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Abstract: - We are interested in problems from combinatorial optimization, more precisely, the vehicle routing 
problem with resource constraints. Given the large size of the problems encountered in practice, these models 
are solved by an approach based on column generation that can handle implicitly all feasible solutions and a 
master problem determining the best solution. We propose in this paper an approach to improve the 
acceleration of the method of column generation for solving the problem of construction vehicle routing, it is 
projected in each arc, the resources a vector of size smaller by using a Lagrangean relaxation algorithm to 
determine the coefficients of the projection arc combined with an algorithm for re-optimization, then generates 
a sub-set of complementary solutions to the master problem. The preliminary experiments of our technique 
gave good results on instances of random vehicle routing. 
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1 Introduction 

The vehicle routing problem with time windows 
(VRPTW) is given by a set of customers N and a set 
of K vehicles available in a repository. This problem 
is to find a set of minimum cost tour, departing and 
returning to a single repository, where each 
customer is visited by one vehicle to satisfy some 
demand. Each customer must be served during a 
given time window. A vehicle arriving in advance at 
a customer waits until the start date of service 
without additional cost, time windows in this case 
are called 'hard'. Some models penalize the hold 
with an extra cost, these models are called 'soft ', but 
much research is devoted to the time windows 
'hard'. A vehicle arriving late at a customer is not 
allowed to perform his service. A feasible tour is a 
series of visits (conducted by the same vehicle) 
respecting the time windows, which begins and ends 
at the same depot. 

The VRPTW is defined on the networks  𝐺𝐺𝑘𝑘 =
(𝑋𝑋𝑘𝑘 ,𝐴𝐴𝑘𝑘), X = 𝑁𝑁∪ {𝑠𝑠𝑘𝑘 , 𝑡𝑡𝑘𝑘}, where the depot is 
represented by the two nodes 𝑠𝑠 and 𝑡𝑡, and 𝑁𝑁 =
{1, … . ,𝑛𝑛} is the set of vertices representing the 
customer, and 𝐴𝐴 the set of arcs that interconnect the 
customers and the depot. An arc (i, j) ∈ 𝐴𝐴 means the 
possibility of linking the service customers i and j. 
To write the formulation of this problem, we 
introduce the following notations: 

– 𝑐𝑐𝑖𝑖𝑖𝑖  · is the cost of the arc (i, j) ∈ A. 

– 𝑡𝑡𝑖𝑖𝑖𝑖  · The arc duration (i, j) ∈ A. 

– [𝑎𝑎𝑖𝑖  , 𝑏𝑏𝑖𝑖] The time window during which the 
customer service 𝑖𝑖 ∈  𝑁𝑁 · must start. 

– 𝑑𝑑𝑖𝑖  · Customer demand i ∈ 𝑁𝑁. 

– Q · capacity of each vehicle. 
Assignment of customers to vehicles is called 
feasible if: 
– The combined demand of customers visited 
by a vehicle does not exceed its capacity. 
– Time constraints are met by each vehicle. 
– Each customer is visited by one vehicle. 
– Every vehicle that leaves the depot back to 
depot after completing his tour. 
 
The problem is to find a feasible assignment of 
vehicles to tour the minimum cost. 
 
 
2 Formulation 

The VRPTW can then be formally described as 
the following multi-commodity network flow model 
with time window: 
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                                                               (1)

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖 :(𝑖𝑖,𝑖𝑖 )∈𝐴𝐴
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= 1  for  𝑖𝑖 ∈ 𝑁𝑁 = {1, … . . ,𝑛𝑛}                                   (2)

� 𝑑𝑑𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖↔

(𝑖𝑖 ,𝑖𝑖 )∈𝐴𝐴

≤ Q      for  𝑘𝑘 ∈ 𝒦𝒦                                                             (2′ ) 

� 𝑥𝑥𝑜𝑜𝑘𝑘𝑖𝑖
𝑘𝑘

𝑖𝑖:�𝑜𝑜𝑘𝑘 ,𝑖𝑖�∈𝐴𝐴

= 1  for  𝑘𝑘 ∈ 𝒦𝒦                                                              (3)

� 𝑥𝑥𝑖𝑖𝑑𝑑𝑘𝑘
𝑘𝑘

𝑖𝑖:�𝑖𝑖 ,𝑑𝑑𝑘𝑘�∈𝐴𝐴

= 1  for  𝑘𝑘 ∈ 𝒦𝒦                                                              (4)

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖:(𝑖𝑖,𝑖𝑖 )∈𝐴𝐴

= � 𝑥𝑥𝑖𝑖𝑗𝑗𝑘𝑘

𝑗𝑗:(𝑖𝑖 ,𝑗𝑗)∈𝐴𝐴

  for  𝑖𝑖 ∈ 𝑁𝑁                                                    (5)

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 �𝑇𝑇𝑖𝑖𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑘𝑘 − 𝑇𝑇𝑖𝑖𝑘𝑘� ≤ 0  for (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 ,𝑘𝑘 ∈ 𝒦𝒦          (6)
𝑎𝑎𝑖𝑖𝑘𝑘 ≤  𝑇𝑇𝑖𝑖𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖𝑘𝑘   for  𝑖𝑖 ∈ 𝑁𝑁, 𝑘𝑘 ∈ 𝒦𝒦                                 (7)
𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1} ,𝑇𝑇𝑖𝑖𝑘𝑘 ≥ 0  for (𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴 ,𝑘𝑘 ∈ 𝒦𝒦                       (8)

� 

Binary variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  indicate if the tour takes the arc 
(𝑖𝑖, 𝑖𝑖) ∈ 𝐴𝐴, while the variable 𝑇𝑇𝑖𝑖𝑘𝑘  indicates the 
cumulative consumption of resource at each node 𝑖𝑖. 

The objective function (1) minimizes the total 
travel cost. The constraints (2) ensure that each 
customer is visited exactly once, and (2′) state that a 
vehicle can only be loaded up to it's capacity. Next, 
equations (3 − 5) indicate that each vehicle must 
leave the depot s ; after a vehicle arrives at a 
customer it has to leave for another destination; and 
finally, all vehicles must arrive at the depot t. The 
inequalities (6) establish the relationship between 
the vehicle departure time from a customer and its 
immediate successor. Finally constraints (7) affirm 
that the time windows are observed, and (8)  are the 
integrality constraints. Note that an unused vehicle 
is modeled by driving the "empty" route (s,t), and 
the constraints (5) provides the cumulative 
consumption of resource at node 𝑖𝑖, since we have :  

𝑇𝑇𝑖𝑖𝑘𝑘 = max�𝑎𝑎𝑖𝑖𝑘𝑘 ,𝑇𝑇𝑖𝑖𝑘𝑘 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘 �          (9) 

Note that the constraints (3 − 7) are local 
constraints valid only for the network 𝐺𝐺. Only the 
partitioning constraints (2) are global constraints 
linking the 𝐾𝐾 sub-networks. The relaxation of these 
binding constraints and the decomposition of the 
initial problem by sub-network will be an interesting 
option for a resolution. Finally, note that resource 
constraints (6 − 7) make the problem (VRPTW) 
NP-hard. Even the problem of realizability is 
associated NP-complete [5]. 

 

3 Solving Approaches 

3.1 Principles of Decomposition 
There are two types of constraints in the system 
(2) − (7) : 

 (i) The partitioning constraints (2), said binder or 
global, binding all vehicles 𝑘𝑘 = 1, … . ,𝐾𝐾, 

 (ii) Constraints (3) − (7) of each vehicle 𝑘𝑘 ∈
{1, … . ,𝐾𝐾} and defining a legal road. The matrix 
associated with constraints (3) − (7) is block 
diagonal, and the objective (1) is separable (for 
linear), solving the continuous relaxation of this 
model may be based on the Dantzig-Wolfe 
decomposition. In this type of decomposition, the 
constraints (3)  −  (7) define 𝐾𝐾 independent sub-
problems and global constraints (2) are stored in the 
master problem. In a schema type column 
generation, it is alternatively solve the problem and 
the 𝐾𝐾 master sub-problems. For a complete solution, 
this scheme can be applied at each node of the 
search tree. The major difficulty in solving sub-
problems whose state spaces can grow exponentially 
with the number of resources, making essential use 
of heuristics. On the other hand, the convergence of 
the scheme of column generation is sensitive to the 
quality of solutions provided by the resolution of 
these sub-problems, the effective resolution of 
instances from real industry needs to find a good 
compromise between solution quality and time 
resolution of sub-problems. In what follows, we 
describe the general principle of column generation 
for the problem (VRPTW). 

3.2 Column Generation, Master Problem 
and Sub-Problem 

In this approach, the master problem is rewritten 
by a Set Partitioning (MP):  

                                            
min∑ 𝑐𝑐𝑟𝑟𝑥𝑥𝑟𝑟                                                 (10)𝑟𝑟∈ℛ  

s. t ≡ �
�𝑎𝑎𝑖𝑖𝑟𝑟𝑥𝑥𝑟𝑟 = 1 for  𝑖𝑖 ∈ 𝑁𝑁 = {1, … . . ,𝑛𝑛}    (11)     
𝑟𝑟∈ℛ
𝑥𝑥𝑟𝑟 ∈ {0,1}     for    𝑟𝑟 ∈ ℛ                         (12)

� 

Or ℛ means all feasible tours satisfying resource 
constraints and sequence between customers, 𝑐𝑐𝑟𝑟  
represents the cost of the tour  𝑟𝑟 ∈ ℛ, 𝑎𝑎𝑖𝑖𝑟𝑟 = 1 if and 
only if customer 𝑖𝑖 is visited by the tour 𝑟𝑟, and the 
binary variable 𝑥𝑥𝑟𝑟  indicates the choice whether or 
not the tour 𝑟𝑟 in the solution. 
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We note (𝑀𝑀𝑀𝑀�����) the continuous relaxation of problem 
(𝑀𝑀𝑀𝑀) where the integrity constraints (12) are 
replaced by 𝑥𝑥𝑟𝑟 ≥ 0 for 𝑟𝑟 ∈ ℛ. The total number of 
eligible tour | ℛ | is generally an exponential 
function of the number 𝑛𝑛 = |𝑁𝑁| of customers to 
cover the full enumeration of ℛ is prohibited. 
However, it is possible to find in a reasonable time 
an optimal solution of (𝑀𝑀𝑀𝑀�����) does generate a small 
subset of tours (ie, columns of the matrix of 
constraints). 

 In general, we solve at each iteration 𝑡𝑡 the restricted 
master problem(𝑀𝑀𝑀𝑀�����𝑡𝑡  ) :    

                                       
 min∑ 𝑐𝑐𝑟𝑟𝑥𝑥𝑟𝑟                                                (13)𝑟𝑟∈ℛ𝑡𝑡  

s. t ≡ �
� 𝑎𝑎𝑖𝑖𝑟𝑟𝑥𝑥𝑟𝑟 = 1 for  𝑖𝑖 ∈ 𝑁𝑁 = {1, … . . ,𝑛𝑛}    (14)     
𝑟𝑟∈ℛ𝑡𝑡

𝑥𝑥𝑟𝑟 ≥ 0   for      𝑟𝑟 ∈ ℛ 𝑡𝑡                              (15)

� 

or, if 𝛿𝛿𝑡𝑡−1 denotes the vector of multipliers 
associated with no flights in the resolution (𝑀𝑀𝑀𝑀�����𝑡𝑡−1), 
the tour  𝑟𝑟𝑡𝑡−1 lower cost of reduced negative is 
defined by 

𝑟𝑟𝑡𝑡−1 = 𝑎𝑎𝑟𝑟𝑔𝑔min
𝑟𝑟∈ℛ

�𝑐𝑐𝑟𝑟 −�𝛿𝛿𝑖𝑖𝑡𝑡−1𝑎𝑎𝑖𝑖𝑟𝑟

𝑛𝑛

𝑖𝑖=1

�           (16) 

The term column generation coms from the addition 
of column  𝑎𝑎𝑟𝑟𝑡𝑡  in the constraint matrix of the master 
problem at each iteration 𝑡𝑡. This iterative process of 
solving the master problem (13 − 15) and the sub-
problem (16) is stopped when all tours are positive 
reduced cost in solving the problem by a sign that 
the continuous optimum is reached. 

A variant of this method to accelerate the process in 
practice [3], is to add at each iteration a subset of 
complementary rounds of negative reduced cost 
instead of the single best round of the sub-problem 
(16). The desired maximum size of this subset of 
columns may be set to inbound to evolve during the 
algorithm. The overall complexity of the method is 
highly dependent on the complexity of the sub-
problem that resource constraints make it NP-hard. 
However, it is often possible to solve in a reasonable 
time by an implicit enumeration of ℛ by exploiting 
the graph structure of the sub-problem and using 
variants of shortest path algorithms.  

 

3.3 Resolution of Sub-Problem for Column 
Generation 

Noting that in the case of several sub-networks 
= 1, … . . ,𝐾𝐾 , under the resolution of problem (16) is 
decomposed by sub-networks, we omit the index k 
and the graph of the problem will be denoted as 
𝐺𝐺 = ({𝑜𝑜} ∪ 𝑉𝑉 ∪ {𝑑𝑑},𝐴𝐴) . 

Definition 1: A path from each origin o to node j, 
we associate a label  (Cj, Tj) representing the state of 
its resources and cost. 

Definition 2: Let (Cj, Tj) and (C′j , T′j) two labels 
associated with two feasible paths 𝑀𝑀 and 𝑀𝑀′from 𝑜𝑜 to 
𝑖𝑖. We say that(Cj, Tj)  dominates (C′j , T′j) (or 
alternatively that 𝑀𝑀 dominates 𝑀𝑀′ and there (Cj, Tj) ≤
(C′j , T′j)  (or as ≤ 𝑀𝑀′ ) if and only if  et 

Definition 3: A label associated with a feasible path 
from o to d, is called effective if it is minimal in the 
sense of the order relation ≤. A path is said to be 
efficient if it is associated to a label effective 

To solve this problem, Desrochers and Soumis [1] 
proposed a dynamic programming algorithm of 
pulling type. The nodes are sequentially treated in a 
topological order from source to destination. At 
each node the algorithm generates the labels by 
extending the paths corresponding to non dominated 
labels from its predecessor nodes. An extension is 
valid if the path is legal, otherwise it is suppressed. 
The dominance rule is then applied to eliminate all 
paths corresponding to dominated labels. 

The algorithm proceeds in two basic steps. At each 
𝑖𝑖 ∈ 𝑁𝑁, we have the following operations: 
1. Extension of roads (label generation), 
2. Filtering (feasibility test), 
3. Dominance (elimination of dominated labels). 

For each given node j, the labels are created by 
extending those present at node i, such that (𝑖𝑖, 𝑖𝑖) ∈
𝐴𝐴. More precisely a new label 𝐸𝐸(Cj, Tj) given by 

C𝑖𝑖 = C𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖  

𝑇𝑇𝑖𝑖 = max�𝑎𝑎𝑖𝑖 ,𝑇𝑇𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 � 

By assuming that all predecessors of node 𝑖𝑖 ∈ 𝑁𝑁 
have been considered, the dominance at node j can 
be interpreted as the determination of the Pareto 
optima for the multicriteria problem of 2 functions: 

�
min

𝑖𝑖;(𝑖𝑖 ,𝑖𝑖 )∈𝐴𝐴
�𝐶𝐶𝑖𝑖 + 𝑐𝑐𝑖𝑖𝑖𝑖  ; max�𝑎𝑎𝑖𝑖 , �𝑇𝑇𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 ���

𝑇𝑇𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖    
� 
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Dominance relation ≤ is a partial order relation, the 
effective number of labels to be treated increases 
exponentially with the number of resources, which 
makes the procedure very difficult to extend. 

In a recent work Nagih and Soumis [2] propose a 
method of aggregation of resources for PCC-CR by 
projection, in each node simultaneously using an 
algorithm of dynamic programming and Lagrangean 
relaxation.  

3.4 Algorithms 
And as the number of coefficients to adjust will be 

more important for the approach of projection arcs, 
finding the optimal multiplier 𝑢𝑢𝑖𝑖𝑖𝑖∗  require several 
iterations of DPA-L [2], this method can be 
expensive. To quickly obtain good heuristic 
solutions (feasible), our approach applied once 
DPA-L and then apply DPA-LND [2], using 
multipliers to find 𝑢𝑢𝑖𝑖𝑖𝑖  generate feasible columns and 
negative marginal cost. Specifically, we first choose 
a sequence of steps (𝑝𝑝𝑘𝑘) as the standard (∑𝑝𝑝𝑘𝑘) is 
divergent and lim𝑘𝑘→∞ 𝑝𝑝𝑘𝑘 = 0, i.e. conditions 
ensuring convergence of the algorithm sub gradient. 
It applies primarily DP-L using multipliers 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘−1 of 
the previous iteration, we find the sub gradients 
𝑆𝑆𝑔𝑔𝑖𝑖𝑖𝑖𝑘𝑘   corresponding arc (𝑖𝑖, 𝑖𝑖) then we calculate the 
new Lagrange multipliers 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘  . This heuristic is 
certainly based on the fact that when k is large, the 
vector 𝐶𝐶𝑘𝑘  reduced costs on the arcs of the network 
do not change much from one iteration to another of 
the algorithm for column generation. Thus, for k 
large, we can expect to see 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘  converge to an 
optimal value. 

The main steps of our approach are summarized 
below: 

 
Master problem 
   - Solve PMR 

Subproblem

�

�

− calculate the Lagrange multipliers 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘  
(Projection arc).

− calculate the solution 𝑍𝑍𝑍𝑍�𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 �, used in DPA − L          
 − calculate feasible solutions 𝑍𝑍𝑍𝑍𝑁𝑁𝑁𝑁�𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 �, used in DPA

−LND

�         

Generated the complementary solutions negative reduced 
cost.  

         
 

4 Numerical Results  
This section presents the preliminary evaluation 

of our approach to the problem of construction of 
vehicle routing with a single resource. Solomons 
100-customer Euclidean (VRPTW) instances are 
used to test our algorithm. In these instances, the 
travel time and the Euclidean distance between two 
customer locations are the same and this value is 
truncated to two decimal places. There are six 
deferent classes of instances depending on the 
geographic location of the customers (R: random; C: 
clustered; RC: mixed) and width of the scheduling 
horizon (1: short horizon; 2: long horizon). In this 
work, instances of type 1 are discarded due to the 
short horizon that does not allow a signicant number 
of routes to be sequenced to form a workday. 
Results are thus reported for R2, C2 and RC2. Due 
to the limitations of our exact approach, the 
computational study focuses on instances obtained 
by taking only the rst 25 customers from each 
original instance. Solomons (V RPTW) test 
instances are modied to t our problem. In particular, 
a value tmax to limit route duration is needed. This 
value was rst set to 100 in the case of R2 and RC2, 
and 200 in the case of C2. The value is larger for C2 
because the service or dwell time at each customer 
is 90, as opposed to 10 for R2 and RC2. Finally, a 
gain of 1 is associated with each customer and 
weighted by an arbitrarily large constant to 
maximize rst the number of served customers, and 
then minimize the total distance. The results for the 
instances with reduced time windows are shown in 
Table1. In the table1, a particular instance is 
identied by its class and its index followed by a dot 
and the number of customers considered. For 
example RC202:25 is the second instance of class 
RC2, where only the rst 25 customers are 
considered. In these table, column Problem is the 
identier of the problem instance, ItrGC is the total 
number of iteration of (PM) solved by Simplex,Col 
is the total number of columns generated during the 
branch-and-price algorithm, T(ssp) is the 
computation time in seconds and Obj. is the total 
distance. 
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Table 1: Results comparison for Solomon instances 

Problems  ItrGC Col T(ssp) Obj 

RC201.25  123 609 0.9 967.9 

RC202.25  110 1132 221.0 961.6 

RC203.25  713 2589 2566.2 751.3 

RC205.25  218 944 5.4 974.9 

RC206.25  444 1703 4.6 977.1 

RC207.25  3119 13989 418.4 819.6 

R201.25  218 577 1.0 772.8 

R202.25  108 1030 127.0 694.0 

R205.25  1326 4930 60.1 761.2 

R210.25  71 918 121.4 704.6 

R211.25  57 1150 42.9 623.7 

C201.25  329 3448 5.1 679.5 
 
         C202.25                       4023        13860        782.8        677.3 
 

The comparison between the deferent methods 
and our approach has revealed that it has provided 
good results. These are best when certain conditions 
are met: The initialization of the algorithm and the 
choice of Lagrange multipliers and the displacement 
step. 
 
5 Conclusion 

In this paper, we proposed an algorithm for 
vehicle routing problem with resource constraints 
(VRPTW) which is an extension of (VRP) standard 
to take into account the more practical problem; we 
have mainly developed approaches to column 
generation and decomposition master problem and 
sub-problem. The difficulty of solving the sub-
problem is directly related to the number of 
resources, we particularly studied the techniques of 
reduction of space resources, and this notion of 
reduction is a key element of the effectiveness of the 
overall resolution of problem. 
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