
Adaptive visualization of 3D meshes using localized triangular strips

M-H MOUSA M-K HUSSEIN
Faculty of Computers & Informatics

Suez Canal University
Ismailia, Egypt.

{mohamed mousa, m khamiss}@ci.suez.edu.eg

Abstract:- 3D meshes are the principal representation of 3D objects. They are very powerful in manipulation
and easy to visualize. However, they often require a huge amount of data for storage and/or transmission. In
this paper, we present an effective technique to stream triangular meshes using enhanced mesh stripificatio
algorithm. In fact, stripificatio algorithms are used to speed up the rendering of geometric models because they
reduce the number of vertices sent to the graphics pipeline by exploiting the fact that adjacent triangles share an
edge. This enables to use our technique to adaptively visualize the 3D models during their transmission. The
firs step of the proposed technique is based on storing 3D objects as a set of strips. This encodes the geometry
and the connectivity of the input model in a robust fashion. The stripificatio algorithm achieves compression
ratios above 61 : 1 over ASCII encoded formats. Second, the strips are directly sent to the rendering pipeline
in accordance with the viewpoint direction resulting in faster transmission and rendering of complex graphical
objects. Binary space partitioning, kd-trees, is used to enhance our stripificatio algorithm. Some examples are
given to demonstrate the effectiveness of our technique.

Keyworks:- triangle strips, adaptive visualization, kd-tree partitioning, mesh compression.

1 Introduction

Graphics data are widely used in various applications
such as video gaming, engineering design, virtual re-
ality and scientifi visualization. Complex models are
used to add additional levels of realism to the scene.
These models are obtained from various sources such
as 3D scanning and modeling software. In order to
generate the necessary geometry for real time render-
ing of these models, complete topology information
is necessary for a given mesh of input polygons. Over
the years a number of mesh representations have been
developed that provide the required topology infor-
mation, given an arbitrary input mesh. The triangular
meshes are considered as the native representation for
such 3D models. They provide an effective structure
to represent the geometry and the adjacency of the
vertices composing the model. Most of these mesh
representations are based on the winged-edge repre-
sentation introduced by Bruce Baumgart [3].
Most applications require compact storage, fast

transmission, and efficien processing of 3D meshes.
Therefore, many algorithms have been proposed to
compress 3D meshes efficientl [12]. In fact, 3D

meshes can be composed of hundreds of millions of
polygons. The transmission of these polygons over
the network is very slow, time consuming and increas-
ing the traffi over the network. There are several
compression schemes for triangle meshes that encode
either the geometry or the connectivity [18, 17, 13, 6].
They encode the mesh through a compact represen-
tation of a vertex-spanning tree and its dual graph.
However, they are not adequate for progressive vi-
sualization because it is necessary to decode all the
geometry firs in order to visualize the model based
on its connectivity. On the other hand, for interac-
tive visualization not only the speed at which a tri-
angle mesh can be received is important but also the
speed at which it can be displayed. Hence, the bot-
tleneck is the rate at which the data can be sent to
the rendering engine. Each triangle of the mesh can
be rendered individually by sending its three vertices
to the graphics hardware. Then every mesh vertex is
processed about six times, which involves passing its
three coordinates and optional normal, color, and tex-
ture information from the memory to and through the
graphics pipeline. One popular approach for fast vi-

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 101 Issue 4, Volume 11, April 2012



sualization of these types of models is the conversion
of the model into a set of triangles fans. These tri-
angles fans are one of the primitive polygons that are
widely supported by graphical hardware and software
[14]. A triangle fan describes a set of connected tri-
angles that share one central vertex. This saves stor-
age and processing time since graphics pipeline can
take advantage by only performing the viewing trans-
formations and lighting calculations once per vertex.
Another more general and powerful approach for fast
visualization is the conversion of the 3D model into a
triangle strip. A triangle strip is a series of connected
triangles, sharing vertices, allowing for faster render-
ing and more efficien memory usage for computer
graphics. They are optimized on most graphics cards,
making them the most efficien way of describing an
object. There are two primary reasons to use triangle
strips:

1. Triangle strips increase code efficien y. After
the firs triangle is define using three vertices,
each new triangle can be define by only one ad-
ditional vertex, sharing the last two vertices de-
fine for the previous triangle.

2. Triangle strips reduce the amount of data needed
to create a series of triangles. The number of
vertices stored in memory is reduced from 3N

to N + 2, where N is the number of triangles to
be drawn. This allows for less use of disk space,
as well as making them faster to load into the
RAM.

Such triangle strips [10, 14, 8, 11] are widely sup-
ported by today’s graphics hardware. The firs algo-
rithm proposed for creating triangle strips is the SGI
[2]. For rendering purposes, an optimal stripificatio
covers the mesh with as few strips and swaps as pos-
sible [10]. Computing an optimal set of triangle strips
is an NP-complete problem [9]. Various heuristics for
generating good triangle strips have been proposed by
Evans et al. [10], Speckmann and Snoeyink [16], and
Xiang et al. [21]. Deering [7] reduced the number
of strips by introducing the concept of generalized
triangular mesh. Vanecek and Kolingerová [19] pro-
duced much more lower number of triangle strip. For
more details about several triangle strips algorithms,
see [20].

Another important issue of triangle stripificatio is
mesh compression. Chow [5] presented a mesh com-
pression scheme based on triangle stripificatio to en-
hance object rendering. This achieves a compression
ratio below 37:1 over ASCII encoded formats. Silva
and Yadav [15] enhanced the compression ratio to
achieve about 40:1 over ASCII encoded formats.

Contribution

In this paper we present a technique to convert a given
triangular mesh into a set of triangle strips. Our al-
gorithm can control the number of produced triangle
strips. This is done by thresholding the number of tri-
angles in every strip. In additoin, we propose a local-
ization of the triangle strips by using a kd-tree with a
splitting condition that ensures the coherence of the
local neighborhood visibility of each triangle strip.
On the other hand, we associate with every triangle
strip Si a normal vector ni, where ni is the average
normal vector over all the triangles contained in Si.
The set of strips {Si} in combination with their corre-
sponding ni’s can accelerate the visualization by pre-
venting the strips that conflic with the viewpoint di-
rection from being sent to the graphics pipeline. Our
technique achieves a compression ratio over 60:1 over
ASCII encoded formats.
The rest of the paper is organized as follows. Sec-

tion 2 presents the general steps for encoding a given
triangular mesh into a single strip file The corre-
sponding reconstruction algorithm is given in Section
3. We explain in Section 4 the generation of multiple
triangle strips for a given triangular mesh. Moreover,
we show how to use multiple stripificatio in order
to accelerate the visualization of the mesh. Some ex-
perimental results that demonstrate our approach are
given in Section 5. Finally, we conclude in Section 6.

2 Generation of triangle strip

Given a triangular mesh M, this mesh can be iden-
tifie by the triple (V,E, T ), where V is the set of
vertices, E is the set of edges and T is the set of tri-
angles. For each vertex v ∈ V , we defin an attribute
deg(v) as the number of edges incident on v andN(v)

as the set of vertices in the firs neighborhood around
v. Similarly, for each edge e ∈ E, we defin status(e)

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 102 Issue 4, Volume 11, April 2012



as the number of triangles sharing the edge e. In the
same manner, we defin status(f) as the number of
triangles that share an edge with f and neighbor(f, e)
as the neighboring face of f that shares the edge e.
The proposed algorithm is summarized in Algorithm
1.

Algorithm 1 Strip fil generation algorithm.
Input: Triangular mesh M
Output: Compressed strip fil
1: First vertex selection v1
2: Intermediate vertex selection v2
3: Final vertex selection v3
4: Check edges status of the current selected triangle

5: Check vertex degree of the three vertices
(v1, v2, v3)

6: Check vertex degree of all vertices that are al-
ready presented in the compressed fil

The algorithm starts by selecting a candidate vertex
v1. The vertex v1 should satisfy the following condi-
tion:

deg(v1) = min
v∈V

{deg(v)} & deg(v1) 6= 0. (1)

If there are more than one vertex satisfying the pre-
vious condition, we arbitrarily select any one of them
and write the coordinates of the selected vertex v1 in-
side the strip file Once v1 is selected, we navigate
aroundN(v1) to choose the second vertex v2 such that
deg(v2) is minimum and similarly insert the vertex’s
coordinates into the strip file Now consider the edge
e12 which has v1 and v2 as endpoints. If e12 is a bor-
der edge then this edge identifie exactly one face,
otherwise the edge e12 identifie two faces. In case
e12 is shared by two faces, we select the face that has
minimum statusand v3 is selected as the third vertex
in that face. On the other hand, in case e12 is a border
edge, we select v3 as the third vertex from the face
identifie by e12. In both cases, once the vertex v3 is
selected, v3 is inserted in the strip file After the selec-
tion of the firs triangle consisting of v1, v2 and v3, the
value of the following attributes are decreased by 1:
deg(v1), deg(v2), deg(v3), status(e12), status(e23)
and status(e31). Next, we will show how to generate
the strip of triangles around the selected triangle.
Without loss of generality, consider firs that the

vertices v1, v2 and v3 are as shown in Figure 1(a). We

(a) Before

(b) After

Fig. 1: (a) status(e23) > 0 and status(e31) = 1.
(b) v4 will be the third vertex of the auxiliary trian-
gle sharing e31.

check firs the value of status(e23). If status(e23) >
0 then we check next if status(e31) > 0. If
status(e31) is equal to 1, remember that status(e31)
is already decreased by 1, then we will cover the tri-
angle adjacent to this edge, see Figure 1(a). Such tri-
angle is called auxiliary triangle or side triangle. This
case will be marked using the linking agent ’#’. Let
v4 be the third vertex of this auxiliary triangle, see
Figure 1(b). This vertex will be inserted into the strip
file The status of the edges and the degree of the ver-
tices will be updated and control go back to step 4.
If status(e31) = 0 then there are no more triangles
uncovered adjacent to edge e31, see Figure 2. Thus
the control will go to step 3 with vertex v3 renamed
to v2 and vertex v2 renamed to v1. Now if the edge
status of e23 is equal to 0, see Figure 3, then there
are no more triangles uncovered adjacent to this edge.
We jump then to the edge e13. If the edge status of
e13 is equal to 1, then we will cover the triangle ad-
jacent to this edge. In fact, the strip creation process
will have to change its direction in terms of a leading
edge. The leading edge was e23 but now it will be e31.
This change of direction is marked inside the strip fil
by the linking agent ’!’ and the control goes again to

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 103 Issue 4, Volume 11, April 2012



(a) Before (b) After

Fig. 2: (a) status(e23) > 0 and status(e31) = 0. (b) vertex v3 renamed to v2 and vertex v2 renamed to v1.

(a) Before (b) After

Fig. 3: (a) status(e23) = 0 and status(e31) = 1. (b) The leading edge will be e31 and its adjacent triangle will be
covered.

step three to fin a new vertex v3.
In case the edge e13 has a status equal to 0 then

there are no more triangles uncovered adjacent to
edge e13. Here the values of statusfor all of the edges
e12, e31 and e23 are equal to 0. In this case, we search
for a vertex with a non-zero degree, deg, among the
vertices v1, v2 and v3. This is done in the following
order:

1. If deg(v1) > 0 then a linking agent ’A’ will be
inserted in the strip fil and the algorithm goes
to step two with selected vertex as v1 to fin the
new vertices v2 and v3 , as shown in Figure 4.

(a) Before

(b) After

Fig. 4: (a) status(e23) = status(e31) = 0 and
deg(v1) > 0. (b) v1 becomes the leading vertex and
the control searches for v2 and v3.

2. If deg(v2) > 0 , see Figure 5, then we use the
linking agent ’B’ and the vertex v2 is renamed to

v1. The control, as in the previous case, goes to
step two to fin the new vertices v2 and v3.

(a) Before

(b) After

Fig. 5: (a) status(e23) = status(e31) = 0 and
deg(v2) > 0. (b) v2 becomes the leading vertex and
is renamed to v1 and the control searches for v2 and
v3.

3. If deg(v3) > 0 , see Figure 6, then this case is
marked using the linking agent ’C’. The vertex
v3 is renamed to v1 and the control goes to step
two to fin the new vertices v2 and v3.

4. Otherwise If deg(v1) = deg(v2) = deg(v3) =

0, then we search for a vertex with non-zero de-
gree among all the vertices that are already ap-
peared previously in the strip file In this case,
the found non-zero degree vertex is renamed to
v1 and the linking agent ’?’ is inserted into the

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 104 Issue 4, Volume 11, April 2012



(a) Before

(b) After

Fig. 6: (a) status(e23) = status(e31) = 0 and
deg(v3) > 0. (b) v3 becomes the leading vertex and
is renamed to v1 and the control searches for v2 and
v3.

strip fil followed by the reference of new vertex
v1. The control, therefore, goes to step two to
fin new vertex v2.

Note that, when writing a vertex in the strip file we
write its coordinates if it is the firs time to be ap-
peared in the file Otherwise we write its reference
preceded by the linking agent ’<’.
For example, consider the tetrahe-

dron which consists of the set of vertices
{(0,0,0),(0,0,1),(0,1,0),(1,0,0)} and the set of
faces {(1,2,3),(1,3,4),(2,3,4),(2,4,1)}. The applica-
tion of our technique yields the following strip “0 0 0
0 0 1 0 1 0 #1 0 0 <4 !<1”.

3 Reconstruction algorithm

The reconstruction (decompression) algorithm is just
the reverse process of the stripificatio algorithm and
is summarized in Algorithm 2.
The decompression algorithm starts by initializing the
list of vertices with the firs three vertices - v1, v2 and
v3 - that appear at the beginning of the file These
vertices defin the firs triangle by which the list of
faces is initialized. Next, we read the rest of the fil
character by character searching for a linking agent or
a new vertex.

• If the character is the linking agent ’#’, this
means that we found an auxiliary triangle. In
this case, the next token in the fil will be a ver-
tex, say v4. If vertex v4 does not exist in the list

Algorithm 2
Input: A strip fil
Output: The corresponding OFF fil
Initialize the list of vertices by the firs three ver-
tices,
while not end of the strip fil do
Read a new character c from the string
if c is a linking agent then
see details below

else
it is a vertex

end if
end while

of vertices then v4 will be added to the list. The
new vertex in combination with v1 and v3 recon-
struct a new triangle to be inserted to the list of
faces.

• If the linking agent is the character ’!’, this im-
plies that there is a new vertex to be read from
the fil and a change in the order between v3 and
v2, such that v3 becomes v2. The newly retrieved
vertex will be v3; v1, v2 and v3 reform the next
triangle to be inserted to the list of faces.

• If the linking agent is the character ’A’, this im-
plies that there are new two vertices to be read
from the fil v2 and v3. v1, v2 and v3 reform
again the next triangle to be inserted to the list of
faces.

• If the linking agent is the character ’B’, this
means that v2 becomes v1, and the next entries
in the compressed fil will be two vertices v2 and
v3. The vertices v1, v2 and v3 form the next tri-
angle to be inserted to the list of faces.

• If the linking agent is the character ’C’, this
means that v3 becomes v1, and the next entries
in the compressed fil will be the two vertices v2
and v3. The vertices v1, v2 and v3 form the next
triangle to be inserted to the list of faces.

• If the linking agent is the character ’?’ this
means that the next entry is a vertex identifie .
This vertex becomes v1 and the next entries in
the compressed fil will be two vertices v2 and
v3. The vertices v1, v2 and v3 form the next tri-
angle to be inserted to the list of faces.

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 105 Issue 4, Volume 11, April 2012



• If the linking agent is equal to ’<’ then we will
read a vertex identifie , which is already loaded
in the the buffer. The linking agent ’<’ is fol-
lowed by the index of a vertex that have been
already represented in the list of vertices.

• Otherwise this implies a change in the order of
vertices v1, v2 and v3, such that v2 becomes v1
and v3 becomes v2. Next, we will read the co-
ordinates of a new vertex v3. Vertices v1, v2 and
v3 form the next triangle to be inserted to the list
of faces.

Note that each time we reed a vertex there are two
cases. In the firs case, the vertex is already loaded to
the buffer. We therefore, will fin a linking agent ’<’
followed by the index of this vertex inside the buffer.
In the other case, the vertex is new. In this case we
read its coordinates directly from the file
For example, consider the simple strip given in

Section 2, “0 0 0 0 0 1 0 1 0 #1 0 0 <4
!<1”. The application of our decompression al-
gorithm decodes this strip fil to original list of
vertices={(0,0,0),(0,0,1),(0,1,0),(1,0,0)} and list of
faces={(1,2,3), (1,3,4), (2,3,4), (2,4,1)}.

4 Single vs. multiple stripification

The visualization process of a model in any standard
format, such as OFF, has to wait until receiving all in-
formation about the geometry first This leads to a lot
of latency in the visualization process. On the other
hand, our algorithm encodes and decodes the geome-
try and the connectivity of the 3D models in an inter-
woven fashion. The geometry and the connectivity in-
formation are received together which means that the
visualization process will start as soon as the recep-
tion of the firs three vertices from the strip fil with-
out any latency. Figure 7 shows an example of the
progressive visualization of Triceratops model. The
model is stripifie as a single strip. The visualization
starts immediately once the firs three vertices, at the
begining of the strip file are received to the graph-
ics pipeline. Figures 7(a), 7(b), 7(c), 7(d) and 7(e)
correspond to the transmission of 20%, 40%, 60%,
80% and 100% respectively of the strip to the graph-
ics pipeline.

The proposed strip fil generation presented in Sec-
tion 2 generates a single strip for each input model.
However, we can modify this algorithm to generate
two or more strips for each model. We modify our al-
gorithm, Algorithm 1, by introducing a threshold that
control the number of triangles contained in the strip.
For example, to generate two strips for a given model,
we set the threshold value to Nf

2
whereNf is the total

number of faces in the model.

Our modifie algorithm generates two types of
strips: “independent” and “dependent” strips. Inde-
pendent strips means that each strip has its own list of
vertices. While, on the other hand, dependent strips
means that there is only one list of vertices shared for
all strips. The difference between dependant and in-
dependent strips is that independent strips generates
fil with sizes greater than that of dependent strips.
However, working with independent strips gives the
ability to use the traditional techniques of parallelism
to accelerate the reconstruction process. Parallel strip
fil generation become more suitable when we ma-
nipulate large scale meshes. Carrying out multiple
operations or tasks simultaneously enables us to navi-
gate the list of vertices and faces of large scale meshes
very quickly. Figure 8 shows an example of the cre-
ation of multiple strips for the Gargoyle model. In
this example, we use the standard space paritioning
using the Kd-tree data strucutre [4] to localize each
strip in a single leaf of the kd-tree. The division step
is perforfmed as the follolwing. Starting from the ini-
tial bounding box of the set of points of the mesh,
each cell Ci of the kd-tree hierarchy is split, in addi-
tion to thresholding the number of triangles in Ci, if
the following condition is not satisfied

∀p ∈ Ci → ~np · ~ni > 0.2 (2)

where ~np is the surface normal at the point p and ~ni

is the average normal vector in Ci. This condition en-
sures that there is no folding inside the cellCi. There-
fore projecting the local points of the cell Ci on the
local sphere will keep the coherency of local neigh-
borhood visibility of surface patch contained in Ci.
The use the kd-tree with this splitting condition pre-
vents the strips from the conversion into thin curves
along the object surface. In addition, this kind of divi-
sion can guide the visualization process by removing

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 106 Issue 4, Volume 11, April 2012



(a) 20% (b) 40% (c) 60%

(d) 80% (e) 100%

Fig. 7: Progressive visualization of Triceratops model.

(a) Original (b) 300 cells (c) 300 strips (d) 100 cells (e) 100 strips

Fig. 8: Generation of multiple strips for the Gargoyle model. (a) the original model. (b), (c) the division of the
model into 300 strips. (d), (e) the division into 100 strips.

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 107 Issue 4, Volume 11, April 2012



hidden patches, cells, from the visualization pipeline.
Figures 8(b) and 8(d) represent the space partitioning
into 300 and 100 cells, respectively, using the kd-tree.
Figures 8(c) and 8(e) show the corresponding strips
of the previous two trees.
Table 1 shows a comparison between generating a

single strip or two independent strips for a set of mod-
els. The second column presents the initial model
size. The third column gives the size of the encod-
ing of the models as a single strip S. Finally, the
fourth and the fift columns present the size of strip
fil when dividing the given models into two inde-
pendent strips S1 and S2 respectively. Table 1 reflect
that the sum of the sizes of the independent strips is
not so far from the size of the single strip.
Generating more strips for each model enables to

visualize the objects efficientl by hiding strips that
are not compatible with the viewing direction. This
makes the visualization more adaptable to the viewing
direction, ~u. For each strip S, we compute the average
normal vector of this strip. To do this, we compute
the average normal vector for each face contained in
S and averaging these unit normals:

~nS =

∑NS
f

i=1
~ni

NS
f

(3)

where NS
f is the total number of faces in the strip S,

~ni is the unit normal vector for the face fi ∈ S. Using
the information of the average normal vector ~nS , we
can predict whether S is visible or not. The is per-
formed by evaluating the inner product (~nS · ~u). If
this value is greater than zero then the strip S is not
visible.

5 Examples and comparisons

Our algorithms are implemented in C++. The used
data structures are based on the polyhedral surface
and the Halfedge templates [1] to manipulate the in-
put models. In addition, we use the kd-tree data struc-
ture to space partitioning the bounding box containing
the objects. The input file are given as OFF files
The results presented in this paper are obtained on a
2.6 GHz Pentium Dual-Core CPU with 2.0GB RAM.
Table 2 contains some detailed information about

the application of the proposed stripificatio algo-

rithm on a set of models. The firs and second column
gives the input object and its original size. The third
column show the size of the obtained strip. A com-
parison between the original object size and the com-
pressed size is presented in the fourth column. The
ratio here is computed over the sizes of the original
ASCII file and the generated strip files The com-
pression ratio is evaluated as follows:

Ratio =
fi − fc

fi
, (4)

where fi is the input fil size and fc is the compressed
fil size. The fift and the sixth columns represent the
time in second elapsed to compress the correspond-
ing fil and the decompression into the original OFF
format respectively. As shown in Table 2, our strip-
ificatio algorithm results in a good compression ra-
tios. On the other hand, the decompression process
does not required a large amount of time to decode
the given strip file Table 1 shows the generation of
multiple independent strips, here two strips, for the
same set of models. The generation of multiple strips
for the same model preserves the compression aspect
of the method. On the other hand, Figure 8 shows the
use of the multiple stripificatio in adaptive visual-
ization. The space partitioning using the kd-tree and
computing the average normal for each strip does not
take more than 0.3 seconds for an object containing
200k of triangles.

6 Conclusion and limitations

Thanks to the recent advances in 3D aquisition tech-
niques, 3D meshes have become more available and
contain a tremendous number of sample points and
faces. Streaming or visualizing these kind of objects
is the bottleneck of the computer graphics domain.
In this paper, we present a technique that handle this
problem. Our technique is based on converting the in-
put mesh into a triangular strip. We enhance our strip-
ificatio by introducing the usage of the well known
kd-tree space partitioning to localize the strip in a
compact region on the surface of the mesh. This pre-
vents the algorithm from spreading thin strips along
the mesh surface. However, our technique suffers
from some limitations such as:

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 108 Issue 4, Volume 11, April 2012



Model Input size(KB) S S1(KB) S2(KB)
Chinese Dragon 763 334 187 206
Bunny 2337 1376 772 848
Holes 260 149 85 92
Mannequin 818 440 244 269
Triceratops 172 95 54k 59
Gargoyle 6624 3729 2102 2312
Cow 188 107 66 72
Eros 35978 14631 7352 7694
Isidore-horse 18068 8303 4178 4267
Lagomaggiore 50695 18677 9939 9698
Camel 2448 1269 672 711
Neptunel 165001 38319 74088 39411

Table 1: Generating two independent sub-strip file instead of a single one. Second column represents the initial
fil size (input model), third column gives the single strip size and the fourth and the fift columns represent each
sub-strip size.

Model O- file(KB C- file(KB Ratio C-time(sec) D-time(sec)
Chinese Dragon 763 334 0.56 13 1

Bunny 2337 1376 0.41 50 4
Holes 260 149 0.43 6 1

Mannequin 818 440 0.46 17 1
Triceratops 172 95 0.45 3 1
Gargoyle 6624 3729 0.44 103 8
Cow 188 107 0.43 4 1
Eros 35978 14631 0.59 487 42

Isidore-horse 18068 8303 0.54 314 21
Lagomaggiore 50695 18677 0.61 800 68

Camel 2448 1269 0.48 44 3
Neptunel 165001 74088 0.55 3830 184

Table 2: Comparison between the size of the original ASCII file and the obtained strip files fourth column.
Second and third columns represent the input 3D model and the obtained strip fil sizes respectively. Compression
and decompression times (in seconds) are given in the fift and sixth columns respectively.

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 109 Issue 4, Volume 11, April 2012



1. Although our technique generates triangle strips
with as few swaps as possible, there is no rule to
guarantee the generation of strips with minimum
number of swaps for a given mesh.

2. The generated number of local strips is not adap-
tive to the local geometry of the surface. In fact,
the number of strips is based on a user parameter.

References

[1] CGAL, Computational Geometry Algorithms
Library. http://www.cgal.org.

[2] K. Akeley, P. Haeberli, and D. Burns. tomesh.c,
a C-program on the SGI Developer’s Toolbox
CD, 1990.

[3] B. G. Baumgart. Winged edge polyhedron rep-
resentation. Technical report, Stanford, CA,
USA, 1972.

[4] J. L. Bentley. Multidimensional binary search
trees used for associative searching. Commun.
ACM, 18:509–517, September 1975.

[5] M. M. Chow. Optimized geometry compression
for real-time rendering. In IEEE Visualization
97, pages 347–354, 1997.

[6] C. Courbet and C. Hudelot. Random accessi-
ble hierarchical mesh compression for interac-
tive visualization. In Proceedings of the Sympo-
sium on Geometry Processing, SGP ’09, pages
1311–1318, 2009.

[7] M. Deering. Geometry compression. Computer
Graphics Forum, 29:13–20, 1995.

[8] Q. Deng, M. Zhou, and J. Zhang. Real-time ren-
dering of large scale scenes based on multires-
olutional strip models. In ICALIP’10: Interna-
tional Conference on Audio Language and Im-
age Processing, pages 234–238, 2010.

[9] F. Evans, S. S. Skiena, and A. Varshney. Com-
pleting sequential triangulations is hard. Tech-
nical report, 1996.

[10] F. Evans, S. S. Skiena, and A. Varshney. Opti-
mizing triangle strips for fast rendering. In IEEE
Visualization, pages 319–326, 1996.

[11] T. Gurung, M. Luffel, P. Lindstrom, and
J. Rossignac. Lr: compact connectivity repre-
sentation for triangle meshes. ACM Transaction
on Graphics, 30(67):67:1–67:8, 2011.

[12] J. Peng, C.-S. Kim, and C. J. Kuo. Technologies
for 3D mesh compression: A survey. Journal of
Visual Communication and Image, 16(6):688–
733, 2005.

[13] J. Rossignac. Edgebreaker: Connectivity com-
pression for triangle meshes. IEEE Transac-
tions on Visualization and Computer Graphics,
5(1):47–61, 1999.

[14] D. Shreiner, M. Woo, J. Neider, and T. Davis.
OpenGL Programming Guide. 7 edition, 2009.

[15] F. G. M. Silva and P. Yadav. Compression and
progressive visualization of geometric models.
In WSCG’08: International Conference in Cen-
tral Europe on Computer Graphics, Visualiza-
tion and Computer Vision, pages 71–78, 2008.

[16] B. Speckmann and J. Snoeyink. Easy triangle
strips for TIN terrain models. In Proceedings of
9th CCCG, pages 239–244, 1997.

[17] G. Taubin and J. Rossignac. Geometric com-
pression through topological surgery. ACM
Transactions on Graphics, 17(2):84–115, 1998.

[18] C. Touma and C. Gotsman. Triangle mesh com-
pression. In Proceedings of Graphics Interface,
pages 26–34, 1998.

[19] P. Vanecek and I. Kolingerová. Multi-path algo-
rithm for triangle strips. In Computer Graphics
International, pages 2–9, 2004.

[20] P. Vanecek and I. Kolingerová. Comparison of
triangle strips algorithms. Computers & Graph-
ics, 31(1):100–118, jan 2007.

[21] X. Xiang, M. Held, and J. Mitchell. Fast and ef-
ficien stripificatio of polygonal surface mod-
els. In I3DG, pages 71–78, 1999.

WSEAS TRANSACTIONS on COMPUTERS M.-H. Mousa, M.-K. Hussein

E-ISSN: 2224-2872 110 Issue 4, Volume 11, April 2012




