
Re-optimizing the Performance of Shortest Path Queries Using

Parallelized Combining Speedup Technique based on Bidirectional

Arc flags and Multilevel Approach

R. Kalpana#1 P. Thambidurai*2
#Department of Computer Science & Engineering, Pondicherry Engineering College

Puducherry, India

1
rkalpana @pec.edu

*
Perunthalaivar Kamarajar Institute of Engineering & Technology

 Karaikal, Puducherry, India

Abstract: - Globally shortest path problems have increasing demand due to voluminous datasets in

applications like roadmaps, web search engines, mobile data sets, etc., Computing shortest path between

nodes in a given directed graph is a very common problem. Among the various shortest path algorithms,

Dijkstra’s shortest path algorithm [1] is said to have better performance with regard to run time than the other

algorithms. The output of Dijkstra’s shortest path algorithm can be improved with speedup techniques. In this

paper a new combined speedup technique based on three speedup techniques were combined and each

technique is parallelised individually and the performance of the combination is measured with respect to pre-

processing time, runtime and number of nodes visited in random graphs, planar graphs and real world data

sets.

Key-Words: - Bidirectional Arcflags, Multilevel method, Multilevel Arcflags, Parallelized Multilevel

Arcflags.

1 Introduction
In general many applications require shortest path

queries to solve the problems. Some of the

applications are railway networks [2],[3],

roadmaps [3] , web search engines [3] , mobile

applications, etc., The need for shortest path

queries have extended due to online applications,

where the search time is reduced due to shortest

path queries. Shortest path problems are

classically solved under Greedy procedures. The

commonly known shortest path algorithms of

greedy are Dijkstra’s Algorithm, Bellmann-Ford

Algorithm, Floyd-Warshall’s Algorithm, etc.,

Dijkstra’s algorithm [1],[2] is the standard

algorithm which computes shortest path in

directed graphs with non negative edge lengths.

Dijkstra’s algorithm with Fibonacci heaps is the

fastest algorithm for the general case of arbitrary

nonnegative edge lengths. The performance of

Dijkstra’s algorithm can be extended using basic

speedup techniques like bidirectional search, goal

directed search, shortest path containers,

multilevel approach, reach based method, arc flag

method, etc., to find the shortest path in optimal

time. The basic speedup techniques [3],[4] were

combined in different flavors and their

performance were improved. These basic speedup

techniques and combined speedup techniques

cannot be always guaranteed to prove to be faster

than the original Dijkstra’s algorithm. However it

can be empirically shown that they certainly

improve the speedup of the applications where we

use many real data sets like roadmaps [5], railway

networks [2],[6] and timetable information

systems [6], etc.,.

The shortest path problem has two phases of

implementation for applications where there is a

need for voluminous data sets. They are pre-

processing phase and shortest path computation

phase. Pre-processing techniques were identified

to make the applications to work fast. It makes to

work fast in very large networks, where there is a

need for many 1 to n shortest path computations.

The speed up factor is found to be high in

techniques where pre-processing the network is

done at the design phase of the network itself

[2],[3]. In the shortest path computation phase,

actual speedup techniques integrated with

Dijkstra’s algorithm works to give the result in

optimal time. Hence the output of the system can

be measured with output parameters like pre-

processing time, runtime(shortest path

computation time), Number of nodes visited

during shortest path computation, etc.,

In this paper, a combination of the Bidirectional

Arcflags (Goal-directed search) and Multilevel

technique has been considered to improve the

speedup in terms of run time and vertex visit

count in various graph types such as random

graphs, planar graphs and real world data sets(map

of Tamilnadu). Pre-processing time of the system

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 204 Issue 7, Volume 11, July 2012

also reduced due to parallelism and thereby the

speedup of the system got improved.

2 Related Work
2.1 Combining Speedup techniques

A detailed view of the existing combinations of

various speedup technique are discussed in [3],

[4]. The speedup techniques includes

Bidirectional search [3], [4], [7], goal directed

search [8],[9], Hierarchical approaches [10],[11],

Reach Highway hierarchies [5] and Transit node

routing [12] and goal directed technique include

ALT [8] and Arcflags [13]. Especially in arc flag

approach [13] various graph partitioning methods

adapted improves the capacity of pre-processing.

The combinations Goal-Directed Search and

Multilevel Approach, Goal-Directed Search and

Shortest-Path Containers[14], Bidirectional Search

and Multilevel Approach [15], Bidirectional

Search and Shortest-Path Containers, Multilevel

Approach and Shortest-Path Containers with its

speedup with respect to running time and vertices

visited were analysed in [3]. Combination of reach

with landmark based A* search (ALT algorithm)

[8]. Another variation of this combination is to

store the landmark distances of nodes with high

reach values and this results in low memory

consumption. HH* combines Highway

Hierarchies approaches [10,[11] with landmark

based A* search [8]. Here the landmarks are not

chosen from the original graph, but for some level

k of the HH (highway hierarchy), which reduces

the pre-processing time and memory consumption.

SHARC combines Highway hierarchies [10] with

Arc-flags [13] and produces a fast unidirectional

query algorithm, which is advantageous in

scenarios where bidirectional search is prohibitive,

like road networks. Combining hierarchical

approaches with goal directed search [16],

[17]have good results in real world problems.

In Highway Node routing results of shared-

memory parallel variants of the multi-level overlay

graph construction necessary for HNR are

discussed in [18]. A high number of updates per

time is desirable to keep the replies to the shortest

path queries as up-to-date as possible. On a

modern processor, the repeated precomputation

step for HNR takes roughly two minutes.

 The parallel programming constructs are

applied to Bidirectional search [19], Landmark

technique[20], and Bidirectional arc flags[21]

using OpenMP [22], which proves to give better

results in speedup factor in random and planar and

real world graphs.

Shared memory parallel programming[18]

constructs of OpenMP ([22] are considered in the

preprocessing phase of graphs. Using the work

sharing constructs, the time taken for

preprocessing can be reduced.

2.2 Parallel Programming

 Shared memory parallel programming

adapts the principles of Amdahl’s law. Amdahl’s

law [23] states that if T1 denotes the execution

time of an application on 1 processor, then in an

ideal situation, the execution time on P processors

should be T1/P. If TP denotes the execution time

on P processors, then the ratio

P
TTS /

1
=

is referred to as the parallel speedup and is a

measure for the success of the parallelization.

However, a number of obstacles usually have to be

overcome before perfect speedup is achievable.

Virtually all programs contain some regions that

are suitable for parallelization and other regions

that are not. By using an increasing number of

processors, the time spent in the parallelized parts

of the program is reduced, but the sequential

section remains the same. Eventually the

execution time is completely dominated by the

time taken to compute the sequential portion,

which puts an upper limit on the expected

speedup. This effect, known as Amdahl’s law, can

be formulated as

))1(/(

1

par
fP

par
f

S
−+

=

Where fpar is the parallel fraction of the code

and P is the number of processors. In the ideal

case when all of the code runs in parallel, fpar = 1,

the expected speedup is equal to the number of

processors.

2.3 Parallelized Bidirectional dijkstra’s

algorithm with arc flag
DEFINITION - BIDIRECTIONAL ARC FLAGS

VECTOR
Let G =(V,E) be a weighted graph

together with a weight function l then for each arc

e belonging to E the nodes in the regions ri, which

are associated with the true entries of the arc flag

vector of e, constitute a consistent bidirectional

arc flag vector.

Let G= (V, E) be a weighted graph

together with the weight function l. We call a set

of nodes C sub set of V, as bidirectional arc flag

vector [13]. A bidirectional arc flag vector C

associated with an arc from u to v is called

consistent if for all shortest path from u to t that

start with the arc from u to v, the target node t is in

C. Similarly if for all shortest path from t to u that

start with the arc from t to s, the target node u is in

C.

Consider the shortest path p from s to t

that is found by a Dijkstra’s algorithm. If for all

arcs, e belonging to E, the target node t is in the

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 205 Issue 7, Volume 11, July 2012

bidirectional arc flag vector C of e, then the path p

will also be found by bidirectional Dijkstra’s

algorithm with Arc Flags. Similarly, if the shortest

path from t to s is found to be P1 by Dijkstra’s

algorithm, the same will also be found by

bidirectional Dijkstra’s algorithm with arc-flags.

This is because arc-flags do not change the order

in which the arcs are processed. A sub path of a

shortest path is again a shortest path, so for all arcs

from u to v belonging to P, the sub path of P from

u to t is a shortest path. Hence by definition of the

consistent arc flag vector [13] t belongs to

bidirectional arc flag vector C. The above

procedure when done simultaneously in the

forward and backward directions has been proved

to lower the run time by a reasonable amount.

The parallelizing bidirectional Dijkstra

algorithm includes two phases of implementation:

preprocessing of arc flags and shortest path

computation. The preprocessing phase of Arcflags

deals with calculating the arc-flag entries for all

arcs [13]. The arc flag preprocessing phase is

outlined in Algorithm 1. This can be achieved by

computing a shortest path tree from every arc a to

all nodes in the graph—a one-to-all shortest-path

computation from the head node of arc a. The

computation is done by a standard algorithm of

Dijkstra, which stops when all nodes are

permanently marked. During this computation, if a

node v is settled, the arc-flag entry fa(r(v)) is set to

true for the region r(v) containing node v.

A generalization of a partition-based arc

labeling technique that is referred to as the arc-

flag approach [13] in combination with

bidirectional method is discussed here. The basic

idea of the arcflag method is to use a simple

rectangular geographic partition. The arc-flag

approach divides the graph into regions and

gathers information for each arc on whether this

arc is on a shortest path into a given region. In this

experimental setup, the graph is divided into a 6x6

grid. For each arc this information is stored in a

vector. The vector contains a flag for each region

of the graph, indicating whether this arc is on a

shortest path into that particular region. The vector

is called the arcflag vector[13] and the entries in

the arc-flag vector are called the arc-flags. The

size of each vector is determined by the number of

regions and the number of vectors is determined

by the number of arcs. Arc-flags are used in the

Dijkstra’s shortest path computation to avoid

exploring unnecessary paths. When this technique

is combined with Bidirectional method, it

improves the speedup of shortest path queries

especially in real world graphs.

2.4 Preprocessing for Multilevel method
An overlay graph of a given graph G = (V,

E) on a subset S of V is a graph with vertex set S

and edges corresponding to shortest paths in G. In

particular, we consider variations of the multilevel

overlay graph, a method to speedup exact single-

pair shortest path computation. We restrict

ourselves to overlay graphs preserving shortest

path lengths. With the multilevel approach, one or

more levels of overlay graphs which inherit

shortest-path lengths from the base graph are

constructed. Then a shortest-path computation

takes place in a graph consisting basically of one

of the overlay graphs and some additional edges.

Procedure to generate overlay graph is given

below.

Procedure min-overlay(G, l, S)

 For each vertex u ∈ S, run Dijkstra’s algorithm

on G with pairs (le, αe) as edge weights, where αe

:= −1 if the tail of edge e belongs to S \ {u}, and αe

:= 0 otherwise. Addition is done pairwise, and the

order is lexicographic. The result of Dijkstra’s

algorithm are distance labels (lv, αv) at the vertices,

where (lu, αu) := (0, 0) in the beginning. For each v

∈ S \ {u} we introduce an edge (u, v) in E ' with

length lv if and only if αv = 0.

 By iteratively applying the min-overlay

procedure with a sequence of subsets S1, a subset

of S2, a subset of S3 . . . a subset of Sl of V, we

obtain a hierarchy Gi = (Si , Ei) of shortest-path

overlay graphs (for some l ≥ 1). Together with G0

= (V0, E0) := G, we call this collection of shortest-

path overlay graphs, also denoted by M(G; S1, . . . ,

Sl), a basic multilevel graph of G with l + 1 levels.

3 Modified Dijkstra’s algorithm

with Multilevel Bi-arc flags
3.1 Combining Bidirectional Arc flags with
Multilevel Approach

Given a graph and a subset of its vertices, an

overlay graph [15] describes a topology defined on

this subset, where edges correspond to paths in the

underlying graph. With the multilevel approach,

one or more levels of overlay graphs which inherit

shortest-path lengths from the base graph are

constructed. Then shortest-path computation takes

place in a graph consisting basically of one of the

overlay graphs and some additional edges.

A generalization of a partition-based arc labeling

technique that is referred to as the arc-flag

approach [13] is applied to the graph obtained as

a result of multilevel preprocessing. The basic idea

of the arcflag method is to use a simple

rectangular geographic partition. The arc-flag

approach divides the graph into regions and

gathers information for each arc on whether this

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 206 Issue 7, Volume 11, July 2012

arc is on a shortest path into a given region. In this

experimental setup, the graph is divided into a 6x6

matrix. For each arc this information is stored in a

vector. The vector contains a flag for each region

of the graph, indicating whether this arc is on a

shortest path into that particular region. The vector

is called the arcflag vector and the entries in the

arc-flag vector are called the arc-flags. The size of

each vector is determined by the number of

regions and the number of vectors is determined

by the number of arcs. Arc-flags are used in the

Dijkstra computation to avoid exploring

unnecessary paths.

The given graph is preprocessed using

Multilevel technique and Arcflag method. During

the shortest path computation phase, the edge

under consideration is checked if it leads to the

level of target node or not. If yes, then the arcflag

vector of that particular edge is considered for

further shortest path computation. When this

technique is applied to real world datasets, results

have been proved to improve the speedup of the

system.

The running time of Dijkstra’s algorithm is

O(nlog n) time for sparse graphs, the overall

running time is O(n
2
 log n) plus the time to pre-

process the graphs. The pre-processing time is

dominated by the time needed to compute m times

a shortest-path tree, which can be done in O(m +

nlog n) time each. The resulting time complexity

of the overall pre-processing at each level is,

therefore, O(m(m+ n + nlog n)). Here, two levels

are considered at the pre-processing phase. If l is

the number of levels, it will be l times the overall

pre-processing. If bidirectional search is adapted

here the pre-processing time will be reduced by

half as the searches move from forward and

reverse direction.

The both searches expand a tree with branching

factor b, and the distance from start to target is d,

each of the two searches has complexity O(b
d/2

),

and the sum of these two search times is much less

than the O(b
d
) complexity that would result from a

single search from the starting node to the target

using multilevel bidirectional arc flags.

Pseudocode 1. Modified Dijkstra’s

algorithm with Bidirectional Multilevel Arcflags

3.2 Parallelizing the Combining

Bidirectional Arc flags with Multilevel

Approach
The operation that lends itself to

parallelization is the updation of distance values,

for the neighbours of a node which is marked

permanent for all the outgoing arcs of a particular

region and level. It is to be noted that another

possibility for parallelism is to run both the

forward and reverse variants of the algorithm

simultaneously as independent threads of the

search process with appropriate synchronization

constructs for the shared memory access.

Input: directed graph G: = (V, A), nonnegative length la

for all a ∈ A,

 Start and target nodes s, t ∈ V.

Output: shortest path from s to t.

1 begin

2 TargetRegion:= region number of t; //coarse partition

3 SubTargetRegion: = subregion number of t; //fine

partition

4 level(s) := level of start node s;

5 level(t) := level of target node t;

6 Distance(s):=0;

7 Queue.insert(s,0);

8 current_level := level(s);

9 while not Queue.empty do

10 v := Queue.extractMin;

11 for all outgoing arcs (u,v) do

12 if level(u)!=current_level

13 continue;

14 current_level := level(u);

15 if not ArcFlagVectorFirstLevel [(u, v),

TargetRegion] then

16 continue;

17 if (u,v) ∈ TargetRegion then

18 if not
ArcFlagVectorSecondLevel[(u,v), SubTargetRegion]

Then

 continue;

21 if distance(u) ≤ distance(v) + l(v,u) then

22 continue;

23 distance(u)= distance(v) + l(v,u);

 if u does not belong to Queue then

25 Queue.insert(u);

26 else

27 Queue.decreaseKey(u);
28 end

The above procedure when done simultaneously in the

forward and backward directions (from step 9 to 27) has been
proved to lower the running time by a considerable amount.

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 207 Issue 7, Volume 11, July 2012

The code segments which can be

parallelized are embedded in the following work

sharing constructs.

#pragma omp for (Used for sharing iterations in a

loop)

#pragma omp sections (Specify different work for

each thread individually)
Pseudocode 2. Parallelized Modified Dijkstra’s

algorithm with Bidirectional Multilevel Arcflags

Input: directed graph G: = (V, A), nonnegative length la for all a

∈ A,

 Start and target nodes s, t ∈ V.

Output: shortest path from s to t.

1 begin

2 TargetRegion:= region number of t; //coarse partition

3 SubTargetRegion: = subregion number of t; //fine partition

4 level(s) := level of start node s;

5 level(t) := level of target node t;

6 Distance(s):=0;

7 Queue.insert(s,0);

8 current_level := level(s);

9 while not Queue.empty do

10 v := Queue.extractMin;

11 #pragma omp parallel sections

{

12 # pragma omp section

 {

13 for all outgoing arcs (u,v) do

14 if level(u)!=current_level

15 continue;

16 current_level := level(u);

17 if not ArcFlagVectorFirstLevel [(u, v),
TargetRegion] then

18 continue;

19 if (u,v) ∈ TargetRegion then

20 if not ArcFlagVectorSecondLevel[(u,v),

SubTargetRegion]

then

 continue;

21 if distance(u) ≤ distance(v) + l(v,u) then

22 continue;

23 distance(u)= distance(v) + l(v,u);

 if u does not belong to Queue then

25 Queue.insert(u);

26 else

27 Queue.decreaseKey(u);

 }// end of parallel setion

28 end

The above procedure when done simultaneously in the forward
and backward directions (from step 9 to 27) has been proved to lower

the running time and number of vertices visited by a considerable

amount.

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 208 Issue 7, Volume 11, July 2012

3.3 Parallelizing the pre-processing phase of

Speedup Techniques

 Using OpenMP, preprocessing phase of

Arcflags and Multilevel technique were parallelized

and the resulting technique showed improvements in

the running time and number of vertices visited

when applied to random graphs, planar graphs and

real world data sets. The segment of the code which

can be parallelized in the speedup technique of arc

flags method is highlighted in Pseudocode 3.

Pseudocode 3, Parallelizing the preprocessing phase

As the arc flag approach resides in the levels of the

search process the parallelism works for arc flag is

activated at each level. In the bidirectional search,

parallelism (R.Kalpana et al, 2010) is incorporated

as such in the forward and reverse variants of the

algorithm simultaneously as independent threads of

the search process with appropriate synchronization

constructs for the shared memory access.

4. EXPERIMENTAL SETUP

Implementation of the proposed

combination was tested on a PC with AMD Athlon

X2 Dual Core processor (2.1 Ghz) with 4 GB RAM

running Ubuntu 9.04. Library of Efficient Date types

and Algorithms (LEDA) (Algorithmic Solutions

Software GmbH, 1995) was used for easy

implementation of various data types such as graphs,

lists, priority queues, arrays, etc..

Important metrics for evaluation of the

techniques like speedup based on run time and the

number of vertices visited during shortest path

computation were considered. The proposed

technique of combining Bidirectional Arcflags and

Multilevel technique was also implemented and

experimented on random and planar graphs with

node count ranging from 100 to 1000 and also for a

few real world data sets (Map of TamilNadu) and

the results analysed. Road Map of TamilNadu was

considered for testing. The first data set consisted of

17 nodes and 36 edges. The second data set

consisted of 26 nodes and 62 edges. The third data

set consisted of 35 nodes and 82 edges. The fourth

data set consisted of 63 nodes and 146 edges. The

data set consisted of most of the cities of South

India.

TABLE I

COMPARISON OF SPEEDUP WITH RESPECT TO RUN TIME

 Speedup for
planar graph

Speedup for
random
graph

Speedup for
real world data
set

Arcflags 2.33 0.93 0.000000026

Bidirectional 1.19 1.39 0.25

Bidirectional
Arcflags

1 0.79 0.0000031

Parallel
Arcflags

1.2 0.73 0.000519

Parallel
Bidirectional

0.69 1.32 0.0909

Parallel
Bidirectional
Arcflags

1 1.08 1.0000019

Multilevel 0.00001223 0.00001862 2.2436484

Parallel
multilevel

0.99997 1.24932 2.8440908

Multilevel
Arcflags

0.816645 0.698968 2.16999

Parallel
Multilevel
Arcflags

0.658067 0.846308 2.685

Bidirectional
Multilevel
Arcflags

0.47441 1.4364802 2.700531

Parallel
Bidirectional
Multilevel
Arcflags

0.463149 1.33775 2.91242

Depending on the source and target nodes,

the graph is divided into various levels and the

shortest path computation is done. On an average a

speedup of 2.91 with respect to run time and a

speedup of 3.2 with respect to vertex visit count

were obtained by Parallel Multilevel Bidirectional

Arcflags.
The Table I shows the comparison of run

time for the various speedup techniques in random,

planar and real world graphs. All the techniques

#pragma omp parallel sections

 {

 # pragma omp section

 {
 for all nodes in the graph do

 # pragma omp section

 {

 for i:=1 to 36 do

 region[i];=false

 r:=region_y*6 +region_x*6

 region[r]:=true //set the regions

reachable from the given node

 }

 end

} // end of the parallel section

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 209 Issue 7, Volume 11, July 2012

work moderately well in random graphs. Arc flags

work very well in planar graphs. The performance of

multilevel approach combined with other speedup

techniques always work well in real world graphs.

Exploiting parallelism using multithreaded

programming improves the speedup better in most of

the combinations. The chart demonstrating the same

is shown in Fig. 1.

Figure 1.Comparison of speed up with respect to run time.

The Table II shows the comparison of vertex

visit count for the various speedup techniques in

random, planar and real world graphs. The output of

the system will not get worsen in all types of graphs,

whenever vertex count is considered as output

metric. Here the results are better than the previous

metric i.e., speedup with respect to runtime. Similar

to the previous case it gives better result when

parallelism is incorporated. The chart demonstrating

the same is shown in Fig. 2.

The speedup techniques presented above worked

well for a specific type of graph and hence the

performance was appreciable in those cases. For

instance, Parallelized Multilevel Bidirectional

Arcflags achieved a speedup (with respect to run

time) of nearly 2.91 on real world data sets while its

performance was considerably low on the planar

graphs (1.33) generated by the same library, LEDA.

TABLE II

COMPARISON OF SPEEDUP WITH RESPECT TO VERTEX

VISIT COUNT

 Speedup for

planar graph

Speedup

for

random

graph

Speedup

for real

world

data set

Arcflags
1.61 1.023585 1

Bidirectional 0.69 1.22 1.2368

Bidirectional

Arcflags

2.5571 1.33 1.8125

Parallel

Arcflags

1.50 1.02 1.3437

Parallel

Bidirectional

1.22 1.40 1.2973

Parallel

Bidirectional

Arcflags

1.13 1.06 2.3888

Multilevel 1 1 1

Parallel

multilevel

1 1 1

Multilevel

Arcflags

1.002317 1.0206 1.228

Parallel

Multilevel

Arcflags

1.4272 1.0213 3.307

Bidirectional

Multilevel

Arcflags

1.7888 2.877 3.066

Parallel

Bidirectional

Multilevel

Arcflags

1.867 2.68 3.211

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 210 Issue 7, Volume 11, July 2012

Figure 2. Comparison of speedup with respect

to vertex visit count.

The performance of this technique is also

appreciated with respect to number of nodes

visited, wherever hop count is a Qos parameter.

The proposed speed up technique (Parallelized

Multilevel Bidirectional Arcflags) was able to

perform better under the same experimental setup

compared to the other techniques. The

performance was also seen to have improved on

real world graphs compared to the graphs

generated by LEDA.

 The performance of various combinations

of speedup techniques with random and planar

graph are shown in Fig. 3 to 8. The pre-processing

time is used as the performance parameter in all

the graphs.

Arcflag_random

0

1

2

3

4

5

100 300 500 700 900

Number of vertices

p
re

p
ro

c
e
s
s
 t

im
e

Parallel

Preprocess time

 Preprocess time

Figure 3. Arcflag

random graph.

Arcflag_planar

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 300 500 700 900

Number of vertices

p
re

p
ro

c
e
s
s
 t

im
e

Preprocess time

Parallel Preprocess

time

Figure 4. Arcflag

Planar Graph.

arcflag_real world dataset

0.000

0.005

0.010

0.015

0.020

0.025

17 26 35 63

Number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel

Preprocess time

Preprocess time

Figure 5. Arcflag

Real World Dataset.

The code segments which were

parallelized in the pre-processing phase have

reduced the pre-processing time to a considerable

amount. It is comparatively good in real world

graphs than other types of graphs.

BidirectionalArcflag_random

0

1

2

3

4

5

6

100 300 500 700 900

Number of vertices

P
re

p
ro

c
e
s
s
 t

m
e

Preprocess time

Parallel Preprocess

time

Figure 6.

Bidirectional Arcflag random

graph.

BidirectionalArcflag_planar

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 300 500 700 900

Number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Preprocess time

Parallel

Preprocess time

Figure 7.

Bidirectional Arcflag planar

graph.

Bidirectionalarcflag_real world

dataset

0.000

0.010

0.020
0.030

0.040

0.050

0.060

17 26 35 63

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Preprocess

time

Parallel

Preprocess

time

Figure 8.

Bidirectional Arcflag real world

datasets

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 211 Issue 7, Volume 11, July 2012

Multilevel_planar

0

0.5

1

1.5

2

2.5

100 300 500 700 900

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess

time

 Preprocess time

Figure 9. Multilevel

Planar graph.

Multilevel_random

0

2

4

6

8

10

10 0
20 0

30 0
40 0

50 0
60 0

70 0 80
90 0

10 00

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess

time

 Preprocess time

Figure 10. Multilevel

Random graph.

Multilevel_real world dataset

0.00

0.02

0.04

0.06

0.08

0.10

17 26 35 63

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess

time

 Preprocess time

Figure 11. Multilevel

Real World Dataset graph.

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 212 Issue 7, Volume 11, July 2012

multiArc_planar

0

1

2

3

4

5

10 0
20 0

30 0
4 0 0

50 0
60 0

70 0 80
90 0

1 0 00

number of vertices

p
re

p
ro

c
e
s
s
 t

im
e

Parallel Preprocess

time

 Preprocess time

Figure 12. Multilevel Arcflags

Planar graph.

MultiArc_random

0

5

10

15

20

100 300 500 700 900

number of vertices

p
re

p
ro

c
e
s
s
 t

im
e

Parallel Preprocess

time

 Preprocess time

Figure 13. Multilevel Arcflags

Random graph.

MultiArc_real

0.000000000000

0.050000000000

0.100000000000

0.150000000000

0.200000000000

0.250000000000

0.300000000000

17 26 35 63

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Preprocess time

Parallel Preprocess

time

Figure 14. Multilevel Arcflags Real World
Dataset

Multibiarc_planar

0

1

2

3

4

5

6

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

9
0

0

1
0

0
0

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess

time

 Preprocess time

Figure 15. Multilevel Bidirectional

Arcflags Planar graph.

Multibiarc_random

0

5

10

15

20

25

100 200 300 400 500 600 700 80 900 1000

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess time

 Preprocess time

Figure 16. Multilevel Bidirectional

Arcflags Random graph.

Multibiarc_real world dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

17 26 35 63

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess time

 Preprocess time

Figure 17. Multilevel Bidirectional Arcflags

Real World Dataset

The parallelization for the preprocessing phase is

done using multilevel technique, arc flag technique

and its combination. The results are represented as

charts and it shows that the combined technique for

real world data set gives better results on a relative

basis. Even though the time for pre-processing is

high in some of the techniques, the time is effectively

saved in the shortest path computation phase in those

cases because of parallelism.

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 213 Issue 7, Volume 11, July 2012

Multibiarc_planar

0

1

2

3

4

5

6

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

9
0

0

1
0

0
0

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess

time

 Preprocess time

Figure 15. Multilevel Bidirectional

Arcflags Planar graph.

Multibiarc_random

0

5

10

15

20

25

100 200 300 400 500 600 700 80 900 1000

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess time

 Preprocess time

Figure 16. Multilevel Bidirectional

Arcflags Random graph.

Multibiarc_real world dataset

0.00

0.05

0.10

0.15

0.20

0.25

0.30

17 26 35 63

number of vertices

p
re

p
ro

c
e
s
s
 t
im

e

Parallel Preprocess time

 Preprocess time

Figure 17. Multilevel Bidirectional Arcflags
Real World Dataset

The technique of combining Bidirectional arc

flags with multilevel approach(COBAM) achieves a

very good speedup(≈3) in road networks, moderate

speedup(1 and above) in random graphs and poor

speedup(<1) in planar graphs with respect to

runtime. With respect to number of vertices visited

it(COBAM) achieves a speedup of equivalently

better i.e, a very good speedup(3 and above) in road

networks, moderate speedup((≈3) in random graphs

and poor speedup((≈2) in planar graphs

.

5. CONCLUSION
The optimization technique works well for

combining three speedup techniques namely

bidirectional search, Multilevel approach and Arc

flag method. The new speedup technique performs

well on all three types of graphs namely random,

planar and real world graphs. The performance of

the new speedup technique is extremely good on

real world graphs. Preprocessing phase considerably

improved the speedup of the system by reducing the

runtime of the technique and reducing the number of

nodes visited during the shortest path computation.

The optimization can be extended with other

types of real world graphs and new combinations.

Various partitioning strategies can also be

considered in arc flags to improve the performance

of the combining speedup technique.

References

[1] DIJKSTRA, E. W. (1959) ‘A note on two

problems in connection with Graphs’, In

Numerische Mathematik, Vol. 1, Mathematisch

Centrum, Amsterdam, The Netherlands, pp.269–

271.

[2] Frank Schulz, Dorothea Wagner, and Weihe, K.

(2000) ‘Dijkstra’s algorithm on-line: An empirical

case study from public railroad transport’, ACM

Journal of Experimental Algorithmics, Vol. 5.

[3] Holzer, M, Schulz. F, Wagner and Willhalm. T.

(2006) ‘Combining speed-up techniques for

shortest-path computations’, ACM Journal of

Experimental Algorithmics, Vol.10, Article No.2.5,

pp.1-18.

[4] Dorothea Wagner and Thomas Willhalm. (2007)

‘Speed-Up Techniques for Shortest-Path

Computations’, In Proc. STACS 2007, LNCS ,

Springer-Verlag, New York. pp43- 59.

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 214 Issue 7, Volume 11, July 2012

[5] GUTMAN, R.J. (2004) ‘Reach-based routing: A

new approach to shortest path algorithms optimized

for road networks’, In Proceedings of the Sixth

Workshop on Algorithm Engineering and

Experiments and the First Workshop on Analytic

Algorithmics and Combinatorics.

[6] Frank Schulz, Dorothea Wagner, & Christos

Zaroliagis. (2002) ‘Using multi-level graphs for

timetable information in railway systems’, In Proc.

4th Workshop on Algorithm Engineering and

Experiments. LNCS 2409, Springer-Verlag, New

York. pp43- 59.

[7] I. Phol. (1971) ‘Bi-directional Search’, In

Machine Intelligence,volume 6, pp 124-140.

Edinburgh Univ. Press, Edinburgh

[8] Andrew V.Goldberg and Chris Harrelson. (2005)

‘Computing the Shortest Path: A* Search Meets

Graph Theory’, In Proc. 16th Annual ACM-SIAM

Symposium on Discrete Algorithms.

[9] Andrew V. Goldberg and Renato F. Wernecky.

(2005) ‘Computing Point-to-Point Shortest Paths

from External Memory’, In Proc. Of The Seventh

Workshop on Algorithm Engineering and

Experiments

(ALENEX05).

[10] Sanders, P. and Schultes. D. (2005) ‘Highway

hierarchies hasten exact shortest path queries’, In

the Proceedings European Symposium on

Algorithms.

[11] Sanders, P. and Schultes, D. (2006)

‘Engineering highway hierarchies’, In the

Proceedings of the 14th European Symposium on

Algorithms. LNCS,vol. 4168. Springer, New York.

Pp.804–816.

[12] Schultes. D and Sanders. P. (2007) ‘Dynamic

highway-node routing’, In

Proceedings of the 6thWorkshop on Experimental

and Efficient algorithms,LNCS. Springer, New

York pp.66–79.

[13] Mohring, R. H., Schilling, H., Schutz,

B.,Wagner. D., and Willhalm, T. (2006)

‘Partitioning graphs to speed up Dijkstra’s

algorithm’, ACM Journal of Experimental

Algorithmics, Vol.11, Article No.2.8, pp.1-29.

[14] Dorothea Wagner and Thomas Willhalm.

(2005)‘Geometric Containers for Efficient Shortest-

Path Computation’, ACM Journal of Experimental

Algorithmics, Vol.10, Article No.1.3, pp.1-30.

[15] Martin Holzer, Frank Schulz and Dorothea

Wagner. (2008) ‘Engineering Multilevel Overlay

Graphs for Shortest-Path Queries’, ACM Journal of

Experimental Algorithmics, Vol.13, Article No.2.5,

September.

[16] Bauer. R, Delling. D, Sanders. P,

Schieferdecker. D, Schultes. D &Wagner. D. (2008)

‘Combining hierarchical and goal-directed speed-up

techniques for dijkstra's algorithm’, in the

proceedings of the 7th

Workshop on Experimental Algorithms(WEA’08),

Springer, Berlin,pp.303-318.

[17] Reinhard Bauer, Daniel Delling, Peter Sanders,

Dennis Schieferdecker, Dominik Schultes, &

Dorothea Wagner. (2010) ‘Combining hierarchical

and goal-directed speed-up techniques for Dijkstra's

algorithm’, ACM Journal of Experimental

Algorithmics, Vol. 15, Article No. 3.

[18]Dominik Schultes, Johannes Singler, Peter

Sanders. (2008)‘Parallel Highway Node Routing’, A

Technical Report, Feburuary.

algo2.iti.kit.edu/schultes/hwy/parallelHNR.pdf
[19]R.Kalpana, P.Thambidurai, Arvind Kumar, R.

Parthasarathy, and Praful Ravi. (2010), ‘Exploiting

Parallelism in Bidirectional Dijkstra for Shortest-

Path Computation’, in the Proceedings of

International conference on Computers,

Communication and Intelligence at , Vellammal

college of Engg., & Tech.,Madurai, India, pp. 351-

356, July.

[20]R.Kalpana, P.Thambidurai,(2010),

‘Optimization of Landmark preprocessing with

Mulitcore Systems’, Journal of Computing, Vol.2,

Issue.8, pp.102-108, August.

[21]R.Kalpana, P.Thambidurai (2011), ‘Optimizing

shortest path queries with parallelized Arc flags’, in

the Proceedings of IEEE International conference on

Recent trends in Information Technology, MIT

Campus,Anna University, Chennai, India, June.
[22] ‘The OpenMP - API specification for parallel

programming’, available at http://www.openmp.org

[23] The Advanced Computing Systems Association

(2000) ‘Amdahl’s law & Parallel Speedup’,

http://www.usenix.org/publications/library/proceedi

ngs/als00/2000papers/papers/full_papers/brownrobe

rt/brownrobert_html/node3.html

[24] Algorithmic Solutions Software GmbH (1995)

‘LEDA’, available at http://www.algorithmic-

solutions.com

WSEAS TRANSACTIONS on COMPUTERS R. Kalpana, P. Thambidurai

E-ISSN: 2224-2872 215 Issue 7, Volume 11, July 2012

