
Development of CAD Algorithms for Bezier Curves/Surfaces

Independent of Operating System

Yogesh Kumar
1*

, S.K. Srivastava
2
, A.K. Bajpai

3
 Neeraj Kumar

4

1
Mechanical Engineering, Indraprastha Institute of Technology, J.P. Nagar (U.P.) – 244 221, India

2
Mechanical Engineering, M.M.M. Engineering College, Gorakhpur (U.P.) – 273 010, India

3
Mechanical Engineering, M.M.M. Engineering College, Gorakhpur (U.P.) – 273 010, India

4
Electronics & Comm. Engineering, Indraprastha Institute of Technology, J.P. Nagar (U.P.) – 244

221, India

Email id: yogesh22jan85@gmail.com.

Abstract:-Most of the CAD software, which are available currently, works only on the operating system

(generally windows) for which they are designed. Alternatively, the commercial CAD software is dependent

upon the operating system. If CAD software is designed such that it is Independent of the operating system,

then such CAD software will be much beneficial for the present scenario of the CAD softwares and it will be

independent of the operating system.

Now-a-days most of the commercial software use application programming interfaces (APIs) which

provide libraries of common graphics operations that allow developers to incorporate many more realistic

effects into their applications. But the CAD software is dependent on the Operating System, which is the major

drawback of the software. There is a need to develop the CAD algorithms independent of operating system so

that the same can be used for the development of any CAD software.

Keeping this in view, the present work is devoted to the development of CAD algorithm for the Bezier

curves and Bezier surfaces. The algorithms are independent of the operating system. The operating system

independent graphics library OpenGL has been used for the development of these CAD algorithms.

Keywords: Operating System Independent, CAD Algorithms, Bezier Curves/Surfaces etc.

1 Introduction and Literature Review
The arena of computer-aided design in

mechanical engineering has shown tremendous

growth with advent of latest hardware and software,

the web, 3D modeling, rendering, virtual realism

and rapid prototype technologies. The latest tools in

CAD are changing. The process of design is also

changing and guiding us how to work together. The

exchange of CAD model across the various

disciplines requires sharing of computer-generated

information. New data management tools to manage

computer-shared information or e-data (electronic-

data) enable engineers to work together as team.

Most of the CAD softwares, which are

available currently, work only on the platform (i.e.

operating system) for which they are designed.

Means the available CAD software are dependent

on the platform. If CAD software is designed such

that it is Independent of the platform, than such a

CAD software will be much beneficial for the

present scenario of the CAD softwares and it will

also remove the dependency of CAD software on

the operating system for which they are designed.

The field of engineering design has

undergone a rapid evolution in the past three

decades due to advent of the low cost digital

computer. Later, computers improved the drafting

process by eliminating the need to work with paper

and pencil. The part can be electronically created

through a representation of bit-mapped images. This

is similar to drawing on paper but electronic dots

(bits) are drawn (mapped) on the screen/monitor.

While this facilitated storage (no need for

cumbersome racks for standard sized

prints/tracings/blueprints/) and copying, making

changes to the drawing was just as tedious involving

the dots that construct a line and reconstructing new

ones. Images of the part were still drawn in 2-

dimensional representations.

Now-a-days, parameterized software

developed the first true 3-dimensional model.

Parameterized models are not based on bit-mapped

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 159 Issue 6, Volume 11, June 2012

images. These are mathematically generated entities

based on special computer a 3-dimensional image of

the part that can be modified by changing the

parameters which govern that dimension. This 3-

dimensional image can quickly be viewed from any

angle and laid out creating a technical drawing.

Most of the commercially available CAD softwares

use this technique.

In the mathematical field of numerical

analysis, a Bezier Curve in parametric form is very

important in Computer Graphics and related fields.

These curves were first developed in 1959 by Paul

de Castlejau using the Castlejau’s algorithm, a

numerically stable method to evaluate these Curves

[13]. Bezier curves have been widely publicized in

1962 by a French Engineer Pierre Bezier. He used

these curves to design automobile bodies.

In Vector graphics, Bezier Curves are an

important tool which is used to model smooth

curves that can be scaled indefinitely. “Paths”, as

they are commonly referred to in image

manipulation programs such as InkScape, Adobe

Illustrator, Adobe Photoshop, and GIMP are

combinations of Bezier Curves patched together.

Paths are not bound by the limits of rasterized

images and are intuitive to modify [13].

Bezier curves have some interesting

properties, unlike other classes of curves; they can

fold over on themselves. They can also be joined

together to form smooth, continuous shapes. Fig. 1

shows an example of a cubic Bezier Curve with a

smooth curvature [13].

Fig. 1: Cubic Bezier Curve [16].

Before going through the technical details

of how to write a program for the creation of Bezier

Curve, It is necessary to describe how to construct a

Bezier Curve graphically. To construct a cubic

Bezier curve four control points. Depending on the

alignment of these points the curve gets constructed

as shown in Fig. 2 [13].

Bezier surfaces can be of any degree, but

bicubic Bezier surfaces generally provide enough

degrees of freedom for most applications. Similar to

interpolation in many respects, a key difference is

that the surface does not, in general, pass through

the central control points; rather, it is "stretched"

toward them as though each were an attractive

force. They are visually intuitive, and for many

applications, mathematically convenient [21].

The Bezier curves have the following properties:

• Basis functions are real.

• Degree of polynomial is one less than the

number of points.

• Curve generally follows the shape of the

defining polygon.

• First and last points on the curve are

coincident with the first and last points of

the polygon.

• Tangent vectors at the ends of the curve

have the same directions as the respective

spans.

• The curve is contained within the convex

hull of the defining polygon.

• Curve is invariant under any affine

transformation.

 The Bezier surfaces have the following properties:

• A Bezier surface will transform in the same

way as its control points under all linear

transformations and translations.

• All u = constant and v = constant lines in the

(u, v) space, and, in particular, all four edges

of the deformed (u, v) unit square are Bezier

curves.

• A Bezier surface will lie completely within

the convex hull of its control points, and

therefore also completely within the

bounding box of its control points in any

given Cartesian coordinate system.

• The points in the patch corresponding to the

corners of the deformed unit square

coincide with four of the control points.

• However, a Bezier surface does not

generally pass through its other control

points.

The Bezier curves and Bezier Surfaces have

greater applications in designing an aircraft wing.

To even complicate the design further, the wing has

to look nice on the rest of the jet so as to promote

more military funding and generate recruits into the

Air Force. There are many different possible designs

for a wing, some that are more optimal than others,

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 160 Issue 6, Volume 11, June 2012

and some that are more aesthetically pleasing those

others as well. To find a balance between

optimizing the air flow around the wing and how the

shape looks is quite a task.

Fig. 2: Subdivision of a Cubic Bezier Curve [13].

Assume for a moment that user’s job as a

visualization specialist is to make use of the

computer system that utilizes recorded data from an

aircraft testing facility. Their system is able to relate

the flow of turbulence around the wing of an aircraft

to the shape of the aircrafts wing. User is asked to

create small software using the model to allow an

efficient way for a designer to specify an optimal

and aesthetically pleasing shape for the wing. The

relation between shape and turbulence is already

completed, so it is user’s job to give global control

to the designer. Mainly, a way of specifying smooth

curves on a computer screen is required, and splines

are the natural way of completing the task.

In order to effectively represent a smooth

curve on a computer screen, it is need to somehow

approximate it. It can be realized that a computer

can only draw pixels, which have a predefined

width and height. If user gets really close to an LCD

screen and observes the tiny squares making up the

outline of an image, it’s easy to understand that

everything represented in computer graphics is just

an approximation.

OpenGL is a software interface to graphics

hardware. This interface consists of about 150

distinct commands that can be used to specify the

objects and operations needed to produce interactive

three-dimensional applications [14].

OpenGL is a software interface that allows

the programmer to create 2D and 3D graphics

images. OpenGL is both a standard API and the

implementation of that API. Using OpenGL any

program can be called from a program to see the

same results no matter where the program is running

[15].

OpenGL is independent of the hardware,

operating, and windowing systems in use. The fact

that it is windowing-system independent, makes it

portable. OpenGL program must interface with the

windowing system of the platform where the

graphics are to be displayed. There are a number of

windowing toolkits, which have been developed for

use with OpenGL. OpenGL functions in a

client/server environment. That is, the application

program producing the graphics may run on a

machine other than the one on which the graphics

are displayed. The server part of OpenGL, which

runs on the workstation where the graphics are

displayed, can access whatever physical graphics

device or frame buffer is available on that machine

[15].

OpenGL is hardware-independent. Many

different vendors have written implementations that

run on different hardware. These implementations

are all written to the same OpenGL standard and are

required to pass strict conformance tests. Vendors

with licenses include SGI, AT&T, DEC, Evans &

Sutherland, Hitachi, IBM, Intel, Intergraph, Kendall

Square Research, Kubota Pacific, Microsoft, NEC,

and Raster Ops. The RS/6000 version comes with X

and Motif extensions. However X is not required to

run OpenGL since OpenGL also runs with other

windowing systems [14].

The OpenGL Evaluator function allows us

to use a polynomial mapping to produce vertices,

normals, texture coordinates, and colors. These

calculated values are then passed on to the

processing pipeline as if they had been directly

specified. The Evaluators functions are also the

basis for the NURBS (Non-Uniform Rational

BSpline) functions which allows us to define curves

and surfaces. These NURBS function can be used to

generate non uniform spacing of points. Any

polynomial form can be converted to Bezier form by

proper generation of control points. Thus NURBS

function allows finer control of the space and

rendering of the surface. [15]

2 Problem Formulation
The literature reveals that all commercially available

CAD softwares are dependent of operating systems

such as Windows, means they have been developed

for the specific Operating System. There is a need to

develop the CAD algorithms independent of

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 161 Issue 6, Volume 11, June 2012

)(
12

1

uu

uu
C

−

−

operating system so that the same can be used for

the development of any CAD software.

Bezier Curves and Bezier Surfaces are being

frequently used in CAD applications. The objective

of the present work is to develop CAD algorithms

for generating Bezier Curves and Bezier Surfaces

independent of the operating system. The operating

system independent graphics library OpenGL has

been used for the development of these CAD

algorithms.

3 CAD Algorithms Independent of

Operating Systems
In the present work, CAD algorithms have been

developed using with OpenGL using keyboard and

mouse. The CAD algorithms are implemented by

making use of extensive use of library functions

offered by graphic package of OpenGL. The most

important of all is the OpenGL Evaluators, without

which it wouldn’t be possible to implement these

algorithms. A list of standard library functions that

are used is also discussed. At first, the standard

library functions are described which is followed by

the user defined functions. In the present work the

CAD algorithms independent of operating system

have been developed for the following primitives:

(A) Bezier Curves.

(B) Bezier Surfaces.

(A) Bezier Curves
CASE 1: Generating Bezier Curves for known

Control Points.

A Bezier curve is a vector-valued function of one

variable;

() ()∑
=

=
n

i
ini PB uuC

0
,

 10 ≤≤ u ,

Where, u varies in some domain (0-1).

In the present case, a bezier curve has to be

generated for which control points are already

known using one-dimensional evaluators. It then

describes the commands and equations that control

evaluators.

Fig. 3: Cubic Bezier Curve using four Control

Points.

A cubic Bezier curve is described by four control

points, which appear in this example in the

ctrlpoints[][] array. This array is one of the

arguments to glMap1f(). The curve is drawn in the

routine display() between the glBegin() and glEnd()

calls. Since the evaluator is enabled, the command

glEvalCoord1f() is just like issuing a glVertex()

command with the coordinates of a vertex on the

curve corresponding to the input parameter u.

(a) The Bernstein polynomial of degree n (or

order n+1) is given by,

(b)
()

() ()uuB
ini

ni ini

n
u −

−

−
= 1

!!

!
,

If Pi represents a set of control points (one-, two-,

three-, or even four dimensional), then the equation

() ()∑
=

=
n

i
ini PB uuC

0
,

(c) represents a Bezier curve as u varies from

0.0 to 1.0. To represent the same curve but

allowing u to vary between u1 and u2 instead

of 0.0 and 1.0, evaluate

(d)

The command glMap1() defines a one-dimensional

evaluator that uses these equations.

Void glMap1{fd}(Glenum target, TYPEu1, TYPEu2,

Glint stride, Glint order, const TYPE*points);

Defines a one-dimensional evaluator. The target

parameter specifies what the control points

represent. The points can represent vertices, RGBA

color data, normal vectors, or texture coordinates.

For example, with GL_MAP1_COLOR_4, the

evaluator generates color data along a curve in four-

dimensional (RGBA) color space. The target

parameter values are used to enable each defined

evaluator before user invokes it. The appropriate

value are passed to glEnable() or glDisable() to

enable or disable the evaluator.

The second two parameters for glMap1*(), u1 and

u2, indicate the range for the variable u. The variable

stride is the number of single- or double-precision

values (as appropriate) in each block of storage.

Thus, it’s an offset value between the beginning of

one control point and the beginning of the next.

The order is the degree plus one, and it should agree

with the number of control points. The points

parameter points to the first coordinate of the first

control point. Using the example data structure for

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 162 Issue 6, Volume 11, June 2012

glMap1*(), use the following for points: (Glfloat

*)(&ctlpoints[0].x).

More than one evaluator can be evaluated at a time.

If both a GL_MAP1_VERTEX_3 and a

GL_MAP1_COLOR_4 evaluator defined and

enabled, for example, then calls to glEvalCoord1()

generate both a position and a color. Only one of the

vertex evaluators can be enabled at a time, although

user might have defined both of them. Similarly,

only one of the texture evaluators can be active.

Other than that, however, evaluators can be used to

generate any combination of vertex, normal, color,

and texture-coordinate data. If more than one

evaluator of the same type is defined and enabled,

the one of highest dimension is used.

Use glEvalCoord1*() to evaluate a defined and

enabled one-dimensional map.

Void glEvalCoord1{fd}(TYPE u); void

glEvalCoord1{fd}v(TYPE *u); Causes evaluation of

the enabled one-dimensional maps. The argument u

is the value (or a pointer to the value, in the vector

version of the command) of the domain coordinate.

For evaluated vertices, values for color, color index,

normal vectors, and texture coordinates are

generated by evaluation. Calls to glEvalCoord*() do

not use the current values for color, color index,

normal vectors, and texture coordinates.

glEvalCoord*() also leaves those values unchanged.

CASE 2: Generating Bezier Curves through Mouse.

The void mouse(int button, int state, int x, int y)

function has been used in the source code for

entering the control points through mouse click. The

following source code has been developed for

generating Bezier Curves and Entering Points

through mouse.

Fig. 4: Generating Bezier Curves through Mouse

(B) Bezier Surfaces

CASE 1: Generating Wireframe Bezier Surface.

A Bezier surface patch is a vector-valued function

of two variables

S(u,v) = [X(u,v) Y(u,v) Z(u,v)]

Where, u and v can both vary in some domain. The

range isn't necessarily three-dimensional for getting

two-dimensional output for curves on a plane or

texture coordinate or for getting four-dimensional

output to specify RGBA information. Even one-

dimensional output may make sense for gray levels.

For each u (or u and v, in the case of a surface), the

formula for C() (or S()) calculates a point on the

curve (or surface). To use an evaluator, first define

the function C() or S(), enable it, and then use the

glEvalCoord1() or glEvalCoord2() command

instead of glVertex*(). This way, the curve or

surface vertices can be used like any other vertices -

to form points or lines, for example. In addition,

other commands automatically generate series of

vertices that produce a regular mesh uniformly

spaced in u (or in u& v).

In two dimensions, everything is similar to the one-

dimensional case, except that all the commands

must take two parameters, u and v, into account.

Points, colors, normals, or texture coordinates must

be supplied over a surface instead of a curve.

Mathematically, the definition of a Bezier surface

patch is given by

() () ()P ji

n

i

mj

m

j

ni vBuBvuS
,

0

,

0

,, ∑∑
= =

=

Where, Pij are a set of m*n control points and the Bi

are the same Bernstein polynomials for one

dimension. As before, the Pij can represent vertices,

normals, colors, or texture coordinates.

The procedure to use two-dimensional evaluators is

• Define the evaluator(s) with glMap2*().

• Enable them by passing the appropriate

value to glEnable().

• Invoke them either by calling

glEvalCoord2() between a glBegin()

and glEnd() pair or by specifying and

then applying a mesh with

glMapGrid2() and glEvalMesh2().

glMap2*() and glEvalCoord2*() are used to define

and then invoke a two-dimensional evaluator.

void glMap2{fd}(GLenum target, TYPEu1, TYPEu2,

GLint ustride, GLint uorder, TYPEv1, TYPEv2,

GLint vstride, GLint vorder, TYPE points); The

target parameter can have any of the values in

except that the string MAP1 is replaced with MAP2.

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 163 Issue 6, Volume 11, June 2012

As before, these values are also used with

glEnable() to enable the corresponding evaluator.

Minimum and maximum values for both u and v are

provided as u1, u2, v1, and v2. The parameters ustride

and vstride indicate the number of single- or double-

precision values (as appropriate) between

independent settings for these values, allowing users

to select a subrectangle of control points out of a

much larger array. If the data appears in the form

GLfloat ctlpoints[100][100][3]; and to use the 4x4

subset beginning at ctlpoints[20][30], ustride is

choosen to be 100*3 and vstride to be 3. The

starting point, points, should be set to

&ctlpoints[20][30][0]. Finally, the order

parameters, uorder and vorder, can be different,

allowing patches that are cubic in one direction and

quadratic in the other.

void glEvalCoord2{fd}(TYPE u, TYPE v); void

glEvalCoord2{fd}v(TYPE *values); Causes

evaluation of the enabled two-dimensional maps.

The arguments u and v are the values (or a pointer

to the values u and v, in the vector version of the

command) for the domain coordinates. If either of

the vertex evaluators is enabled

(GL_MAP2_VERTEX_3 or

GL_MAP2_VERTEX_4), then the normal to the

surface is computed analytically. This normal is

associated with the generated vertex if automatic

normal generation has been enabled by passing

GL_AUTO_NORMAL to glEnable(). If it's disabled,

the corresponding enabled normal map is used to

produce a normal. If no such map exists, the current

normal is used.

Fig. 5: Wireframe Bezier Surface.

A wireframe Bezier surface using evaluators, as

shown in Fig. 5, is drawn with nine curved lines in

each direction. Each curve is drawn as 30 segments.

CASE 2: Generating Meshed Bezier Surface

Fig. 6: Meshed Bezier Surface

Bezier Surface with mesh is shown in Fig. 6.

CASE 3: Generating Textured Bezier Surface

Fig. 7: Textured Bezier Surface

Bezier Surface with texture is shown in Fig.7, which

enables two evaluators at the same time. The first

generates three-dimensional points on the same

Bezier surface as Fig. 6, and the second generates

texture coordinates. In this case, the texture

coordinates are the same as the u and v coordinates

of the surface, but a special flat Bezier patch must

be created to do this.

The flat patch is defined over a square with corners

at (0, 0), (0, 1), (1, 0), and (1, 1); it generates (0, 0)

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 164 Issue 6, Volume 11, June 2012

at corner (0, 0), (0, 1) at corner (0, 1), and so on.

Since it's of order two (linear degree plus one),

evaluating this texture at the point (u, v) generates

texture coordinates (s, t). It's enabled at the same

time as the vertex evaluator, so both take effect

when the surface is drawn. If user want the texture

to repeat three times in each direction, change every

1.0 in the array texpts[][][] to 3.0. Since the texture

wraps in this example, the surface is rendered with

nine copies of the texture map.

4 Results and Discussion
The CAD algorithms designed has been

tested for its working, and is found to be working

properly to meet all its requirements. The algorithms

have been found to be giving correct outputs to the

inputs that were given, like the appropriate

displaying of the output, and following appropriate

conditions for termination of the program etc. All

the platform independent algorithms developed for

the present work have been successfully

implemented using visual basic 6.0 under the

Windows XP Professional Operating System. In the

present work the CAD algorithms have been tested

and results have been found as follows:

(A) Bezier Curves
CASE 1: Generating Bezier Curve for known

Control Points.

Fig. 8: Compiling the Algorithm for Generating

Bezier Curve

The Fig. 8 shows that the platform independent

algorithm for generating bezier curve has been

successfully compiled and results are shown in Fig.

9.

Fig. 9: Generation of Bezier Curve using OpenGL

CASE 2: Generating Bezier Curve through Mouse

The Fig. 10 shows that the platform

independent algorithm for generating bezier curve

has been successfully compiled and results are

shown in Fig. 11, 12 and 13.

Fig. 10: Compiling the Algorithm for Generating

Bezier Curve.

After executing the CAlgorithm.exe, ‘b’ is pressed

and curve as shown in the Fig. 11 the curve gets

created. The curve can be erased by pressing ‘e’.

The screen can be made clear by pressing ‘c’. The

output window is quit by pressing ‘q’.

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 165 Issue 6, Volume 11, June 2012

Fig. 11: Generation of 4 points Bezier Curve using

OpenGL

Fig. 11 shows 4 points Bezier Curve, Fig. 12 shows

8 points Bezier Curve and Fig. 13 shows 16 points

Bezier Curve drawn using OpenGL which are

independent of operating systems.

Fig. 12: Generation of 8 points Bezier Curve using

OpenGL.

Fig. 13: Generation of 16 points Bezier Curve using

OpenGL

(B) Bezier Surfaces

CASE 1: Generating Wireframe Bezier Surface

Fig. 14: Compiling the Algorithm for Generating

Wireframe Bezier Surface

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 166 Issue 6, Volume 11, June 2012

Fig. 15: Generation of Wireframe Bezier Surface

using OpenGL

The Fig. 14 shows that the platform independent

algorithm for generating Wireframe Bezier Surface

has been successfully compiled and results are

shown in Fig. 15.

CASE 2: Generating Meshed Bezier Surface

Fig. 16: Compiling the Algorithm for Generating

Meshed Bezier Surface

The Fig. 16 shows that the platform independent

algorithm for generating Meshed Bezier Surface has

been successfully compiled and results are shown in

Fig. 17.

Fig. 17: Generation of Meshed Bezier Surface using

OpenGL

CASE 3: Generating Textured Bezier Surface

Fig. 18: Compiling the Algorithm for Generation of

Textured Bezier Surface

The Fig. 18 shows that the platform independent

algorithm for generating Meshed Bezier Surface has

been successfully compiled and results are shown in

Fig. 19.

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 167 Issue 6, Volume 11, June 2012

Fig. 19: Generation of Textured Bezier Surface

using OpenGL

5 Conclusions
In the present work, an attempt has been

made to develop CAD algorithms for the generation

of Bezier curves and Bezier surfaces using OpenGL.

This satisfies all the necessary requirements for the

development of CAD software which will be

independent of operating systems. The main idea

behind the current work is to bring together the

ideas of Mathematical curves and Graphics

Programming into single complex unit which can be

implemented for development of CAD software.

The developed algorithms are not only user friendly

and interactive but also gives worthy information

about the construction of Bezier Curves and Bezier

Surfaces with minimum of technical complexities.

6 Scope of the Future Work
The present work is mainly concerned with

the design and implementation of Cubic Bezier

Curves. However implementation of higher order

Bezier Curves is also possible. One more

enhancement for the future is that the increase in the

number of control points. With higher order curves

the complex drawings can be created.

Although this might get a little complicated

but not at all impossible. It will just require only

doing some minor adjustment in the present

algorithms for writing a whole new source code for

a higher order Bezier curve and a new CAD

software can be developed which will be

independent of operating system.

References:

[1] Bettig, B., Shah, J. (1999), “An object-

oriented program shell for integrating CAD

software tools”, Advances in Engineering

Software, 30 (8): pp. 529-541.

[2] Bhankdarkar M.P., Downie B., Hardwick

M., Nagi R. (2000), “Migrating from IGES

to STEP: one to one translation of IGES

drawing to STEP drafting data”,

Computers in Industry, 41 (3): pp.261-277.

[3] Butdee, S. (2002), “Hybrid feature

modeling for sport shoe sole design”,

Computers & Industrial Engineering,

vol.42, no.2-4, pp.271-279.

[4] Conference.et.byu.edu/~paracad/theses/Tra

vis%20L.%20Astle.doc

[5] Gordon, W.J., Riesenfeld, R.F. (1974), “B-

spline curves and surfaces”, Computer

Aided Geometric Design, New York:

Academic Press.

[6] Hope, A. (1985), “Room for

Improvement”, Engineering (London), vol.

225, no. 3, p. 158.

[7] Mack II, R.G., Lee, C.-H., Letcher Jr.,

J.S., Newman, J.N. Shook, D.M., Stanley,

E. (2002), “Integration of geometry

definition and wave analysis software”,

Proceedings of the International

Conference on Offshore Mechanics and

Arctic Engineering - OMAE, vol.1, pp.

721-733.

[8] Monies, F., Redonnet, J.M., Lagarrigue, P.

(2000), “Improved positioning of a conical

mill for machining ruled surfaces:

application to turbine blades”, Proceedings

of the Institution of Mechanical Engineers.

Part B, Journal of Engineering

Manufacture, vol.214, no.7, pp.625-634.

[9] Rogers, David F. (2001), “An Introduction

to NURBS: With Historical Perspective”,

copyright by Academic Press.

[10] Rohm, T., Jones, C.L., Tucker, S.S.,

Jensen, C.G. (2000), “Parametric

Engineering Design Tools and

Applications”, Proceedings of DETC2000:

ASME Design Automation Conference,

September 10-13, 2000, Baltimore,

Maryland.

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 168 Issue 6, Volume 11, June 2012

[11] Tonshoff, H.K., Rackow, N., Gey, C.

(2000), “Advanced Tool Path Generation

For Flank Milling Turbo machinery

Components”, The Third World Congress

on Intelligent Manufacturing Processes

and Systems, Cambridge, MA June 28-30,

pp.446-452.

[12] Versprille, K.J. (1975), “Computer-Aided

Design Applications of the Rational B-

spline Approximation Form,” Ph.D.

dissertation, Syracuse University.

[13] http://www.fei.edu.br/~psergio/CG_arquiv

os/IntroSplines.pdf

[14] http://www.glprogramming.com.

[15] http://www.opengl.org.

[16] http://en.wikipedia.org/wiki/B%C3%A9zie

r_curve.

[17] http://en.wikipedia.org/wiki/CAD.

[18] http://en.wikipedia.org/wiki/Computer-

aided_design.

[19] http://mathworld.wolfram.com/BezierCurv

e.html

[20] http://www.ibiblio.org/e-

notes/Splines/Inter.htm

[21] http://en.wikipedia.org/wiki/B%C3%A9zie

r_surface.

WSEAS TRANSACTIONS on COMPUTERS Yogesh Kumar, S. K. Srivastava, A. K. Bajpai, Neeraj Kumar

E-ISSN: 2224-2872 169 Issue 6, Volume 11, June 2012

