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Abstract: - This paper extends the earlier work on an oscillating error correction technique. Specifically, it 
extends the design to include further corrections, by adding new layers to the classifier through a branching 
method. This technique is still consistent with earlier work and also neural networks in general. With this 
extended design, the classifier can now achieve the high levels of accuracy reported previously. 
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1 Introduction 
This paper extends the earlier work, based on an 

oscillating error correction technique [8]. The 
method uses an error correction update that includes 
a very simple rule, of either adding or subtracting 
the error adjustment, based on whether the variable 
value is currently larger or smaller than the desired 
value. This has relations with cellular automata [3], 
where the small add or subtract decision gives the 
classifier an added dimension of flexibility. The 
results reported in the first paper were unusually 
good over a wide range of datasets and it was 
subsequently found that an error had been made in 
how the classifier decides on the correct output 
category. The earlier paper measured the error 
amount between the desired output value and the 
value produced by the corresponding classifier. If 
the error was small enough, then the classification 
was considered to be correct. When training the 
classifier, the data rows for each category would be 
put together and averaged. The classifier would then 
try to learn these average values, but that would lead 
to distinct weight sets for each output category. It 
was overlooked that even if the desired output 
category correctly classified the input data row, one 
of the other category weight sets could produce an 
even smaller error. If an unknown input is 
presented, then the classifier has to choose the 
output category with the smallest error and so the 
results reported in the first paper were misleading. 

Because the method shows promise, this paper 
considers options for extending the first design, to 
try to improve on that failing. Specifically, this 
paper considers extending the design to include 
further corrections, by adding new layers to the 

classifier through a branching method. The reasons 
for the addition is quite clear and can even be put in 
terms of a logical proof. With this extended design, 
the classifier can now achieve the high levels of 
accuracy that were reported previously.  

The rest of this paper is organised as follows: 
section 2 introduces some related work. Section 3 
describes the classifier with a new branching 
technique and section 4 gives a very basic proof for 
why it should work. Section 5 re-runs the test set to 
verify the classifier’s accuracy, while section 6 
gives some conclusions to the work. 

 
 

2 Related Work 
This paper is very much an extension of the 

oscillating error design of [8] and that paper should 
be read first. One novelty in the process is the heavy 
use of averaged values from batch datasets and 
another is the inclusion of a very simple rule, that a 
cellular automaton might use, as described in the 
Introduction. While the classification error can 
reduce to a very small amount, an incorrect 
classifier’s averaged value can still match closer to 
an input data row than the correct classifier’s value. 
This suggests that each input category may have 
more than 1 averaged value in it, or that natural 
bands or boundaries may exist. The idea of a banded 
input [9] and also a shape [10] to the averaged value 
sets is therefore important. Other papers on this 
topic include [1]. 

The paper [3] presents a proof that dynamic 
cellular automata are flexible enough to simulate 
arbitrary computations, which means algorithms in 
general. As they describe, this has been put in the 
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context of state machines, where classical 
algorithms were axiomatized by Gurevich [11], who 
also showed that a simple, generic model of 
computation, called abstract state machines (ASMs), 
suffices to emulate state-for-state and step-for-step 
any ordinary (non-interactive, sequential) algorithm. 
Their proof and general theory could be of interest, 
but this paper is more concerned with a specific 
process for categorical classification, albeit one that 
also exhibits a high level of genericity. 

Another interesting fact could be the 
parallelization of the algorithm. Each classifier is 
mostly self-contained without too much interaction 
with the other classifiers. That should make it easier 
to parallelise the algorithm ([17], for example). 
 
 
3 Extending the Classifier with 

Dataset Branching 
As is typical with neural networks, one option 

would be to add new levels or layers to the 
classifier, to continually refactor the feature set. The 
first level is what was described previously [8], but 
in this paper, separate classifiers are used to classify 
each distinct category and so weight sets are not re-
combined between each matrix phase. The dataset is 
therefore split into groups for each distinct category 
and the data row values averaged. There are x 
classifiers in the first level, one for each category. 
They are trained to reduce the error for the averaged 
row values of their category only. The whole train 
dataset is then passed through all of the classifiers 
and each produces an error for each data row. After 
this test phase, there is a list of data rows that each 
classifier has produced the smallest error for, with 
relation to its own category. Most of the rows would 
be for the correct category group, but some would 
be for other classifier groups. The extension here is 
therefore to add a new level to the classifier, to 
refine it with respect to the incorrectly classified 
data rows.  

The second level therefore uses a subset of the 
whole dataset that is specifically only the data rows 
that the first level classified as closest. It is a whole 
new layer however, with classifiers for each 
category of data row that it is currently best at 
classifying. The second level takes the input subset 
and re-classifies it to correctly recognise the data 
rows in each category. For the classifier’s own 
category, this is probably almost the same as for the 
first level. For any categories it incorrectly 
classified, there are new classifiers in the layer to 
reclassify those rows. One thing to note might be the 

following: the classification for the incorrectly 
selected rows in the first level needs to be more 
accurate in the second level, and so the classifier 
needs to continue to classify more accurately each 
level, but the dataset size would continue to reduce. 

Using the classifier is then automatic. When 
passed a data row for classification, each classifier 
in the first level produces an error with respect to its 
own category. Select the classifier with the smallest 
error. If it has a second level, then pass the second 
level the data row. For its own category, the second 
level is essentially the same, but it can produce a 
different result for the other category groups. 
Repeatedly select the classifier with the smallest 
error and if it has a next level go to that. If it does 
not, then the category of the current classifier is the 
final result. The schematic of Figure 1 shows the 
classification process, where a new layer has been 
added to a classifier that has incorrectly classified 
part of a different category group.  
 
 
4 Proof 

With this branching technique, there is also a 
filtering out of the dataset rows to consider at each 
layer. When training, if the classifier moves to its 
next layer, it only needs to consider the dataset rows 
related with its current layer. So, when these are 
adjusted for incorrect categories, the consideration 
is for that subset only. This is a fairly basic 
argument for why the classifier should work. In the 
next layer therefore, as there is a smaller number of 
rows, already filtered to a particular averaged value, 
it should be able to classify them more accurately, 
because there should be less variability in them.  

A new layer would use a whole new group of 
classifiers on the subset of data and needs to be 
more concerned about minor adjustments to a shape 
than the vertical adjustment. The most extreme case 
would be to split the dataset so that there is a 
classifier for every single data row, when it would 
be able to classify that with 100% accuracy. But 
there would then be a question about generalising. 
As the branching process reduces the global dataset 
at each stage, it is also quite stable. One small 
problem seems to be the fact that a set of equal 
(usually 0) error results can occur, when the 
category then has to be a choice between any of 
those results, but this does not happen too often. 
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Figure 1. Schematic of the classifier in action. Phase 1 realises that classifier A also classifies part of category 
B better. Phase 2 then adds a new layer to layer 1 of classifier A, to correctly re-classify this problem. 

 
 

 
5 Test Results 

This paper repeats the set of tests carried out in 
the first paper [8], to verify that the classifier can 
produce a high level of accuracy. Please see that 
paper for a more detailed discussion about the 
original and other researchers results. A test 
program has been written in the C# .Net language. It 
can read in a data file, normalise it, generate the 
classifier from it and measure how many categories 
it subsequently evaluates correctly. Each output 
category is now represented by a separate classifier. 
As each category is represented separately, there are 
two choices to what value the category should be 
given. It still seems preferable to give each output 
category a different value, but not in every case. 
Therefore, 3 categories would result in desired 
output values of 0, 0.5 and 1, even if in 3 separate 
classifiers. With separate classifiers, another option 
is to centre the category output on the value 0.5 (in 
the range 0 to 1). This is because the data row 
values can then correct to this value from above or 
below, by an equal amount. As this is not 
necessarily better, the adjustment or error correction 
to the output category value must have some type of 
distinct effect as well, or it may reflect the input 
averaged value in some way.  

As a side note, an earlier wave shape paper [10] 
suggested that a vertical adjustment could be helpful 

in realigning the input data values to the output 
ones. This vertical adjustment is actually implicit in 
the oscillating error adjustment. It is still possible to 
vertically adjust after the error corrections, but it 
becomes negligibly small after the final error 
correction.  

Two types of result were measured. The first was 
an average error for each row in the dataset, after the 
classifier was trained, calculated as the average 
difference between actual output and the desired 
output value. The second measurement was how 
many categories were correctly classified. For these 
tests, an error margin is not considered, but the 
errors of each output category are compared and the 
smallest one is selected.  

 
 

5.1 Benchmark Datasets with Train 
Versions Only 

The classifier was first tested on 3 datasets from 
the UCI Machine Learning Repository [18]. These 
are the Wine Recognition database [5], Iris Plants 
database [4] and the Zoo database [19]. Wine 
Recognition and Iris Plants have 3 categories, while 
the Zoo database has 7. These do not have a 
separate training dataset and are benchmark tests for 
classifiers. A stopping criterion of 10 iterations was 
used to terminate the tests. For the Wine dataset, the 
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UCI [18] web page states that the classes are 
separable, but only RDA [7] has achieved 100% 
correct classification. Other classifiers achieved: 
RDA 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% 
(z-transformed data) and all results used the leave-
one-out technique. So that is the current state-of-the-
art. Three other datasets were also tested. These 
were the Abalone shellfish dataset [2], the Hayes-
Roth concept learning dataset [12] and the BUPA 
Liver dataset [15]. As shown by Table 1, for most of 
the datasets, the new classifier can classify to the 
accuracy required by these benchmark tests. The 
final column ‘Selected Best %’ lists the best results 
found by some other researchers. 

 

5.2 Separate Train and Test Datasets 
To better test the generalising properties of a 

classifier, a previously unseen test dataset can be 
used. Four tests that have separate train and test 
datasets were tried and the results, given in Table 2, 
are again favourable. A stopping criterion of 10 
iterations was used to terminate the tests. Two of the 
datasets are User Modelling [13] and Bank Notes 
[16]. A third dataset was a heart classifier from 
SPECT images [14] and a fourth dataset was a letter 
recognition task [6]. The new version of the 
classifier has really only failed on the letter 
recognition, while the Zoo database was also worse. 
Both of these fared better when centring the desired 
output value for each separate classifier, as did the 
user modelling. 

 
 
 

Dataset Average Error Correctly Classified % Correct Selected Best % 
Wine 0.03 178 from 178 100% 100% 
Iris 0.05 150 from 150 100% 97% 
Zoo 0.02 85 from 101 84% 94.5% 

Abalone 0.002 4093 from 4177 98% 73% 
Hayes-Roth 0.09 130 from 132 99% 50% 

Liver 0.04 345 from 345 100% 74% 
 

 
Table 1. Classifier Test results. Average output error and number of correct classifications. All datasets points 
normalised to be in the range 0 to 1. 
 
 
 

Dataset Average Error Correctly Classified % Correct Selected Best % 
UM 0.05 138 from 145 95% 97.9% 

Bank notes 0.05 100 from 100 100% 61% 
Heart 0.08 187 from 187 100% 84% 

Letters 0.009 1207 from 4000 30% 82% 
 
 
Table 2. Classifier Test results. The same criteria as for Table 1, but a separate test dataset to the train dataset. 
 
 

 
 

6 Conclusion 
This paper has extended the work reported in [8] 

and corrected the error in that paper, to show that 
the classifier can work to a very high standard. In 
this paper, separate classifiers are used and trained 
on each category batch and so the process would 
branch through different classifier sets to find each 
result. This paper also gives a very basic proof for 
why the classifier should work. The test results are 

almost as good as the unbeatable results of the first 
paper, with probably only 1 failure from that earlier 
test set. Are there some new best results however? 
The classifier is almost instantaneous. There is no 
complicated setup and it will always produce the 
same result, so this should make it an attractive 
option for some cases. These tests have also helped 
to show that a classifier selects some averaged value 
to represent a category. It does not select any of the 
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data rows exactly but a distinct value somewhere in 
the range space of all of the data points. When a 
new data row is presented, it is the adjustment to 
this averaged value that determines what category it 
belongs to. In fact, generalisation could be a 
weakness of the method, or overfitting, because it 
does re-classify on smaller and smaller subsets of 
the data. For the letters dataset, for example, it did 
correctly classify 15585 of the 16000 train 
examples, with an average error of 0.002, but with 
1038 counts coming from equal classifications. This 
was by far the largest equal classifications count, 
with other datasets producing a 0 count there. 
Branching appears to be the only option at the 
moment. Other ideas did not work as well, but this 
research does offer an interesting alternative to the 
more commonly applied approaches. 
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