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Abstract: In this paper, the ChipCflow Project to accelerate algorithms using a design of a field programmable gate
array (FPGA) as a prototype of a static dataflow architecture is presented. The static dataflow architecture using
operators interconnected by parallel buses was implemented. Accelerating algorithms using a dataflow graph in
a reconfigurable system shows the potential for high computation rates. The results of benchmarks implemented
using the static dataflow architecture are reported at the end of this paper.
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1 Introduction
With the advent of reconfigurable computing,

basically using a Field Programmable Gate Ar-
ray(FPGA), researchers are trying to explore the max-
imum capacities of these devices, which are: flexibil-
ity, parallelism, optimization for power, security and
real time applications [7, 19].

Because of the complexity of the applications and
the large possibilities to develop systems using FP-
GAs, many applications to convert algorithms into
these devices associated with a General Purpose Pro-
cessor (GPP) using high level language like C and
Java is one of the challenges for researchers nowa-
days, especially for accelerating algorithms [15, 16].

The main aim of the ChipCflow Project is to ac-
celerate the algorithms which convert parts of pro-
grams written in C language into a static dataflow
model implemented in a FPGA.

This paper is organized as follows. Related work
is described in section 2. The Dataflow Graph Model
is discussed in section 3. In section 4 the Bench-
marks implemented in the Dataflow graph are pre-
sented. Section 5 shows the results of the implemen-
tations. Section 6 concludes the paper and suggests
future works.

2 Related Work
The dataflow graph model and its architecture

was first researched in the 1970s and was discontinued
in the 1990s [2, 6, 13, 14]. Nowadays, it is a topic of
research once more, mainly because of the advance of
technology, particulary with the advent of the FPGA
[3, 13, 19].

Because the dataflow model has an implicit paral-
lelism and the FPGA is composed by parallel circuits,
the dataflow model applied to a FPGA has the perfect
combination to execute applications which also have
parallelism in their execution [13]. However, as appli-
cations become more complex, software development
is only possible using high level language such as C or
Java [4] although only parts of the program will be ex-
ecuted directly into the hardware. Thus several tools
have been developed to convert C into hardware using
VHDL language [8, 11, 12].

In order to analyze the data dependence, many
of these systems generate an intermediate dataflow
graph for pipeline instructions. The optimizations,
using several techniques such as loop unrolling, are
concluded and finally a reconfigurable hardware us-
ing the VHDL language is generated. The hardware
generated using these tools consists of coarse grain
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elements or assembler instructions for a customized
processor as Picoblase or Nios from Xilinx and Altera
respectively [21].

In our approach, a fine grain instruction using
VHDL to implement a static dataflow architecture,
consisting of various nodes of processing elements
and arcs to connect those nodes in a graph, is used
to accelerate algorithms.

3 The Dataflow Graph Model

In the Asynchronous Dataflow Graph project de-
veloped by Teifel et al. [19], the asynchronous
system is a collection of concurrent hardware pro-
cesses that communicate with each other through
message-passing channels. These messages consist
of atomic data items called tokens. Each process can
send and receive tokens to and from its environment
through communication ports. In the Teifel project,
asynchronous pipelines are constructed by connecting
these ports to each other using channels, where each
channel is allowed only one sender and one receiver.
Since there is no clock in an asynchronous design,
processes use handshake protocols to send and receive
tokens via channels.

In Fig. 1 Teifel describes an equation converted
into a dataflow graph in three different situations: (a)
a pure dataflow graph, (b) a token-based asynchronous
dataflow pipeline and (c) a clocked dataflow pipeline.

Figure 1: Computation of yn=yn-1+c(a+b):(a) pure
dataflow graph, (b) token-based asynchronous
dataflow pipeline (filled circles indicate tokens,
empty circles indicate an absence of tokens), and (c)
clocked dataflow pipeline [19].

In our project, a collection of concurrent hard-
ware processes that communicate with each other, but
using a parallel bus with bits for data and bits to con-
trol the communication in a synchronous system of
communication as described in part (c) of the Fig. 1,
is also used.

3.1 Dataflow Computations
In the dataflow graph to the ChipCflow Project,

a traditional dataflow model described in the litera-
ture, where a node is a processing element and an
arc is the connection between two elements, is used
[2, 3, 6, 13, 14]. A data bus and a control bus to ex-
ecute the communication between the operators were
implemented. The static dataflow graph model, where
only one item of data can be in an arch was developed.

In Fig. 2, a basic operator and its data buses and
control buses for communication are described. The
signal data a, b and z in Fig. 2 are 16-bit data traveling
through the parallel buses. The signals stra, strb, strz,
acka, ackb and ackz are 1-bit control data to control
communication between operators.

Figure 2: The basic operator with its data buses and
control buses.

Figure 3: The communication: a) enabling the com-
munication, b) sending an item of data, c) Acknowl-
edging an item of data.

The communication between operators is de-
scribed in Fig. 3. As can be clearly seen in the figure,
a sender operator and a receiver operator have two in-
put data buses a and b, one output data bus z and its re-
spective control signals stra, strb, strz, acka, ackb and
ackz. Each of the input data bus and output data bus
is connected to a register to store a receiving item of
data and to store a sending item of data, represented by
rectangles with rounded edges denoted with the char-
acters 1a, b and z in the figure.Each of the input data
bus and output data bus is connected to a register to
store a receiving item of data and to store a sending
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item of data, represented by rectangles with rounded
edges denoted with the characters a, b and z in the fig-
ure. The output data bus z from the sender operator
is connected to input data bus a from the receiver op-
erator, the output control signal strz from the sender
operator is connected to the input control signal stra
from the receiver operator and the input control sig-
nal ackz from the sender operator is connected to the
output control signal acka from the receiver operator.

A ”logic-0” in the signal ackz informs the sender
operator that the receiver operator is ready to receive
data. A ”logic-1’ in the signal ackz informs the sender
operator that the receiver operator is busy. A ”logic-
1” in the signal stra informs the receiver operator that
an item of data is ready to be sent to it from the sender
operator. A ”logic-0’ in the signal stra informs the
receiver operator that the sender have not an item of
data to be sent to it.

To initiate the communication, an enable signal
with a ”logic-0” to the ackz connected to the sender,
is set, Fig. 3a. When the receiver operator is ready
to receive data, a ”logic-1” in the stra strobes an item
of data to the input data bus a in the receiver operator,
Fig. 3b. Consequently, a ”logic-0” in the acka ac-
knowledges that the item of data a was received, Fig.
3c.

3.2 The Dataflow Operators
The dataflow operators were the traditional op-

erators described by Veen in [14], which are: copy,
non deterministic merge, deterministic merge, branch,
conditional and primitive operators (add, sub, mul,
div, and, or, not, etc.).

In order to execute the computation of an opera-
tor it is necessary that an item of data is presented in
all its input buses of data. In Fig. 4, operators are de-
scribed where filled circles indicate items of data and
empty circles show an absence of items of data and
the situation of the operator before computation and
after computation [19].

Figure 4: The operator. [19]

The functional execution of dataflow operators is

described below:

1. Copy: This dataflow node duplicates an item of
data to two receiver operators. It receives an item
of data in its input data bus and copies the item
of data to two output data buses.

2. Primitive: This dataflow node receives two item
of data in its input data buses, computes the prim-
itive operation with these two items of data and
generates the result sending it to the output data
bus. Operators such as add, sub, multiply, divide,
and, or, not, if, etc., are implemented in the same
way.

3. Dmerge: This dataflow node performs a two-way
controlled data merge and allows an item of data
to be conditionally read in input data buses. It
receives a TRUE/FALSE item of data to decide
what input data a or b respectively to send to the
output data z

4. NDmerg: This dataflow node performs a two-
way not controlled data merge and allows an item
of data to be read on input data buses. The first
data to arrive into the Ndmerge operator from in-
put a or b is sent to the output data z.

5. Branch: This dataflow node performs a two-way
controlled data branch and allows the item of
data to be conditionally sent on to two different
output buses. It receives a control TRUE/FALSE
item of data to decide what output data t or f re-
spectively to transfer the input data a.

3.2.1 The Basic Dataflow Operator Architecture
A register-transfer-level datapath (RTL) diagram

for a sum (ADD) Operator is given in Fig. 5. In the
figure, the 1-bit register bita and 1-bit register bitb are
used to inform the ADD operator when the 16-bit reg-
ister dadoa and/or 16-bit register dadob are filled with
an item of data, respectively.

A ”logic-1” in the bita or bitb informs the ADD
operator that there is a item of data within dadoa or
dadob respectively. A ”logic-0” in bita or bitb informs
the ADD operator that the dadoa or dadob is empty.

When both items of data are in the receiver op-
erator, the ADD operator is executed and the result is
filled within a 16-bit register dadoz. The 1-bit register
bitz receives a ”logic-1” to inform that there is a item
of data to send to the next operator (the signal strz in
Fig. 5).

The operation process of the ADD operator is de-
scribed in the ASM chart in Fig. 6. In the figure, there
are four described states S0, S1, S2 and S3. As can be
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Figure 5: Datapath (RTL) Diagram of ADD Operator.

clearly seen in the figure, the initial state S0 is used to
initialize several signals of the operation process. In
state S1, an item of data from the input data buses can
be received within the operator and the correspondent
bit of status can be set. Simultaneously the acknowl-
edge signal is also set. After receiving all the items
of data, the execution of the function within the oper-
ator is started, described in state S2. Finally, in state
S3, several signals of the operation process are set to
”logic-0” to continue the execution process of the op-
erator.

In the process of the operator there is a Finite
State Machine (FSM) that controls each step of the
execution and the communication between operators.

Although there is a clock (signal CLK in Fig. 5),
communication between operators is asynchronous
because it is unpredictable when data will be sent to
the next operator.

There are three different architectures of opera-
tors. One of them is already described in Fig. 5, with
two input data buses and just one output data bus. That
is the case of the primitive operators ADD, SUB, MUL
and DIV; the relational operators IFgt, IFge, IFlt, IFle,
IFeq and IFdf; the logic operators AND, OR and NOT;
and the control operator NDmerge. Another one is the
control operator Dmerge with three input data buses
and just one output data bus. Finally the last one, the
control operator Branch with two input data buses and
two output data buses.

4 The Benchmarks Implemented in
the Dataflow Model

The benchmarks implemented in the dataflow
model were: Fibonacci, Max, Dot prod, Vector sum,
Bubble sort, and Pop count [20]. To convert the
benchmark algorithms into a VHDL, each benchmark
was described as a dataflow graph, them an assembler
language was used to convert the dataflow graph into
a VHDL. A compiler have been developed to convert

Figure 6: ASM Chart of ADD Operator.

C into a dataflow graph, but in this case, all the al-
gorithms were converted by hand. The implementa-
tion of the benchmarks are described in the following
items.

The Fibonacci Algorithm

The Fibonacci algorithm is described in Algo-
rithm 1 and its dataflow graph is described in Fig. 7.

Algorithm 1 Calculate Fibonacci
first ⇐ 0
second ⇐ 1
tmp ⇐ 0
for i = 0 to n do

tmp ⇐ first+ second
first ⇐ second
second ⇐ tmp

end for

As can be clearly seen in Fig. 7, there are two
parts in the dataflow graph: one of them is located on
the left side of the figure and controls the loop with
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Figure 7: The Fibonacci algorithm described in
Dataflow Graphics.

index i; on the right side of the figure the implementa-
tion of the Fibonacci sequence is described.

As the dataflow graph consist of nodes and arcs,
each node represents an operator and each arc repre-
sents the communications between two operators. In
Fig. 7, a label is attributed to each arc in the dataflow
graph. As arcs represent the communication between
two operators, the parallel data bus for items of data
and the control data bus for control the communica-
tions are included in the label representations. The as-
sembler language uses the name of the operator and its
label arcs to convert the dataflow graph into a VHDL.
The assembly language for Fibonacci dataflow graph
is described in Listing 1.

As can be clearly seen in Listing 1, several node
operators and their input and output arcs are listed.
Labels used to connect nodes operators are described
initializing with the s character followed by a number
and the others are input or output data signals. The
same organization is used for the others benchmarks
implementation.

In the Listing 1 the labels dadoa, dadob, dadoc,
dadod, dadoe, dadof, dadog, dadoh, dadoi and dadoj
are input data signals used to initialize data for the
Fibonacci dataflow graph and the label fibo is out-
put data signal to inform the result of the Fibonacci
sequence. Specifically for the Fibonacci sequence,
dadoa receives and maintain the n Fibonacci argu-
ment; dadob and dadoc receive ”logic-0” to initialize
the value for ”i” in the for command; dadod receives
”logic-0” and dadoe receives and maintain ”logic-1”
to control the next value for ”i”; dadof receives ”logic-
1’ and dadog,dadoh,dadoi and dadoj receive ”logic-
0” to initialize the Fibonacci algorithm. Finally, the
outputs fibo is the output data for the Fibonacci Algo-
rithm.

Listing 1: The Assembler Language for Fibonacci
Dataflow Graph

1 . ndmerge s7 , dadob , s1 ;
2 . dmerge s2 , dadoc , s1 , s3 ;
3 . ndmerge dadod , s11 , s2 ;
4 . g t d e c i d e r dadoa , s4 , s5 ;
5 . copy s3 , s4 , s9 ;
6 . copy s5 , s6 , s8 ;
7 . b r an ch s9 , s8 , s10 , p f ;
8 . copy s6 , s7 , s12 ;
9 . add s10 , dadoe , s11 ;
1 0 . ndmerge s17 , dadof , s13 ;
1 1 . ndmerge dadog , s25 , s14 ;
1 2 . ndmerge dadoi , s22 , s23 ;
1 3 . ndmerge dadoj , s19 , s21 ;
1 4 . copy s18 , s19 , s20 ;
1 5 . dmerge s23 , dadoh , s12 , s24 ;
1 6 . dmerge s20 , s21 , s26 , s22 ;
1 7 . copy s24 , s25 , s26 ;
1 8 . add s13 , s14 , s15 ;
1 9 . copy s15 , s16 , s18 ;
2 0 . copy s16 , s17 , f i b o ;

The Bubble Sort algorithm

The Bubble Sort algorithm is described in Algo-
rithm 2 and its dataflow graph is described in Fig.8.

As can be clearly seen in Fig. 8, also there are two
parts in the dataflow graph: one of them is located on
the left side of the figure and controls the loop with
index i; on the right side of the figure the implementa-
tion of the Bubble Sort sequence is described.

Algorithm 2 Calculate Bubble Sort
for i = 0 to n do

for j = 0 to n− 1 do
if a[j] > a[j + 1] then

aux ⇐ a[j]
a[j] ⇐ a[j + 1]
a[j + 1] ⇐ aux

end if
end for

end for

Figure 8: The Bubble Sort algorithm described in
Dataflow Graphics.

The assembly language for Bubble Sort dataflow
graph is described in Listing 2.
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According on the Listing 2, the labels dadoa,
dadob, dadoc, dadod, dadoe, dadof, dadog, aji and
ajii are input data signals used to initialize data for
the Bubble Sort dataflow graph and the labels ajo and
ajoo are output data signal to inform the result of
the Bubble Sort sequence. Specifically for the Bub-
ble Sort sequence, dadoa receives and maintain the
n Bubble Sort argument; dadob and dadoc receive
”logic-0” to initialize the value for ”i” in the for com-
mand; dadod receives ”logic-0” and dadoe receives
and maintain ”logic-1” to control the next value for
”i”; dadof and dadog receive ”logic-0’ to initialize the
Bubble Sort algorithm. Finally, the inputs aji and ajii
correspond to a[j] and a[j+1] respectively in the input
data vector for Bubble Sort algorithm, and the outputs
ajo and ajoo correspond to a[j] and a[j+1] respec-
tively in the output data vector for Bubble Sort algo-
rithm.

Listing 2: The Assembler Language for Bubble Sorte
Dataflow Graph
1 . ndmerge s7 , dadob , s1 ;
2 . ndmerge dadod , s11 , s2 ;
3 . dmerge dadoc , s2 , s1 , s3 ;
4 . copy s3 , s4 , s9 ;
5 . g t d e c i d e r dadoa , s4 , s5 ;
6 . copy s5 , s6 , s8 ;
7 . copy s6 , s7 , s12 ;
8 . b r an ch s9 , s8 , p f i , s10 ;
9 . add s10 , dadoe , s11 ;
1 0 . copy a j i , s15 , s13 ;
1 1 . copy a j i i , s14 , s16 ;
1 2 . g t d e c i d e r s13 , s14 , s21 ;
1 3 . copy s16 , s19 , s20 ;
1 4 . copy s15 , s17 , s18 ;
1 5 . copy s21 , s23 , s22 ;
1 6 . dmerge s19 , s17 , s22 , s24 ;
1 7 . dmerge s18 , s20 , s23 , s25 ;
1 8 . copy s12 , s27 , s26 ;
1 9 . dmerge s24 , dadof , s26 , a j o ;
2 0 . dmerge s25 , dadog , s27 , a j o o ;

The Dotprod algorithm

The Dotprod algorithm is described in Algorithm
3 and its dataflow graph is described in Fig.9.

As can be clearly seen in Fig. 9, also there are two
parts in the dataflow graph: one of them is located on
the left side of the figure and controls the loop with
index i; on the right side of the figure the implementa-
tion of the Dotprod sequence is described.

Algorithm 3 Calculate Dotprod
dotprod ⇐ 0
for i = 0 to n− 1 do

dotprod ⇐ dotprod+ x[i] ∗ y[i]
end for

The assembly language for Dotprod dataflow
graph is described in Listing 3.

According on the Listing 3, the labels dadoa,
dadob, dadoc, dadod, dadoe, dadof, dadog, xi and yi

Figure 9: The Dotprod algorithm described in
Dataflow Graphics.

are input data signals used to initialize data for the
Dotprod dataflow graph and the label dotprod is out-
put data signal to inform the result of the Dotprod se-
quence. Specifically for the Dotprod sequence, dadoa
receives and maintain the n Dorprod argument; dadob
and dadoc receive ”logic-0” to initialize the value for
”i” in the for command; dadod receives ”logic-0” and
dadoe receives and maintain ”logic-1” to control the
next value for ”i”; dadof receives ”logic-0’ to initial-
ize the Dotprod algorithm. Finally, the inputs xi and
yi correspond to x[i] and y[i] respectively in the in-
put data vector for Dotprod algorithm, and the output
dotprod correspond to dotprod in the output data for
Dotprod algorithm.

Listing 3: The Assembler Language for Dotprod
Dataflow Graph
1 . ndmerge s7 , dadob , s1 ;
2 . ndmerge dadod , s11 , s2 ;
3 . dmerge dadoc , s2 , s1 , s3 ;
4 . copy s3 , s4 , s9 ;
5 . g t d e c i d e r dadoa , s4 , s5 ;
6 . copy s5 , s6 , s8 ;
7 . copy s6 , s7 , s13 ;
8 . b r an ch s9 , s8 , p f i , s10 ;
9 . add s10 , dadoe , s11 ;
1 0 . ndmerge dadof , s17 , s15 ;
1 1 . mul xi , y i , s12 ;
1 2 . add s12 , s15 , s14 ;
1 3 . b r a nc h s14 , s13 , pfz , s16 ;
1 4 . copy s16 , do tp rod , s17 ;

The Max algorithm

The Max algorithm is described in Algorithm 4
and its dataflow graph is described in Fig.10.

As can be clearly seen in Fig. 10, also there are
two parts in the dataflow graph: one of them is located
on the left side of the figure and controls the loop with
index i; on the right side of the figure the implementa-
tion of the Max sequence is described.
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Algorithm 4 Calculate Max
maxval ⇐ 0
for i = 0 to n− 1 do

if maxval < v[i] then
maxval ⇐ v[i]

end if
end for

Figure 10: The Max algorithm described in Dataflow
Graphics.

The assembly language for Max dataflow graph is
described in Listing 4.

According on the Listing 4, the labels dadoa,
dadob, dadoc, dadod, dadoe, dadof and vet1 are in-
put data signals used to initialize data for the Max
dataflow graph and the label max is output data sig-
nal to inform the result of the Max sequence. Specifi-
cally for the Max sequence, dadoa receives and main-
tain the n Max argument; dadob and dadoc receive
”logic-0” to initialize the value for ”i” in the for com-
mand; dadod receives ”logic-0” and dadoe receives
and maintain ”logic-1” to control the next value for
”i”; dadof receives ”logic-0’ to initialize the Max al-
gorithm. Finally, the input vet1 correspond to v[i] in
the input data vector for Max algorithm, and the out-
put max correspond to maxval in the output data for
Max algorithm.

Listing 4: The Assembler Language for Max Dataflow
Graph
1 . ndmerge s7 , dadob , s1 ;
2 . ndmerge dadod , s11 , s2 ;
3 . dmerge dadoc , s2 , s1 , s3 ;
4 . copy s3 , s4 , s9 ;
5 . g t d e c i d e r dadoa , s4 , s5 ;
6 . copy s5 , s6 , s8 ;
7 . copy s6 , s7 , s12 ;
8 . b r an ch s9 , s8 , p f i , s10 ;
9 . add s10 , dadoe , s11 ;
1 0 . ndmerge dadof , s21 , s15 ;
1 1 . copy ve t1 , s13 , s14 ;
1 2 . g t d e c i d e r s13 , s16 , s18 ;

1 3 . copy s15 , s16 , s17 ;
1 4 . dmerge s17 , s14 , s18 , s19 ;
1 5 . b r a nc h s19 , s12 , pfm , s20 ;
1 6 . copy s20 , max , s21 ;

The Pop Count algorithm

The Pop Count is described in Algorithm 5 and
its dataflow graph is described in Fig.11.

As can be clearly seen in Fig. 11, also there are
two parts in the dataflow graph: one of them is located
on the left side of the figure and controls the loop with
index i; on the right side of the figure the implementa-
tion of the Pop Count sequence is described.

Algorithm 5 Calculate Pop Count
for i = 0 to n− 1 do

input ⇐ a[i]
sum ⇐ 0
for j = 0 to 15 do

sum ⇐ sum+ (input)&1
input ⇐ input/2

end for
b[I] ⇐ sum

end for

Figure 11: The Pop Count algorithm described in
Dataflow Graphics.

The assembly language for Pop Count dataflow
graph is described in Listing 5.

According on the Listing 5, the labels dadoa,
dadob, dadoc, dadod, dadoe, dadof, dadog, dadoh
and ai are input data signal used to initialize data for
the Pop Count dataflow graph and the label bi is out-
put data signal to inform the result of the Pop Count
sequence. Specifically for the Pop Count sequence,
dadoa receives and maintain the n Pop Count argu-
ment; dadob and dadoc receive ”logic-0” to initialize
the value for ”i” in the for command; dadod receives
”logic-0” and dadoe receives and maintain ”logic-1”
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to control the next value for ”i”; dadof receives ”logic-
0’, dadog receive ”logic-1” and dadoh receive and
mantain ”logic-10” to initialize the Pop Count algo-
rithm. Finally, the inputs ai correspond to a[i] in the
input data vector for Pop Count algorithm, and the
outputs bi correspond to b[i] in the output data vec-
tor for Pop Count algorithm.

Listing 5: The Assembler Language for Pop Count
Dataflow Graph
1 . ndmerge s7 , dadob , s1 ;
2 . ndmerge dadod , s11 , s2 ;
3 . dmerge dadoc , s2 , s1 , s3 ;
4 . copy s3 , s4 , s9 ;
5 . g t d e c i d e r dadoa , s4 , s5 ;
6 . copy s5 , s6 , s8 ;
7 . copy s6 , s7 , s12 ;
8 . b r an ch s9 , s8 , p f i , s10 ;
9 . add s10 , dadoe , s11 ;
1 0 . ndmerge s18 , dadof , s17 ;
1 1 . ndmerge a i , s16 , s13 ;
1 2 . copy s13 , s14 , s15 ;
1 3 . a n d i dadog , s14 , s22 ;
1 4 . add s17 , s22 , s21 ;
1 5 . d i v s15 , dadoh , s23 ;
1 6 . copy s12 , s20 , s19 ;
1 7 . b r a nc h s21 , s20 , bi , s18 ;
1 8 . b r a nc h s23 , s19 , inp , s16 ;

The Vector Sum algorithm

The Vector Sum algorithm is described in Algo-
rithm 6 and its dataflow graph is described in Fig.12.

As can be clearly seen in Fig. 12, also there are
two parts in the dataflow graph: one of them is located
on the left side of the figure and controls the loop with
index i; on the right side of the figure the implementa-
tion of the Vector Sum sequence is described.

Algorithm 6 Calculate Vector Sum
for i = 0 to n− 1 do

c[i] ⇐ a[i] + b[i]
end for

The assembly language for Vector Sum dataflow
graph is described in Listing 6.

According on the Listing 6, the labels dadoa,
dadob, dadoc, dadod, dadoe, vet1 and vet2 are in-
put data signals used to initialize data for the Vec-
tor sum dataflow graph and the label vet3 is output
data signal to inform the result of the Vector sum se-
quence. Specifically for the Vector sum sequence,
dadoa receives and maintain the n Vector sum argu-
ment; dadob and dadoc receive ”logic-0” to initialize
the value for ”i” in the for command; dadod receives
”logic-0” and dadoe receives and maintain ”logic-1”
to control the next value for ”i”. Finally, the inputs
vet1 and vet2 correspond to a[i] and b[i] respectively
in the input data vector for Vector sum algorithm, and
the outputs vet3 correspond to c[i] in the output data
vector for Vector sum algorithm.

Figure 12: The Vector Sum algorithm described in
Dataflow Graphics.

Listing 6: The Assembler Language for Vector Sum
Dataflow Graph
1 . ndmerge s7 , dadob , s1 ;
2 . ndmerge dadod , s11 , s2 ;
3 . dmerge dadoc , s2 , s1 , s3 ;
4 . copy s3 , s4 , s9 ;
5 . g t d e c i d e r dadoa , s4 , s5 ;
6 . copy s5 , s6 , s8 ;
7 . copy s6 , s7 , s12 ;
8 . b r an ch s9 , s8 , p f i , s10 ;
9 . add s10 , dadoe , s11 ;
1 0 . add ve t1 , ve t2 , s13 ;
1 1 . b r a nc h s13 , s12 , pfv , v e t 3 ;

5 Experimental Results
The benchmarks were implemented using a

(7v285tffg1157-3) Virtex FPGA from Xilinx and syn-
thesized in ISE 13.1 and the results were compared
with the same benchmarks implemented in C-to-
Verilog and LALP described in [20] that were imple-
mented using a (EP1S10F780C6) Stratix FPGA from
Altera and synthesized in Quartus II 6.1.

Figure 13: comparing the Benchmarks

In Table 1 the results of implementations for each
benchmark in C-to-Verilog, LALP and Acceleration
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Table 1: The results of implementation for Bench-
marks

C-to-Verilog

Benchmarks FF LUT Slices Mas Freq.
Buble Sort 2353 2471 971 239.45
Dot prod 758 578 285 249.36
Fibonacci 73 108 69 297.81
Max vector 496 392 164 435.9
Pop count 1023 872 384 411.22
Vector sum 177 113 34 546.538

LALP

Buble Sort 219 105 79 353.16
Dot prod 97 69 32 213.14
Fibonacci 104 41 30 505.08
Max vector 50 39 20 484.97
Pop count 350 215 115 503.73
Vector sum —— —— —— ——

ChipCflow Project

Buble Sort 85 485 712 613.685
Dot prod 323 362 542 613.685
Fibonacci 72 482 755 612.108
Max vector 80 425 598 613.685
Pop count 79 453 684 613.685
Vector sum 52 284 419 613.685

Algorithms are described. In Fig. 13, a synthesis of
the results is described.

As can be clearly seen in Fig. 13, the Accelera-
tion Algorithms occupy less Flip Flops (FF) than the
C-to-Verilog system, but more than the LALP system,
for all the benchmarks. For LUT occupancy, the Ac-
celeration Algorithms occupy less LUTs than the C-
to-Verilog system, except for the Fibonacci, Max and
Vector sum benchmarks, but more than the LALP sys-
tem, also for all the benchmarks. In the Slices oc-
cupancy, the Acceleration Algorithms occupy more
slices than the C-to-Verilog and the LALP system
(except for the Bubble sort benchmark). Finally, for
Maximum Frequency, the Acceleration Algorithms
had more speed than the other two systems.

6 Conclusion and Future Work

The ChipCfow Project to accelerate Algorithms,
by and large, occupy more space within the FPGA
than the C-to-Verilog and the LALP system. However,
the ChipCflow Project have more speed than the other
two systems, although the main aim in this project was
to validate the implementation model likely to convert
algorithms into the dataflow graph and into a VHDL.
Taking this into account, the ChipCflow Project be-
come one more solution for parallelism in FPGA. The
benchmarks used in this paper basically perform oper-
ations using vectors, but it is very important to explore
the maximum parallelism of the dataflow graph using
real parallel applications. Future work would be to de-
velop a module to convert C directly into a VHDL, as-
sociated with the FPGA and to implement a dynamic
dataflow model to obtain a better performance than
the static model implemented in this paper.
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