
A Service-oriented Non-intrusive Software Fault-tolerant
Programming Model

SHUANGHUI YI, LIWEI LI

Beijing Institute of System and Engineering
BEIJING 100101, CHINA

flyysh@126.com

Abstract: - Only through good design can we obtain the high dependability[1,2] of the software. How to establish
the high dependability of the software from the design is the current problem to be solved. Existing object-
oriented programming methods and techniques cannot adapt to service-oriented credibility design requirements.
This paper will propose a non-intrusive software fault-tolerant programming model based on the research of the
fault-tolerant ability of service-affecting service. By establishing service fault-tolerant design and development
model, the flexible compilation of trusted attributes is realized.

Key-Words: - service-oriented; fault-tolerance; programming model

1 Introduction
When developing and designing fault-

tolerant software (or extending a system that is
not fault-tolerant), developers need to focus on
the code that is used to implement fault-tolerant
logic (that is, non-functional code, which is
often business-independent and "cross-cuts" a
number of functional modules), making the
fault-tolerant system intrusive, increasing the
development difficulty and maintenance costs
of the system. On the other hand, when
specifying different fault-tolerant strategies or
performance indicators, the behavior of each
service component (especially the component
with fault-tolerant logic) in fault-tolerant
software may be completely different, while the
traditional object-oriented analysis and design
methods lack fault-tolerant software. The
unified description mechanism of the system in
the design stage reduces the manageability and
reusability of fault-tolerant logic.

2 Programming Model Framework
Through analysis, we believe that the root

cause of the above problems lies in the lack of
common programming-level fault-tolerant
model support based on existing platforms and
technologies. This project introduces AOP and
replica technology into the design phase of
fault-tolerant software, and proposes a non-
intrusive fault-tolerant software model with

software redundancy replica as fault-tolerant
mechanism.

The model describes the quality of service
and performance indicators of the software
system with a declarative fault-tolerant strategy.
Through the aspect-oriented UML extension
mechanism[3], the structure of the fault-tolerant
aspect and the interaction between the replicas
are accurately characterized in the design phase,
and the interception and proxy mechanisms are
implemented at runtime. The specified fault-
tolerant aspect is dynamically woven into the
software system, ultimately achieving the goal
of eliminating or minimizing the intrusiveness
of the fault-tolerant logic in the system to the
business logic.

Figure 1. Non-intrusive fault tolerant software

programming model

WSEAS TRANSACTIONS on COMPUTER RESEARCH Shuanghui Yi, Liwei Li

E-ISSN: 2415-1521 46 Volume 7, 2019

Received: Νοvember 15, 2018. Revised: December 20, 2018. Accepted: February 25, 2019.

Published: March 1, 2019.

Eliminating or reducing intrusion can be
divided into three steps: aspect separation,
aspect realization, and aspect weaving. For our
fault-tolerant model, the aspect separation is
mainly reflected in the fault-tolerant strategy
described by various fault-tolerant indicators
and service quality; the aspect implementation
is to encode the various fault-tolerant logic; and
the aspect-cut weaving is the fault-tolerance
described by the aspect. The logic "adds" to the
business logic contained in the system,
ultimately making the software system fault-
tolerant. The model is shown as figure 1.

The typical working scenario of the model is
as follows:

i) The service requester invokes a service
request. In general, the requester is the client of
requesting a service, or it may be a member of a
cluster formed by multiple redundant copies of
software.

ii) The service request is intercepted by the
Request Interceptor and forwarded to the proxy
(Dynamic Proxy). The request interceptor plays
the role of a dispatcher and is the only visible
interface that the fault-tolerant application
(cluster member or service group) exposes to
the outside world. Its role is: ①to uniformly
control and manage all requests that should be
sent to the service (such as initialization,
authentication, permission checking, etc.); ②
decoupling the dependencies between requester and
executor. When the service requester requests
access to the service's business logic, we set up
a proxy for each service of the original
application for non-intrusive fault tolerance
purposes. Proxy is an intermediary between
requests interceptors and original services, and
is woven into fault-tolerant logic to ensure
various performance metrics and quality of
service. On the first invoking(access to service), the

proxy has not yet been created, then: ①Dynamic
Aspects Weaver loads and parses the fault
tolerance policy (FT Policy) for application
configuration , which defines various quality of
service and fault detection /recovery mechanism
at a higher level (generally described in XML
format), as shown in Figure 1. ②According to
the fault-tolerant strategy, the dynamic aspect

weaver matches the relevant aspects in the
Aspects Manager, and weave the logic
contained in these aspects into the
corresponding services, and finally create the
proxy service, as shown in Figure 1(2.2, 2.3).

iii) The proxy invokes the business logic of
the original service according to the service
request. The proxy does not contain the
business logic code of its corresponding
original service, but only the forwarding code.
The real performer of the business logic is still
in the original service. While completing the
business logic, the proxy service is also
responsible for completing fault-tolerant logic
(such as event notification, quality of service,
state synchronization, etc.) and other non-
critical logic (logs, transactions, security, etc.)
whose execution details are completely
transparent to the service requester.

In terms of fault tolerance mechanism, the
model adopts the idea of redundant copies, that
is, multiple copies of the key services contained
in the same software form a cluster, and each
copy is a member of the cluster. How to ensure
the state consistency among the members of the
cluster, it is not described in this paper.

The implementation of the non-intrusive
fault-tolerant software programming model
faces three key questions: How is the fault-
tolerant strategy expressed? How to build the
model of fault-tolerant aspect? How is fault-
tolerant logic woven? In response to these three
questions, the research team initially considered
the following technical approaches to solve
them.

3 Problem Solution
3.1 Declarative fault tolerance strategy

Based on the characteristics of the current
mainstream object-oriented programming
language, the better way to eliminate intrusion
is declarative (or configuration) programming,
that is, let the software system express its
various performance indicators or quality of
service in a non-programming way, then load
and analyze these requirements at runtime and
dynamically "weave" them into the system. The
fault-tolerant strategy describes the various
service quality and performance indicators that

WSEAS TRANSACTIONS on COMPUTER RESEARCH Shuanghui Yi, Liwei Li

E-ISSN: 2415-1521 47 Volume 7, 2019

the fault-tolerant system should be able to
achieve, and the adjustment behavior and
adaptation mechanism that the system should
take actively when the error occurs or the
related indicators are not met. The pre-designed
declarative fault-tolerant strategy is as follows:
<? xml version="1.0" encoding="UTF-8"?>
<policy xmlns="http://www.bise.cn/schema/policy"
xmlns:ft="http:// www.bise.cn/schema/ft"
xmlns:qos="http:// www.bise.cn/schema/qos"...>
<ft:cluster target="*.*.*（*）">
<transport>bise.cn.transport</transport>
<config>udp.xml</config>
<jndi>topic/FT_APP</jndi>
<properties>
<property name="msg_max_bytes"
value="10240"/>
<property

name="skip_suspected_members"value="true"/>
<property name="processing_delay" value="0"/>
<property name="excluding_self" value="false"/>
</properties>
<view>
<coordinator>first_active</coordinator>
<fd_interval>400</fd_interval>
<fd_timeout>8000</fd_timeout>

<merge>auto</merge>
</view>
</ft:cluster>
<qos:template name="crud">
<response>
<target method=="*.biz.*Impl.add*（*） |upd*
（*）|del*（*）"readonly="false">
<cascade level="2"/>
<trigger timeout="1000" operation="rollback"/>
<tx advice="crud_tx_advice"/>
</target>
</response>
<load_balancing target="*.sevice.*.*（*）">
<trigger>
<property name="cpu" value="80" logic="and"/>
<property name="memory" value="60"
logic="or"/>
</trigger>
<strategy excluding="true">most_lazy</
strategy>
<default>last_active</default>
</load_balancing>
</qos:template>
</policy>
During the system operation period, the

fault-tolerant policy can be replaced at any time.
The system periodically polls its version and

status and parses it to meet different service
quality and performance indicators.

3.2 Fault tolerant aspect modeling

The modeling of fault-tolerant aspects is
essentially a process of describing the structure
and behavior of key services and their replicas
related to fault-tolerant logic. Different from the
traditional object-oriented design method, the
aspect-oriented design (AOD) method
emphasizes extracting and describing the aspect
in the design stage to improve the reciprocity of
the aspect. Our model treats each fault-tolerant
aspect of a service-oriented software system as
a set of roles, and defines each role as a set of
properties. Taking into account the lack of
UML language widely used in industry, the
modeling capability of the aspect is intended to
describe the fault-tolerant aspect using the
UML extension mechanism[4] combined with
the Object Constraint Language (OCL). The
UML extension mechanism of the fault-tolerant
aspect designed by the research group is shown
in the figure below.

Figure 2 shows the structure of the replica
state synchronization aspect (StatusSynch) and
the interaction between replicas. Member is a
redundant copy of the service that constitutes a
group. Multiple members form a group with a
subject/observer relationship. This relationship
is implemented by the StatusSynch aspect.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Shuanghui Yi, Liwei Li

E-ISSN: 2415-1521 48 Volume 7, 2019

Figure 2. Fault-tolerant aspect modeling method
based on copy mechanism

It can be seen that the StatusSynch aspect
actually acted as an agreement between Group
and Member. The StatusSynch aspect describes
its properties and behaviors in a formal way,
such as member joining/leaving, state
returning/synchronization, etc., in addition to
defining the prerequisite/postconditions for
each behavior. After the StatusSynch aspect is
initialized by the Aspect Manager, the specified
target module is weaved according to the
information specified in the policy file.
Thereafter, while the user's operation request to
the target module is processed, the fault-tolerant
logic written in the StatusSynch aspect is
responsible for finding the context information
of the Group and completing the related
operations such as state synchronization[5].
Therefore, the original target module does not
realize the existence of the StatusSynch aspect
and the Group, thus eliminating the
aforementioned intrusiveness.

3.3 Fault-tolerant aspect weaving

At present, there are two ways to implement
aspect weaving: one is static weaving, that is,
embedding additional code by modifying source
code or compiled binary file at compile time,
post compile time or load time. The other is
dynamic weaving, which implements code

embedding at runtime through techniques such
as proxies. The static weaving provides better
performance, but lacks the flexibility to adjust
the behavior of the aspect at any time during the
runtime, which is critically useful for
applications that need to flexibly adjust the
fault-tolerant strategy based on changing
requirements and high-level business goals at
any time. Therefore, the research team take the
approach of dynamic weaving to achieve fault-
tolerant logic dynamic injection.

Taking the Java platform as an example, the
JDK introduced the dynamic proxy mechanism
from version 1.3. The essence of dynamic proxy
mechanism is to introduce a mediator (ie, proxy)
between the client and the service, which
decouples the dependencies of them ,and can
dynamically add certain behaviors (such as
fault-tolerant logic) to the proxy at runtime.
However, dynamic proxies using JDK must
have a premise that the class being proxied
must implement one or more interfaces, but for
most software services (which may be a class),
this premise is often not met. For services that
do not implement any interfaces, we can
implement dynamic weaving of additional logic
through an interception mechanism. The
specific method is: firstly, we should
dynamically generate a subclass of the target
class, then override the non-final method of the
target class, and set a callback for it. After that,
the method calls to the target class will be
transferred to the user-defined interceptors
(interceptors), so that the fault-tolerant logic can
be dynamically woven to the appropriate
location of the target class.

4 Conclusion

The paper introduces AOP and replica
technology into the design stage of fault-
tolerant software, and proposes a non-intrusive
fault-tolerant software model with software
redundancy replica as fault-tolerant mechanism.
The model describes the quality of service and
performance indicators of the software system
with a declarative fault-tolerant strategy.
Through the aspect-oriented UML extension
mechanism, the structure of the fault-tolerant

WSEAS TRANSACTIONS on COMPUTER RESEARCH Shuanghui Yi, Liwei Li

E-ISSN: 2415-1521 49 Volume 7, 2019

aspect and the interaction between the replicas
are accurately characterized in the design phase.
The interception and proxy mechanisms are
implemented at runtime, and the specified fault-
tolerant aspect is dynamically woven into the
software system, ultimately achieving the goal
of eliminating or minimizing the intrusiveness
of the fault-tolerant logic in the system to the
business logic.

References:
[1] A. Avizienis, et al. Concepts and Taxonomy of

Dependable and Secure Computing, IEEE
Trans. On Dependable and Secure Computing,
Vol.1, No.1, Jan-March 2004, pp.11-33

[2] E. Gamma, et al., Design Patterns: Elements of
Reusable Object-oriented Software, Addison-
Wesley,1995.

[3] W. Zhao. BFT-WS: A Byzantine Fault
Tolerance Framework for Web Service. Proc.
Middleware for Web Service Workshop, 2007

[4] Jean-Claude Laprie, et al. Modelling
Interdependencies between the Electricity and
Information Infrastructures, CoRR
abs/0809.4107, 2008.

[5] Victor Basili,Paolo Donzelli, and Sima Asgari.
High Dependability Computing Program, The
Unified Model of Dependability, 20742
Technical Report CS-TR 4601-UMIACS-TR-
2004-43,Computer Science Department
University of Maryland College Park,
Maryland June 2004.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Shuanghui Yi, Liwei Li

E-ISSN: 2415-1521 50 Volume 7, 2019

