is found that the practical implementation 

of BCD adders not only save the coding interfaces 

but also save the time consumption. There are two 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 366 Issue 10, Volume 11, October 2012



techniques being used to design high speed decimal 

adders. One of the methods produces the direct 

decimal sums without producing the binary sums. 

Whereas, another method directly produces the 

decimal carries through the refinement of carry look 

ahead. Both of the techniques help to design a unit 

of parallel processing decimal arithmetic. The 

designed unit outperforms the binary arithmetic unit 

in terms of performance and cost. Due to the 

technological development, the availability of large 

amount of main memories with computer systems 

are very common. This is advantageous for multi-

programming which results in greater concurrency 

among I/O, processor and other hardware devices 

[3]. For future demand environment/application, it 

would be more attractive to use parallel decimal 

arithmetic unit to achieve output with a lesser 

computation. 

Field-Programmable Gate Arrays (FPGAs) have 

emerged as an attractive means of implementing 

logic circuits, providing instant manufacturing 

turnaround and negligible prototype [4]. Fig. 1 

illustrates the basic architecture of an FPGA. 

FPGAs are pre-fabricated silicon devices which can 

be programmed to perform almost any kind of 

digital circuit or system. 

 
Fig. 1: FPGA architecture 

 

FPGAs are reconfigurable devices with first 

processing time and lower volume cost. FPGAs are 

future oriented building blocks that permit seamless 

reconfiguration/customization of the hardware at an 

attractive price even in low quantities. The physical 

FPGA devices are commercially available in usable 

sizes, in terms of I/O ports, memory resources, 

functionalities etc., with reasonable price tag. This 

makes them effective factors for cost saving and 

time-to-market when designing individual 

configurations of certain standard products. The 

application specific integration of IP cores in the 

FPGA device can considerably reduce the time and 

avoid expensive redesign. FPGA offers a potential 

alternative for speeding up the hardware realization 

which comes with the merits of lower cost, higher 

density, and shorter design cycle [5]. In FPGA 

based design, a gate-level netlist is generated by the 

synthesis tool which can be used to perform timing 

analysis based on circuit elements. The netlist can 

also be used for FPGA's mapping, packaging, and 

place and route software for generating more 

accurate timing report using real values. Fig. 2 

illustrates the HDL based FPGA flow. However, 

every design has its own trade off. The Application 

Specific Integrated Circuit (ASIC) design would 

increase productivity in terms of understanding and 

debugging the design at the RTL level rather than 

working with gate-level schematic. In contrast, 

FPGA design would give better timing estimations 

and area utilization which generate better quality of 

results [6]. 

 
Fig. 2: HDL based FPGA flow 

 

The decimal system arithmetic is preferable than 

binary number system. Since, it does not only avoid 

the complexity of coding-decoding interfaces but it 

also increase the precision and clarity in the results. 

This article presents a design and hardware 

modeling of BCD adder implemented into FPGA. 

This research project aims to develop a decimal 

adder based on Ripple Carry (R-C) adder and Carry 

Look Ahead (CLA) adder in FPGA. The 

development of the design is involved in analyzing 

some of the major difficulties of complex algorithm. 

BCD is common in electronic systems where a 

numeric value is to be shown, especially in system 

consisting digital logic in its design. 

 

 

2 Materials and Method 
Regardless of R-C or CLA adder, a 4-bit reference 

adder is used before implementing the final design. 

For this purpose, a 4-bit CLA is as reference adder 

for implementing a 8-bit CLA adder. Furthermore, a 

4-bit R-C adder is designed to compare its 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 367 Issue 10, Volume 11, October 2012



performance with CLA adder. The target is to get 

the output in the form of BCD number and 

displaying it in the 7-segment display. 

 

 

2.1 4-bit R-C Adder Operation 
The R-C, sometimes called a pseudoparallel adder 

or simply parallel adder. An n-bit R-C is a (2n + l) 

input and (n + l) output combinational logic device 

that can add two n-bit binary numbers. The block 

diagram symbol and general operation format for 

this adder are presented in Fig. 3, together with an 

illustration of the ripple carry effect in Fig. 4. The 

general operation format represents the familiar 

addition algorithm used in conventional arithmetic 

where carry from an addition operation is always to 

the next most significant stage. 

 
Fig. 3: Block diagram of n-bit ripple-carry adder 

 

 
Fig. 4: n-bit ripple-carry adder with operation 

format and ripple carry effect 

 

The subscripts are consistent with the powers of 

2 to the left of the radix point in polynomial notion. 

Thus, the bits of each word representing a number 

are written in ascending order of positional weight 

from right to left. Actually, the position of the radix 

point in the two numbers is arbitrary, since the adder 

has no means of sensing these positions. If 

significant bit positions exist to the right of the radix 

point for augend A and addend B, meaning that 

these numbers have a fraction component, then there 

must be an equal number of such positions for the 

two numbers, each of n bits total. All that is required 

a series array of n full adders (FA) designated as 

FA0, FA1, ..., FAn-1, one for each bit, be connected 

such that the carry-out of one stage is the carry-in to 

the next most significant stage. An n-bit ripple-carry 

adder is more likely to be designed by using n 

number of m-bit adder modules rather than 

individual FAs. An example presented in Fig. 5, 

features two 4-bit R-C in ripple-carry fashion to 

produce a 8-bit adder. 

 
Fig. 5: 8-bit ripple-carry adder implementation 

with 4-bit ripple-carry adders 

 

 

2.2 4-bit CLA Adder Operations 
Basically, the notion of having R-C is to let each 

adder compute a carry and forward it to a 

subsequent adder. One way to improve this method 

is by having an algorithm to pre-calculate the 

carries before forwarding the sum Co the next 

adder. Therefore, such implementation can be done 

in CLA by expediting the carry propagation and 

eliminating the inter stage carry delay. To invoke 

this algorithm [7], carry propagate as well as carry 

generate are being used. The CLA circuit is shown 

in Fig. 6 and logic circuit for CLA adder is 

presented in Fig. 7. 

 
Fig. 6: 2-bit carry look ahead adder 

 

 
Fig. 7: The logic circuit for carry look ahead 

adder 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 368 Issue 10, Volume 11, October 2012



Algorithm below shows how to calculate 

propagate and generate function. 

Pi =Ai ⊕ Bi and Gi = A • B 

Sum and Carryout can be calculated by 

Si = Pi ⊕ Ci and Ci+1 = Gi + PiCi  

where, Gi is carry generate, Pi is carry propagate, 

Ci and Ci+1 is the Carryout in first and next stage. 

 

 

2.3 Complete Design Scheme 
The complete design flow is given in the block 

diagram in Fig. 8. The model is implemented for 8-

bit binary numbers which are inputted by user. 

Summation operation is operated in decimal adder 

module. Both the 8-bit CLA and R-C adders are 

successfully modeled for decimal adder module. 

The resulted 8-bit binary number is converted to 

BCD number by BCD converter module. The 

decoder for binary to BCD number conversion is 

shown in Fig. 9. By utilizing BCD number system, 

the manipulation of numerical data can be greatly 

simplified by treating each digit as a separate 

single sub-circuit for display purpose. This 

matches much more closely the physical reality of 

display hardware which enables to use a series of 

separate identical 7-segment display to build a 

metering circuit. If the numeric values are stored 

and manipulated as pure binary, interfacing to such 

a display would require complex circuitry. 

Therefore, the calculations associated with BCD 

are relatively simple which leads to a simpler 

overall system than converting to binary. 

 

 
Fig. 8: Block diagram of the complete design flow 

 

 
Fig. 9: Binary to BCD decoder block diagram 

 

The final result is displayed in FPGA board by 7-

segment display module. The configuration for the 

7-segment LED display is given in Fig. 10. The 

outputs of BCD to 7-Segment Decoder are assigned 

to 7 different alphabets which are a, b, c, d, e, f and 

g. The signal ‘0’ indicates that the LED is ‘ON’ 

while signal ‘1’ indicates that the LED is ‘OFF’. In 

addition, for overall digit representation (1-9) is 

shown in Table 1. 

 
Fig. 10: 7-Segment LED display configuration 

 

Table 1: BCD to 7-Segment Decoder Truth-Table 

Binary 

inputs 
Decoder outputs 

7-segment 

display 

outputs 

D C B A a b c d e f g  

0 0 0 0 1 1 1 1 1 1 0 0 

0 0 0 1 0 1 1 0 0 0 0 1 

0 0 1 0 1 1 0 1 1 0 1 2 

0 0 1 1 1 1 1 1 0 0 1 3 

0 1 0 0 0 1 1 0 0 1 1 4 

0 1 0 1 1 0 1 1 0 1 1 5 

0 1 1 0 1 0 1 1 1 1 1 6 

0 1 1 1 1 1 1 0 0 0 0 7 

1 0 0 0 1 1 1 1 1 1 1 8 

1 0 0 1 1 1 1 1 0 1 1 9 

 

 

2.4 Timing Analysis and Synthesis 
Process of generating a logic circuit from an initial 

specification is called synthesis that may be given 

in the form of schematic diagram or code written in 

the hardware description language which means an 

abstract form of desired circuit behavior. 

Typically, it represents the register transfer level 

(RTL), and is turned into a design implementation 

in terms of logic gates [4]. On the other hand, 

timing analysis may be referred to as the 

measurement of the delay along with the various 

timing paths and verifies the performance and 

operation of the design. In order to meet the timing 

requirements, user could specify time constraints 

and assignments. For timing analysis, Altera 

Quartus II has been used while Synopsys [8] is 

used for synthesis part. In timing analysis, the pin 

to pin delay time (tpd) can be observed by 

specifying the clock setup time (tsu), clock to 

output delay time (tco) and clock hold time (th). In 

contrast, synthesis of the designed model has 

covered the optimization and mapping process. 

Optimization means the process of finding an 

equivalent representation of the specified logic 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 369 Issue 10, Volume 11, October 2012



circuit under one or more specified constraints. 

Mapping on the other hand means a process of 

fitting logic produced by synthesis and placing it 

into particular programmable logic device [9]. In 

order to start the timing analysis, classic timing 

analyzer wizard is chosen. Actually, those timing 

requirements are crucial for any design before it 

could be implemented. Fig. 11 shows the 

illustration of timing requirement for tsu, tco, and th. 

In Fig. 12, tsu, th, tco and tpd are specified in order to 

get full timing analysis report. Next, the frequency 

is set to 50 MHz appropriately to meet the entire 

timing requirements. Fig. 13 shows the timing 

summary for the settings. 

 

 
Fig. 11: Timing requirement tsu, tco and th 

 

 
Fig. 12: Timing requirement settings 

 

 
Fig. 13: Timing requirement and frequency 

summary 

3 Simulation and Results 
In this work, Altera Quartus II and Synopsys EDA 

tools are used for timing analysis and synthesis. The 

simulation output for both 4-bit R-C and 4-bit CLA 

adders are presented through comparison in terms of 

timing analysis and area utilization. After verifying 

the block diagram, the behaviour of both 4-bit R-C 

and CLA adders are verified by simulation through 

testbench process. 

 

 

3.1 4-bit R-C Adder Simulation 
The 4-bit R-C adder has been simulated with 

appropriate inputs. As shown in Fig. 14, the value of 

Sum and Cout depend on the value of X, Y and Cin. 

When time t = 0 ns, there is no input so the value for 

Sum is zero and Cout at low state (Cout = 0). At 

time t = 0 s and t = 20 ns, the Sum supposed to get 

the same result which is 15. But at t = 20 ns, since 

Cin = 1 which results in Sum = 0. Whereas, at the 

same time the value for Cout become high 

state(Cout = 1). This means, the Carryout receive its 

value since the value for summation is equal or 

more than 15. 

 

 

3.2 4-bit CLA Adder Simulation 
The 4-bit CLA adder is also simulated with 

appropriate inputs. As shown in Fig. 15, the value of 

Sum and Cout depend on the values of X, Y and 

Cin. When time t = 0 ns, there is no input so the 

value for Sum is zero and Cout at low state (Cout = 

0). At time t = 80 ns and t = 90 ns, the Sum is 

supposed to get the result of 17, but the hexadecimal 

value could not exceed 15. Therefore, it yields an 

output of 1, because the most significant bit binary 

addition will have a Carryout. Thus, the Carryout is 

generated and is transferred to the next stage. This is 

the advantage of CLA that, it could guess the future 

carry out before propagating the value. 

 

 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 370 Issue 10, Volume 11, October 2012



 
Fig. 14: 4-bit R-C adder simulation

 

 
Fig. 15: 4-bit CLA adder simulation 

 

 

3.3 Simulation of the Design 
Fig. 16 shows the RTL architecture of a 8-bit 

decimal adder which is formed by a CLA adder with 

decoder. The input is 8-bit binary number and the 

addition of both inputs yields 8-bit of binary 

number. The generated binary number is then 

converted into BCD. The conversion process has 

been done by implementing a decoder and the 

output is then sent to 7-segment display in Altera 

DE-2 board. The RTL diagram as shown in Fig. 17 

gives a depth view of 4-bit CLA block and Fig. 18 

shows the RTL logic block of the decoder. 

Furthermore, Fig. 19 shows the testbench used for 

the simulation where it can be seen that the output is 

separated by 4-bits as denoted by X and Y 

respectively. X represents BCD in tens while Y 

represents BCD in ones. Both combinations yield to 

two digit decimal number. Mathematically, 14+75 

yields to 89 and the given output has been 

accurately represented in BCD number. 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 371 Issue 10, Volume 11, October 2012



 

 
Fig. 16: RTL view of 8-bit CLA with decoder 

 

 

 
Fig. 17: RTL view of 4-bit CLA 

 

 
Fig. 18: RTL view of the decoder 

 

 
Fig. 19: Testbench of 8-bit CLA with decoder 

 

3.4 Timing Analysis 
It is important to realize the significance of timing 

analysis before a design can be proceed to the next 

stage. In timing analysis, one could eventually set a 

time constraints for a particular design to enhance 

its performance. In ASIC design, one could 

maximize the area utilization since the user 

determines the number of logic gates involved. In 

contrast, if a design is implemented using FPGA, 

one's ability to specifically restrict area 

maximization seems unreliable. The area utilization 

is fixed by the restriction of logic gates in FPGA 

itself which is a plus point for the designer. Fig. 20 

and Fig. 21 presents the timing analysis report for 4-

bit RCA adder and CLA adder respectively. 

 

 
 

Fig. 20: Timing analysis and synthesis of 4-bit RCA 

adder with Synopsys Timing Report 

 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 372 Issue 10, Volume 11, October 2012



 
 

Fig. 21: Timing analysis and synthesis of 4-bit CLA 

adder with Synopsys Timing Report 

 

The summary of the report is presented in Table 2, 

which clearly shows that the CLA adder is faster 

than R-C adder with maximized cell area utilization. 

 

Table 2: Summary of synthesis analysis for R-C and 

CLA adder 

Adder 

Type 

Num. 

of bit 

Data 

arrival 

time (ns) 

Cell area used 
Total 

cell 

R-C 
4-bit 7.2 860.530029 14 

16-bit 9.24 3765.85 24 

CLA 
4-bit 6.79 1071.290039 39 

16-bit 8.77 4134.629 34 

 

 

3.5 Physical Hardware Implementation 
The complete design of a 8-bit CLA adder with 

decoder is downloaded into the Altera Cyclone II 

2C35 FPGA device with Altera DE-2 board. Before 

a Verilog code is programmed into the FPGA of 

Altera DE-2 board, some steps need to be taken 

which include the assignment of the pins. Fig. 22 

shows the pin assignment environment and Fig. 23 

shows the pin assignment needed for selected inputs 

and outputs. If there is any unassigned pins 

occurred, the inputs will be in the tri-state. Several 

binary inputs and their corresponding outputs are 

tested and verified. Fig. 24 shows one of the 

example where the output is given in 7-segment 

display. For this case, the input A is assigned to 

digit 55 (00110111) and whereas B is assigned to 44 

(00101100). The output is given 99 and purely 

represented in 7-segment display. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22: Pin assignment overview 

 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 373 Issue 10, Volume 11, October 2012



 
Fig. 23: Inputs and outputs pin assignment 

 

 
Fig. 24: Output on 7-segment display of Altera DE-2 board 

 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 374 Issue 10, Volume 11, October 2012



4 Conclusion 
The basic algorithm for BCD adder has been 

implemented in Verilog HDL and verified the 

behavior of the adder through simulation. The 

simulation result gives the desired output for both 

the R-C and CLA adders. In synthesis part, it has 

been found that CLA adder is faster than R-C adder 

but it requires much area and cell that lead to 

consume more power. The physical FPGA model is 

developed with the help of Altera DE-2 board using 

the EDA tool Quartus II. FPGA based model has 

much simpler designing cycle due to the EDA 

software handles much of routing, placement and 

timing. Future task may involve with designing the 

BCD adder with higher numbers of bit using this 8-

bit or 4-bit adder as reference adder. The future 

work may also associate with the realization of 

layout design where the integrated circuit can be 

designed corresponding to the pattern of metal, 

oxide or semiconductor layers.  

 

 

References: 
[1] B. Shirazi, D. Y. . Yun, and C. N. Zhang, 

“RBCD: redundant binary coded decimal 

adder,” Computers and Digital Techniques, 

IEE Proceedings E, vol. 136, no. 2, pp. 156– 

160, Mar. 1989. 

[2] J.-P. Deschamps, G. J. A. Bioul, and G. D. 

Sutter, Synthesis of Arithmetic Circuits: FPGA, 

ASIC and Embedded Systems, 1st ed. Wiley-

Interscience, 2006. 

[3] M. S. Schmookler and A. Weinberger, “High 

Speed Decimal Addition,” IEEE Transactions 

on Computers, vol. C-20, no. 8, pp. 862– 866, 

Aug. 1971. 

[4] S. Brown and Z. Vranesic, Fundamentals of 

Digital Logic with Verilog Design, 2nd ed. 

McGraw-Hill Science/Engineering/Math, 2007. 

[5] I. Kuon, R. Tessier, and J. Rose, FPGA 

Architecture. Now Publishers Inc, 2008. 

[6] C. Maxfield, FPGAs: Instant Access, First. 

Newnes, 2008. 

[7] R. B. Reese and M. A. Thornton, Introduction 

to logic synthesis using Verilog HDL. Morgan 

& Claypool Publishers, 2006. 

[8] Synopsys, Inc., “RTL Synthesis & Test,” RTL 

Synthesis & Test. [Online]. Available: 

http://www.synopsys.com/Tools/Implementatio

n/RTLSynthesis/Pages/default.aspx. 

[9] “Quartus II TimeQuest Timing Analyzer 

Cookbook.” Altera Corporation, 2011. 

 

WSEAS TRANSACTIONS on COMPUTERS
Muhammad Ibn Ibrahimy, Md. Rezwanul Ahsan, 
Iksannurazmi B. Bambang Soeroso

E-ISSN: 2224-2872 375 Issue 10, Volume 11, October 2012




