
A Distributed Shared Memory Cluster

Architecture With Dynamic Load Balancing

MINAKSHI TRIPATHY AND C.R. TRIPATHY

Department of Computer Science and Engineering,

V.S.S. University of Technology,

Burla, Sambalpur, Odisha,

INDIA.

minakshiom@gmail.com

Abstract: - This paper proposes a distributed shared memory cluster architecture with load balancing. The

architecture is based on dynamic task scheduling approach for distribution and assignment. It enhances the

performance of communication across clusters for data access. The proposed dynamic load balancing model

uses the concept of work stealing, which intelligently balances the load among different nodes. The work

stealing consistently provides higher system utilization when many jobs are running with varying

characteristics. This results in efficient use of the system. The performance analysis shows the proposed

architecture to outperform the previously proposed distributed shared memory clusters in terms of scalability

and efficiency.

Key-Words: - Block Data Layout, Data Locality, Task Distribution, Master-Slave Paradigm, Work Stealing.

1 Introduction
As The cluster computing can be described as a

fusion of high performance microprocessors, high-

speed networks and standard tools. A shared

memory system, called a tightly coupled

multiprocessor enables simple data sharing [1-2].

The shared memory system is portable and

relatively easy to program since all processors share

a single view of data with common memory. The

communication between processors to a global

physical memory can be as fast as the memory

access. However, it suffers from lower peak

performance, limited scalability and longer latencies

in accessing the shared memory. A distributed

memory system, called a multicomputer consists of

multiple independent processing nodes with local

modules connected via a general interconnection

network [3-4]. These systems are scalable and the

communication between processor or nodes requires

explicit use of send/receive primitives. But, it

becomes difficult to manage communication to

achieve data distribution across the system. The

distributed shared memory systems also known as

distributed global address space (DGAS) combines

the advantages of both the above said approaches

[5-7]. It logically implements the shared memory

model in a physically distributed memory system.

The ease of programming, portability and

abstraction of shared memory systems are preserved

with the cost effectiveness of the distributed

memory system. In literature, theoretical analysis

has been made in the design of architecture to

reduce data movement across the network and to

reduce the execution time of the system [8-10].

In distributed system, the load balancing is done to

distribute and schedule tasks between computers,

processes, disk memories or other resources in order

to get optimal resource utilization and to decrease

the computing time [11-12]. If the workload is not

properly balanced, a heavily loaded processor may

be busy executing tasks while other processors sit
idle, which degrades the system speedup. The

dynamic balancing is based on redistribution of

processes among the processors during execution

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 121 Issue 5, Volume 11, May 2012

time. Whenever load imbalance exists, the

redistribution is performed by transferring tasks

from heavily loaded processors to lightly loaded

processors [13-16]. Process migration imposes a lot

of processing efforts and therefore these systems do

not support work stealing. The “work stealing” is an

efficient approach to the distributed dynamic load
balancing task as it is initiated by the idle

processors. Here the idle processors select victim

processors at random and attempt to steal work from

them [17-20]. A node can be visualized as a queue

and every arriving task is to be queued waiting for

execution if the job arrival rate is more than the

job’s served rate [21]. The load balancing with work

stealing has been studied with predictable

neighborhood data references in [22-23]. In [5]

analysis of parallel file system for distributed shared

memory cluster system has been done. However the

said work does not takes into consideration the intra

and inter cluster communication. We extend the

work stealing concept reported in [15] and [19] for

dynamic load balancing to the proposed distributed

shared memory cluster architecture.

The rest of the paper is organized as follows. In the

Section2, notation and assumptions used in the

paper are presented. The Section3 presents the

proposed distributed shared memory cluster

architecture with task assignment and distribution.

A dynamic load balancing model with work stealing

for the proposed distributed shared memory cluster

system is proposed in Section 4. In the Section 5,

the performance analysis with the proposed cluster

system has been carried out and compared with

previous systems. Finally, concluding remarks are

provided in Section 6.

2 Notation & Assumptions
The following notation and assumptions are used

throughout this paper.

Notation

Accr : Cost of reading a block from disk

Accw : Cost of writing a block to disk

TC : Total number of clusters

N : Number of nodes present in a

cluster

P : Number of processes in a processor

NB : Number of disk blocks required for

current task

NBWC : Number of blocks within a cluster

NBBC : Number of blocks to be transferred

between clusters.

TWC : Total time to transfer blocks within

a cluster.

TBC : Total time to transfer blocks

between clusters

Taccr : Total time to read block data

Taccw : Total time to write block data

Taccess : Total disk block access time

Texe : Total execution time

tmin : Minimum time to transfer a block

L : Current workload of a node

Pi : ith processor

L : Load of ith processor

Ni : Number of tasks assigned to Pi

Wi : Execution time of Pi to finish a task

Ci : Cost of stealing

Ri : Remaining tasks of Pi

Ei : Execution time of Pi to finish all

tasks

Ti : Task transfer time of Pi

E : Total execution time of the system

P : Total number of processors present

in the system

Nall : Total number of tasks

Lsum : Total workload of all processors

Lavg : Average workload of all processors

Eff : Efficiency of the system

Assumptions

1. All processors are heterogeneous in nature.
2. The interconnection network is message passing

based.

3. Task queues are globally distributed.

4. Dequeues of tasks is maintained popping tasks
from head in LIFO order.

3 Proposed System: Distributed

Shared Memory Cluster Architecture
This section proposes a distributed shared memory

cluster architecture based on dynamic data structure

task scheduling. The principle of task assignment,

block data layout and task distribution followed by

an algorithm are presented in the subsequent

sections. A distributed shared memory cluster

system can be generally viewed as a set of nodes or

clusters connected by an interconnection network.

The proposed system architecture is shown in

Figure1.

In the proposed system, each cluster node consists

of a small-scale shared memory multiprocessor

system and multiple clusters form a large-scale

system. The proposed clustering architecture is

beneficial for both small and large cluster systems.

In the proposed clustering architecture, each cluster

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 122 Issue 5, Volume 11, May 2012

contains a local distributed shared memory

(LDSM), an intercluster controller (ICCL), an

intercluster cache (ICC), processors with private

caches and a shared local bus. The private caches

attached to the processors are inevitable for

reducing the memory latency. The LDSM of each

cluster is partially or entirely mapped to the global

distributed shared memory (GDSM). Regardless of

the network topology, a specific ICCL is required to

connect a cluster into the system. The LDSM

reduces memory contention and improves data

locality. The ICC facilitates data sharing among the

clusters utilizing data locality. It contains data that

are usually referenced by the intra cluster

processors. The local bus acts as an intra connection

network among intra cluster processors, ICC and

LDSM, while the global bus acts as an

interconnection network among inter cluster nodes,

inter cluster interconnection network and GDSM.

Information about states or current locations of

particular data blocks and the task scheduling

queues are kept in the data structure (DS).

Fig.1: Distributed Shared memory Cluster

Architecture

3.1 Task Assignment
In this subsection, the task assignment principles in

the proposed architecture are described. While

offering good scalability, a dynamic task scheduling

approach using data structure creates as many

concurrent tasks as possible to prevent processes

from becoming idle. A task corresponds to a number

of task instances since each task is created and

inspected by all the processes on distributed shared

memory systems. A task takes a number of inputs

and writes to one or more outputs. Thus, the tasks

stored in the task list keep information such as the

input and output memory location. Whenever, two

tasks access the same memory location and one of

them is write, the system detects data dependence,

and it stalls the successor till the previous task is

finished. We consider the true dependence of RAW

(Read After Write). If a task has t1 inputs and t2

outputs, then a number of t1+t2 task instances are

created and distributed to different processes. Each

task instance plays a role of “representatives” for the

task’s corresponding input or output. Task

assignment is performed in two stages: block data

layout and task distribution.

3.1.1 Block data layout

This subsection describes about the block data

layout techniques. The system has a queue called

‘task queue’ in data structure. The task queue stores

a pointer pointing to the corresponding ready task.

The implementation of the task queue uses the block

access indexed by block location [m, n]. The

maximum number of tasks to be generated is

constrained by the task queue size. The Block data

layout is a technique used to improve memory

hierarchy performance. In the block data layout, a

matrix is divided into submatrices (or blocks) of size

NB x NB. The proposed system uses 2D cyclic
distribution method to map matrix blocks to

different processes. The process block is used to

map a 1D array of P processes to a 2D matrix block

in a cluster. We assume that a process block has Pr

rows and Pc columns where Pr x Pc=P. Let A [m, n]

be a matrix block located at mth row and nth

column of matrix A. Then A[m,n] will be mapped to

process [m mod Pr, n mod Pc] through local bus. If

the output of a task is A[m, n], then the task is

assigned to process[m mod Pr, n mod pc].

3.1.2 Task distribution
The task distribution through its ICCL decides the

data dependence for the blocks. In order to illustrate

the task distribution let us consider an example.

There are three operations to access the task queue:

START, READ and WRITE. When the system

finds a new task ti, it generates WRITE operation to

put task ti at the end of the task queue. Before

writing, it first scans the task queue to check if there

exists a task tj to write into data x. Then the START

operation searches for the task ti to READ data x in

case of data dependence. If no tasks are present to

write into ti’s input, task ti becomes a ready task.

As an example, suppose a matrix of size 3x3 blocks

is distributed to a 2x2 process block by 2D cyclic

Inter Cluster Interconnection Network

ICCL ICCL

ICC ICC

P1 P1

C1 C1

DS DS

LDSM LDSM

Pn Pn

Cn Cn

Cluster 1 Cluster Z

Local
Bus

Local
Bus

GLOBAL DISTRIBUTED SHARED MEMORY (GDSM)

G
lo
b
a
l
b
u
s

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 123 Issue 5, Volume 11, May 2012

distribution where the processes P1, P2 executes a

sequential program and generates a set of tasks t1, t2

and t3. Let the tasks read and write a block as

below:

i) Task t1 reads and writes block1
ii) Task t2 reads block1 and writes block4
iii) Task t3 reads block1 and writes block7

Based on the status of task queues on P1 and P2, it

is easy to find that t2 and t3 can be started

simultaneously when task t1 is finished. Hence, a

task ti is unable to execute for one of its parent task

tj to finish. In this case task ti must be either tj itself

or behind tj in task queue. Accordingly, the tasks

t1,t2,…….,ti,tj,………tn,tn-1,…..t1 are assigned to

the processes P1, P2,………..Pi,Pj,.…….., Pn, Pn-

1,…..P1.

3.2 Theoretical Analysis
In this subsection, we make an analysis for data

communication and data accessing. The task queue

in data structure makes an analysis after reception of

a new task. It determines the particular processor

and the corresponding cluster to which the task can

be forwarded for task assignment and execution. It

considers the cost of accessing data from the

clusters through LDSM and GDSM.

The total time required to transfer the blocks

between the nodes within a cluster through LDSM is

expressed as follows.

min

)(

0

tT
WCNBsizeof

i

WC ∑
=

= (1)

The total time required to transfer the blocks

between the clusters through GDSM is expressed as

follows.

min

)(

0

tT
BCNBsizeof

i

BC ∑
=

= (2)

Now the total communication time to transfer the

required blocks for the task is calculated as follows:

Tcomm= TWC+TBC (3)

The total execution time includes the time to read or

write the blocks and to satisfy the task distribution.

The time taken to READ data from the particular

block is

Taccr=accr*NB (4)

The time taken to WRITE the result from the

particular block is

Taccw= accw*NB (5)

Hence the total disk block access time is

Taccess=NB*(accr+accw) (6)
Theorem 1: Texe=NB*(accr+accw)+2*N*Tcomm (7)

Proof: After read and write operations, the whole

disk block is stored in LDSM of a cluster. During

execution, every node has to fetch the required data

blocks. The total communication time spent on the

node is 2*N*Tcomm for both of the read and write

operations. Hence the result for overall execution

time can be expressed as

Texe=NB*(accr+accw)+2*N*Tcomm.

3.3 Proposed Algorithm: DDST
This section proposes an algorithm for distributed

shared memory cluster architecture with dynamic

data structure task scheduling.

 For Each Node in N

 For Each Process in P

 Accept a new ready task from the task queue

 Assign task to process by 2D cyclic distribution

method

For Each Node in NBBC

 For Each Cluster in TC

t=Calculate time to transfer blocks between

 clusters through GDSM

 End

tmin=min(t)

Update TBC

End

For Each Block in NBWC

For Each Node in N

 t=Calculate time to transfer blocks
between nodes within clusters through LDSM
End

tmin=min(t)

Update TWC

End

Calculate Tcomm,Texe

Update private cache of nodes
End

Update ICCL and DS of the system

End

Theorem 2:Time Complexity of the algorithm is

O(NB)
3

Proof: The time complexity of the proposed

algorithm (DDST) is O (NB)
3
 due to the three times

of NB iterations for task assignment, data block

communication and task execution.

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 124 Issue 5, Volume 11, May 2012

4 The Proposed Dynamic Load

Balancing With Work Stealing Model
This section proposes a dynamic load balancing

model with work stealing for the proposed

distributed shared memory cluster (Figure 2). The

proposed model consists of three phases. Those are:

i) To get information about the slave node’s

status and send that information to the

master node. The master estimates the

performance of the slaves in terms of

their computational latency and then

makes an intelligent decision for the task

assignment.

ii) After the estimation, the master

distributes tasks on the basis of the

performance in this distribution phase.

The master collects information from the

slave nodes to spawn new tasks based on

decision made by work stealing.

iii) In the final phase, the master monitors the

workload of the slaves and redistributes

task whenever load imbalance is detected.

As the master is responsible for both the scheduling

and distribution of task, the model allows slaves to

compute data redundantly. This mechanism also

makes the model tolerable to the failure of slaves.

SLAVE 1
Slave Queue 1

SLAVE 2
Slave Queue 2

SLAVE n
Slave Queue n

MASTER
Job Scheduling Queue

Task Allocation

Job

Requests

Summary

Report

Sum
m
ary

Inform
ation

Da
ta

Di
st
rib
ut
io
n

SLAVES

Re
su
lts

Inform
ation

WORK STEALING

Unsuccess

Work

Found

Success End

Search New Task

Work
Discovery Steal Work Steal

Fail
Terminate

Fig.2: Dynamic Load Balancing Model for

Distributed Shared Memory Clusters

4.1 Distributed Task Queues
This subsection describes the concept of distributed

task queues. The proposed dynamic load balancing

scheme can be expressed and understood through

the use of task queues. A task queue provides a

convenient parallel computation as a set of dynamic

tasks. In the proposed model, the task queue first

contains an initial set of tasks. In distributed

systems, the distributed task queues store a set of

task queues that are distributed across the process

during the computation. In this work, focus is given

on a 1:1 scheme where each process maintains its

own task queue that allows for efficient local access.

In a distributed shared memory clusters

environment, the tasks execute with respect to the

data stored in Global Distributed Shared Memory

(GDSM). The GDSM enables the tasks to be

executed on any process in any processor during the

computation. The proposed model provides a global

view of the physically distributed data. By storing

distributed task queues in the GDSM, the ability to

perform work stealing is gained.

4.1.1 Work Stealing
This subsection discusses the concept of work

stealing. As already mentioned, the work stealing is

a distributed dynamic load balancing scheme. Under

the work stealing, each process maintains a double-

ended queue or dequeue of tasks. The processes

execute tasks from the head of their dequeue. When

no work is available they steal tasks from the tail of

another process’s dequeue. The process that initiates

the steal operation is called as thief. The process

targeted by the steal is called as victim. The thief is

responsible for initiating load balancing requests

and the work stealing is a receiver initiated load

balancing process. In the distributed shared memory

clusters system, while performing a steal operation,

the thief must first select its victim. Once a victim

has been selected, the thief must then fetch data

from victim’s task queue to determine if work is

available. If so, it transfers tasks from the tail of

victim’s queue to its own task queue. If the victim

has no work available with it, then the thief selects a

new victim at random and repeats this process until

either work is found or global termination is

detected. In order to determine the time of

completion of the computation, the processes must

actively detect that all the processes are idle and no

more work is available. This is referred to as

termination detection.

4.2 Theoretical Analysis
In this subsection, we provide a mathematical

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 125 Issue 5, Volume 11, May 2012

analysis for dynamic load balancing. In distributed

shared memory clusters environment, each

processor maintains a task queue with tasks that are

ready to be executed. Whenever a node runs out of

work, it becomes a thief and attempts to steal a task

from another processor. If this victim processor has

no available work in its task queue, the steal is

unsuccessful and the thief processor makes new

attempts to steal elsewhere until it is successful. In

the proposed centralized dynamic load balancing for

shared memory clusters, the current workload is

calculated from the CPU, memory and network load

status of nodes [2]. It is defined as the sum of CPU

usage of task (Wcpu), memory occupied by tasks

(Wmem) and amount of data transferred through

network (Wnet).

L= Wcpu+ Wmem+ Wnet (8)

After each node determines its current load, the

master process distributes all the tasks among

themselves. If a processor is overloaded, it is given

fewer tasks so that the actual workloads with its task

are evenly distributed. From the load on i
th

processor (Li), The number of tasks assigned to the

i
th
 processor (Pi) is given by:









=

sum

i
alli

L

L
NN

/1
*

 (9)

where Lsum=Σ Li

Theorem 3: Ei=Ri * (Wi + Ci) (10)

Proof: A processor must determine if it is under

loaded before work stealing. So the execution time

of a processor (Pi) to finish all its tasks is calculated

from the execution time to finish a single task (Wi)

with the cost of stealing (Ci) based on remaining

tasks to execute (Ri). Here the cost of stealing tasks

from the processor Pi is given by the ratio of task

transfer time to that of execution time and is given

by:

Ci=Ti/Ei (11)

Hence the result for execution time to finish all the

tasks of a processor is Ei=Ri * (Wi + Ci).

A processor with a small Ci ratio is either over

loaded or it can send tasks to others very quickly.

Both indicate that Pi is the most suitable victim

processor for work stealing.

We define that a processor Pi to be under loaded if

 Ei < k*Lavg (12)

 Where, k is a constant for idleness of processors.

The average of all workloads from the total number

of processor present in the system is

Lavg=Lsum/P (13)

Now, the efficiency of the DLBWS model is

defined as

Eff=Ei / (E * P) (14)

Where the total number of processors P, means the

total number of processors allocated including the

master, and E is the total execution time to finish

their corresponding tasks present in all the

processors of the distributed shared memory cluster

system.

4.3 Proposed Work Stealing Algorithm:

DLBWS
This subsection proposes an algorithm for the work

stealing operation of dynamic load balancing in

distributed shared memory clusters.

If Mq be the master processor task queue

 Sqi be the slave processor task queue

 Vq be the victim slave node task queue and

 Tq be the thief slave node task queue

Initialize all the tasks to Mq

For slaves from i=1 to n

Collect load status of slaves Sqi

Distribute tasks from Mq to Sqi

End for

While tasks are available in Sqi{i=1..n}

Select thief Ti and victim Vi

 Fetch work from victim’s queue Vq.

If work Wi found

 Transfer tasks from Vq to Tq

 Steal and execute work Wi.

 Search for new task

Else

 Steal Failed

Terminate steal operation

End If

End While

Theorem 4: Time Complexity of the algorithm is O

(T1/P+Tp).

Proof: On a fixed number of processors P, the

proposed work stealing scheduling algorithm

completes job in O (T1/P+Tp) expected time, where

T1 is the task execution time on one processor and

Tp is the job execution time on P number of

processors.

5 Performance Analysis
This section is devoted towards the performance

analysis of the distributed shared memory clusters.

The various performance measures of the proposed

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 126 Issue 5, Volume 11, May 2012

distributed shared memory cluster architecture with

dynamic data structure task scheduling are analyzed

and the results are compared with the previous

works in [5]. The DDST algorithm is implemented

in core java. The data structure programs are written

in core java with subroutine to perform cache

memory allocation and deallocation. It can be

executed by the runtime system automatically.

Similar to C++ programs, we use new and delete

operators through user defined functions

alloc_cache() and free_cache() to allocate and free

cache memory. The special subroutines

alloc_block() and free_block() to allocate and free

the block are provided. The proposed DLBWS

algorithm is implemented under matlab test bed. A

program describing work stealing algorithm is run

on the manager. It is responsible for running the

proposed algorithm and gathering results from

computing tasks. The manager assigns tasks to each

worker by allotting data. The programs developed

using the equations (8-16) are run on the slave

nodes. It estimates the status or the load

performance of each slave node. We take the mean

value of execution times after ten executions of the

program for final results and comparison. To

validate the effectiveness of the proposed DLBWS

model, we have compared the experimental results

obtained with two previous works in [15] and [19].

The results of comparision of the execution time and

efficiency are shown in the Figure 5-6.

5.1 Results & Discussions
This subsection provides the results and discusses

on them. The cluster and block information in the

form of tables are stored inside the data structure of

distributed shared memory cluster architecture.

Here, the Table 1 stores the cluster information. The

information about transferring blocks from one

cluster to another and the transferring blocks from

one node to another node within a cluster are

respectively stored in Table 2 and 3.

Disk access in our testing environment is fast

enough, taking only 2ms to read or write a single

KB data block. The program is assumed to be

solved on 2, 4, 8 and 16 computer node clusters with

distributed shared memory. To evaluate the

effectiveness of the proposed approach, the

performance of our proposed distributed shared

memory cluster architecture for dynamic data

structure task scheduling (DDST) is compared

against two existing analytical methods NPIO and

NIO taken from Successive Over Relaxation (SOR)

[5].

The Table 4 shows the performance of DDST in

terms of the execution time and the Table 5 gives

scalability comparison of DDST with those of NPIO

and NIO [5]. The Figure 4 shows how the execution

time of DDST affects the overall system

performance reducing execution time as compared

to NPIO and NIO [5]. This establishes the efficiency

of proposed (DDST) method over NPIO and NIO of

SOR [5] in terms of scalability.

The Figure 5 compares the total execution time for

SAMR [15], RAS [19] and the proposed DLBWS

model. The execution time of DLBWS is reduced

greatly. As it is clear from the Figure 2, the

execution time decreases with increase of number of

processors in the distributed systems. Again it can

be noticed that the techniques using work stealing

approach gives faster execution time as compared to

previous methods [15][19]. It can be observed in

the Figure6, that the efficiency of DLBWS is better

as compared to that of SAMR [15] without work

stealing and RAS [19] with work stealing. This

establishes the superiority of the proposed DLBWS

model over SAMR and RAS models in terms of

speedup and efficiency.

TABLE 1: Cluster Information

Cluster Id

Node Id

Block Id

Id of Clusters

Id of Nodes for the particular

clusters

List of all blocks with their Id in

the cluster

TABLE 2: Inter Cluster Information

TABLE 3: Inter Cluster Information

From Cluster Id from which blocks are

 transferred

To Cluster Id to which blocks are Block

 transferred

 Id List of all block Ids stored in the cluster

Time Time taken to transfer blocks from one

 cluster to another

From

 To

Block Id

Time

Cluster Id

Node Id from which blocks are

transferred

Node Id to which blocks are

transferred

List of all blocks Ids stored in the

cluster

Time taken to transfer blocks from

one node to another

Cluster Id of the particular node

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 127 Issue 5, Volume 11, May 2012

TABLE 4: Performance of DDST Method

N NB(in kb) Tcomm(in ms) Texe

16 1000 500 20000

8 2000 1300 28000

4 4000 4500 52000

2 8000 12000 80000

1 10000 30000 100000

TABLE 5: Scalability Evaluation

Node Execution Time (in ms)

N NPIO NIO DDST

16 40000 25000 20000

8 45000 30000 28000

4 75000 55000 52000

2 120000 110000 80000

1 200000 200000 100000

Scalability Comparision

0

50000

100000

150000

200000

250000

16 8 4 2 1

Nodes

E
x
e
c
u
ti
o
n
 T
im
e
(m

s
)

NPIO

NIO

DDST

Fig. 4: Total Execution Time Vs Number of Nodes

Execution Time Comparision

0

50

100

150

200

250

300

350

400

2 4 8 16

No. of Processors

E
x
e
c
u
ti
o
n
 T
im
e
(s
)

SAMR

RAS

DLBWS

Fig. 5: Comparison of Execution Time Vs Number

of Processors

Efficiency Comparision

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8 16
No. of Processor

E
ff
ic
ie
n
c
y

SAMR

RAS

DLBWS

Fig. 6: Comparison of Efficiency Vs Number of

Processors

6 Conclusion
In this paper, a distributed shared memory cluster

architecture is proposed based on dynamic data

structure task scheduling. The inter cluster caches,

private processor caches and data structure in the

linked- base type of cluster- based distributed shared

memory architecture has an advantage of sharing

data in a more effective manner. The work also

proposes and illustrates the simple technique of

work stealing that improves the execution time and

the efficiency. When the machine has a large

number of processors and has many jobs running on

it, the idle processors steal tasks from the busy

processors so that every processor can be busy all

the time. When the master schedules task

inappropriately, it tries to balance the loads with

additional stealing. As expected, the number of

stealing increases as the number of processors

grows and the environment becomes more dynamic.

Based on the results of comparision with the

existing methods, we conclude the proposed

architecture to have a better performance that

reduces the communication and idle time. It also

requires less space in stable storage and obtains

faster execution time.

References:

[1] Minakshi Tripathy and C.R.Tripathy, Design
and analysis of a Dynamically Reconfigurable

Shared Memory Cluster, International Journal

of Computer Science and Network Security,

Vol.10, No.9, Sept 2010, pp 145-158.

[2] Minakshi Tripathy and C.R. Tripathy,

Centralized Dynamic Load Balancing Model

for Shared Memory Clusters, Proceedings of

the International Conference on Control,

Communication and Computing, Feb 18-20,

2010, pp 173-176.

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 128 Issue 5, Volume 11, May 2012

[3] Bill N. and Virginia L., Distributed Shared
Memory: A Survey of Issues and Algorithms,

Journal Computer - Distributed computing

systems, Vol. 24, No. 8, August 1991, IEEE

Computer Society Press.

[4] S. Zhou, M. Stumm, D. Wortman and K. Li,
Heterogeneous Distributed Shared Memory,

IEEE Transactions on Parallel and Distributed

Systems, Vol.3, No. 5, Sept 1992, pp 540-554.

[5] Su-Cheong Mac, Ce-Kuen Shieh and Jyh-Biau
Chang: Design and analysis of a parallel File

system for distributed shared memory systems,

Journal Of System Architecture, Vol. 45, No. 8,

1999, pp 603-617.

[6] Der-Lin Pean, Chao-Chin Wu, Huey-Ting
Chua and Cheng Chen, Design of a scalable

multiprocessor architecture and its simulation,

The Journal of Systems and Software, Vol.58,

No. 2, 2001, pp 135-152.

[7] Jyh-Chang Ueng, Ce-Kuen Shieh, Tyng-Yue
Liang and Jyh-Biau Chang, Proteus: an

efficient runtime reconfigurable distributed

shared memory system, The Journal of Systems

and Software, Vol. 56, No. 1, 2001, pp 247-

260.

[8] Fengguang Song, Asim YarKhan and Jack
Dongarra, A look at scalable dense linear

algebra libraries, Proceedings of the

International conference on Scalable High

Performance computing, Apr 1992, pp 372-

379.

[9] P. Sammulal and A. Vinaya Babu, Enhanced
Communal Global, Local Memory

Management for Effective Performance of

Cluster Computing, IJCSNS International

Journal of Computer Science and Network

Security, Vol.8, No.6, June 2008, pp 209-215.

[10] S. Dimitrios and Nikolopoulos, Quantifying
contention and balancing memory load on

hardware DSM multiprocessors, Journal of

Parallel and Distributed Computing, Vol. 63,

No. 9, 2003, pp 866–886.

[11] Kashif Bilal, Tassawar Iqbal, Asad Ali Safi and
Nadeem Daudpota, Dynamic Load Balancing

in PVM Using Intelligent Application, World

academy of Science, Engineering and

Technology, Vol. 5, May 2005, pp 132-

135.

[12] James Dinan, Stephen Olivier, Gerald Sabin,
Jan Prins, P. Sadayappan, and Chau-Wen

Tseng, Dynamic Load Balancing of

Unbalanced Computations Using Message

Passing, Proceedings of 21st International

Parallel and Distributed Processing

Symposium , March 26-30, 2007, pp 1-8.

[13] Ahmad Dalal’ah, A dynamic Sliding Load
Balancing Strategy in Distributed systems, The

International Arab Journal of Information

Technology, Vol. 3, No. 2, 2006,.pp: 178-182.

[14] Z. Khan, R. Singh, J. Alam and R. Kumar,
Performance Analysis of Dynamic Load

Balancing Techniques for Parallel and

Distributed Systems, International Journal of

Computer and Network Security, Vol 2, No. 2,

2010, pp: 123-127.

[15] Zhiling Lan, Valerie E. Taylor and Greg Bryan,
Dynamic Load Balancing of SAMR

Applications on Distributed Systems, Proc.

Conference on High Performance Networking

and Computing of the 2001 ACM / IEEE

conference on Supercomputing, Nov 10-16,

2001, pp:979-993.

[16] Kalim Qureshi and Masahiko Hatanaka, An
introduction to load balancing for parallel

raytracing on HDC systems, Current Science,

Vol. 78, No. 10, 2000, pp 818-820.

[17] James Dinan, D. Brian Larkins, P. Sadayappan,
Sriram Krishnamoorthy, and Jarek Nieplocha,

Scalable Work Stealing, Proceedings of the

Conference on High Performance Computing

Networking, Storage and Analysis, Nov 14-20,

2009, pp-45-54.

[18] Stephen Olivier and Jan Prins, Scalable
Dynamic Load Balancing Using UPC,

Proceedings of the 2008 37th International

Conference on Parallel Processing, Sept 8-12,

2008, pp: 123-131.

[19] Yangsuk Kee and Soonhoi Ha, A Robust
Dynamic Load Balancing Scheme for Data

Parallel Application on Message Passing

Architecture, Proceedings of the International

Conference on Parallel and Distributed

Processing Techniques and Applications, Jul

1998, pp: 974-980.

[20] Minakshi Tripathy and C.R.Tripathy, Dynamic
load balancing with work stealing for

distributed Shared memory Clusters,

International Conference on Industrial

Electronics, Control & Robotics, 27- 30 Dec

2010, pp 1-5.

[21] Minakshi Tripathy and C.R. Tripathy, Design
and Analysis of a Distributed Shared Memory

Cluster Architecture based on “Dynamic Data

Structure Task Scheduling”, Proceedings of the

International Conference on Electronic

Systems, 07-09 Jan 2011, pp 395-398.

[22] Pangfeng Liu and Chih Hsuae Yang. Locality-
Preserving dynamic Load Balancing for Data

Parallel Applications on Distributed Memory

multiprocessors, Journal of Information

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 129 Issue 5, Volume 11, May 2012

Science and Engineering, Vol.18, No. 6, 2002,

pp: 1037-1048.

[23] Kunal Agarwal, Yuxiong He and Charles E.
Leiserson, An Empirical Evaluation of Work

Stealing with Parallelism Feedback,

Proceedings of the 26th IEEE International

Conference on Distributed Computing Systems,

Jul 2006, pp: 19-27.

Ms. Minakshi Tripathy received the degree of

B.Sc. (PCM), M.Sc. (Statistics) and MCA from

Sambalpur University. She has done 'A' level course

from DOEACC, New Delhi. She is currently a

Ph.D. (Computer Science) student at Sambalpur

University, Burla, Orissa. She has publications in

five different international conferences and four

different international journals. Her research interest

includes shared memory, cluster computing, load

balancing and fault tolerance.

Prof. (Dr.) C.R. Tripathy received the B.Sc.

(Engg.) in Electrical Engineering from Sambalpur

University and M. Tech. degree in Instrumentation

Engineering from I.I.T., Kharagpur respectively. He

got his Ph.D. in the field of Computer Science and

Engineering from I.I.T., Kharagpur. He has more

than 50 publications in different national and

international Journals and Conferences. His research

interest includes Dependability, Reliability and

Fault–tolerance of Parallel and Distributed system.

He was recipient of “Sir Thomas Ward Gold Medal”

for research in Parallel Processing. He is a fellow of

Institution of Engineers, India. He has been listed as

leading scientist of World 2010 by International

Biographical Centre, Cambridge, England, Great

Britain.

WSEAS TRANSACTIONS on COMPUTERS Minakshi Tripathy, C. R. Tripathy

E-ISSN: 2224-2872 130 Issue 5, Volume 11, May 2012

