
An Improved Oscillating-Error Classifier with Branching

KIERAN GREER
Distributed Computing Systems

Belfast, UK
kgreer@distributedcomputingsystems.co.uk,

http://www.distributedcomputingsystems.co.uk

Abstract: - This paper extends the earlier work on an oscillating error correction technique. Specifically, it
extends the design to include further corrections, by adding new layers to the classifier through a branching
method. This technique is still consistent with earlier work and also neural networks in general. With this
extended design, the classifier can now achieve the high levels of accuracy reported previously.

Key-Words: - classifier, oscillating error, neural network, multiple layers, branching, cellular automata

1 Introduction
This paper extends the earlier work, based on an

oscillating error correction technique [8]. The
method uses an error correction update that includes
a very simple rule, of either adding or subtracting
the error adjustment, based on whether the variable
value is currently larger or smaller than the desired
value. This has relations with cellular automata [3],
where the small add or subtract decision gives the
classifier an added dimension of flexibility. The
results reported in the first paper were unusually
good over a wide range of datasets and it was
subsequently found that an error had been made in
how the classifier decides on the correct output
category. The earlier paper measured the error
amount between the desired output value and the
value produced by the corresponding classifier. If
the error was small enough, then the classification
was considered to be correct. When training the
classifier, the data rows for each category would be
put together and averaged. The classifier would then
try to learn these average values, but that would lead
to distinct weight sets for each output category. It
was overlooked that even if the desired output
category correctly classified the input data row, one
of the other category weight sets could produce an
even smaller error. If an unknown input is
presented, then the classifier has to choose the
output category with the smallest error and so the
results reported in the first paper were misleading.

Because the method shows promise, this paper
considers options for extending the first design, to
try to improve on that failing. Specifically, this
paper considers extending the design to include
further corrections, by adding new layers to the

classifier through a branching method. The reasons
for the addition is quite clear and can even be put in
terms of a logical proof. With this extended design,
the classifier can now achieve the high levels of
accuracy that were reported previously.

The rest of this paper is organised as follows:
section 2 introduces some related work. Section 3
describes the classifier with a new branching
technique and section 4 gives a very basic proof for
why it should work. Section 5 re-runs the test set to
verify the classifier’s accuracy, while section 6
gives some conclusions to the work.

2 Related Work
This paper is very much an extension of the

oscillating error design of [8] and that paper should
be read first. One novelty in the process is the heavy
use of averaged values from batch datasets and
another is the inclusion of a very simple rule, that a
cellular automaton might use, as described in the
Introduction. While the classification error can
reduce to a very small amount, an incorrect
classifier’s averaged value can still match closer to
an input data row than the correct classifier’s value.
This suggests that each input category may have
more than 1 averaged value in it, or that natural
bands or boundaries may exist. The idea of a banded
input [9] and also a shape [10] to the averaged value
sets is therefore important. Other papers on this
topic include [1].

The paper [3] presents a proof that dynamic
cellular automata are flexible enough to simulate
arbitrary computations, which means algorithms in
general. As they describe, this has been put in the

WSEAS TRANSACTIONS on COMPUTER RESEARCH Kieran Greer

E-ISSN: 2415-1521 49 Volume 6, 2018

context of state machines, where classical
algorithms were axiomatized by Gurevich [11], who
also showed that a simple, generic model of
computation, called abstract state machines (ASMs),
suffices to emulate state-for-state and step-for-step
any ordinary (non-interactive, sequential) algorithm.
Their proof and general theory could be of interest,
but this paper is more concerned with a specific
process for categorical classification, albeit one that
also exhibits a high level of genericity.

Another interesting fact could be the
parallelization of the algorithm. Each classifier is
mostly self-contained without too much interaction
with the other classifiers. That should make it easier
to parallelise the algorithm ([17], for example).

3 Extending the Classifier with

Dataset Branching
As is typical with neural networks, one option

would be to add new levels or layers to the
classifier, to continually refactor the feature set. The
first level is what was described previously [8], but
in this paper, separate classifiers are used to classify
each distinct category and so weight sets are not re-
combined between each matrix phase. The dataset is
therefore split into groups for each distinct category
and the data row values averaged. There are x
classifiers in the first level, one for each category.
They are trained to reduce the error for the averaged
row values of their category only. The whole train
dataset is then passed through all of the classifiers
and each produces an error for each data row. After
this test phase, there is a list of data rows that each
classifier has produced the smallest error for, with
relation to its own category. Most of the rows would
be for the correct category group, but some would
be for other classifier groups. The extension here is
therefore to add a new level to the classifier, to
refine it with respect to the incorrectly classified
data rows.

The second level therefore uses a subset of the
whole dataset that is specifically only the data rows
that the first level classified as closest. It is a whole
new layer however, with classifiers for each
category of data row that it is currently best at
classifying. The second level takes the input subset
and re-classifies it to correctly recognise the data
rows in each category. For the classifier’s own
category, this is probably almost the same as for the
first level. For any categories it incorrectly
classified, there are new classifiers in the layer to
reclassify those rows. One thing to note might be the

following: the classification for the incorrectly
selected rows in the first level needs to be more
accurate in the second level, and so the classifier
needs to continue to classify more accurately each
level, but the dataset size would continue to reduce.

Using the classifier is then automatic. When
passed a data row for classification, each classifier
in the first level produces an error with respect to its
own category. Select the classifier with the smallest
error. If it has a second level, then pass the second
level the data row. For its own category, the second
level is essentially the same, but it can produce a
different result for the other category groups.
Repeatedly select the classifier with the smallest
error and if it has a next level go to that. If it does
not, then the category of the current classifier is the
final result. The schematic of Figure 1 shows the
classification process, where a new layer has been
added to a classifier that has incorrectly classified
part of a different category group.

4 Proof

With this branching technique, there is also a
filtering out of the dataset rows to consider at each
layer. When training, if the classifier moves to its
next layer, it only needs to consider the dataset rows
related with its current layer. So, when these are
adjusted for incorrect categories, the consideration
is for that subset only. This is a fairly basic
argument for why the classifier should work. In the
next layer therefore, as there is a smaller number of
rows, already filtered to a particular averaged value,
it should be able to classify them more accurately,
because there should be less variability in them.

A new layer would use a whole new group of
classifiers on the subset of data and needs to be
more concerned about minor adjustments to a shape
than the vertical adjustment. The most extreme case
would be to split the dataset so that there is a
classifier for every single data row, when it would
be able to classify that with 100% accuracy. But
there would then be a question about generalising.
As the branching process reduces the global dataset
at each stage, it is also quite stable. One small
problem seems to be the fact that a set of equal
(usually 0) error results can occur, when the
category then has to be a choice between any of
those results, but this does not happen too often.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Kieran Greer

E-ISSN: 2415-1521 50 Volume 6, 2018

Figure 1. Schematic of the classifier in action. Phase 1 realises that classifier A also classifies part of category
B better. Phase 2 then adds a new layer to layer 1 of classifier A, to correctly re-classify this problem.

5 Test Results

This paper repeats the set of tests carried out in
the first paper [8], to verify that the classifier can
produce a high level of accuracy. Please see that
paper for a more detailed discussion about the
original and other researchers results. A test
program has been written in the C# .Net language. It
can read in a data file, normalise it, generate the
classifier from it and measure how many categories
it subsequently evaluates correctly. Each output
category is now represented by a separate classifier.
As each category is represented separately, there are
two choices to what value the category should be
given. It still seems preferable to give each output
category a different value, but not in every case.
Therefore, 3 categories would result in desired
output values of 0, 0.5 and 1, even if in 3 separate
classifiers. With separate classifiers, another option
is to centre the category output on the value 0.5 (in
the range 0 to 1). This is because the data row
values can then correct to this value from above or
below, by an equal amount. As this is not
necessarily better, the adjustment or error correction
to the output category value must have some type of
distinct effect as well, or it may reflect the input
averaged value in some way.

As a side note, an earlier wave shape paper [10]
suggested that a vertical adjustment could be helpful

in realigning the input data values to the output
ones. This vertical adjustment is actually implicit in
the oscillating error adjustment. It is still possible to
vertically adjust after the error corrections, but it
becomes negligibly small after the final error
correction.

Two types of result were measured. The first was
an average error for each row in the dataset, after the
classifier was trained, calculated as the average
difference between actual output and the desired
output value. The second measurement was how
many categories were correctly classified. For these
tests, an error margin is not considered, but the
errors of each output category are compared and the
smallest one is selected.

5.1 Benchmark Datasets with Train
Versions Only

The classifier was first tested on 3 datasets from
the UCI Machine Learning Repository [18]. These
are the Wine Recognition database [5], Iris Plants
database [4] and the Zoo database [19]. Wine
Recognition and Iris Plants have 3 categories, while
the Zoo database has 7. These do not have a
separate training dataset and are benchmark tests for
classifiers. A stopping criterion of 10 iterations was
used to terminate the tests. For the Wine dataset, the

WSEAS TRANSACTIONS on COMPUTER RESEARCH Kieran Greer

E-ISSN: 2415-1521 51 Volume 6, 2018

UCI [18] web page states that the classes are
separable, but only RDA [7] has achieved 100%
correct classification. Other classifiers achieved:
RDA 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1%
(z-transformed data) and all results used the leave-
one-out technique. So that is the current state-of-the-
art. Three other datasets were also tested. These
were the Abalone shellfish dataset [2], the Hayes-
Roth concept learning dataset [12] and the BUPA
Liver dataset [15]. As shown by Table 1, for most of
the datasets, the new classifier can classify to the
accuracy required by these benchmark tests. The
final column ‘Selected Best %’ lists the best results
found by some other researchers.

5.2 Separate Train and Test Datasets
To better test the generalising properties of a

classifier, a previously unseen test dataset can be
used. Four tests that have separate train and test
datasets were tried and the results, given in Table 2,
are again favourable. A stopping criterion of 10
iterations was used to terminate the tests. Two of the
datasets are User Modelling [13] and Bank Notes
[16]. A third dataset was a heart classifier from
SPECT images [14] and a fourth dataset was a letter
recognition task [6]. The new version of the
classifier has really only failed on the letter
recognition, while the Zoo database was also worse.
Both of these fared better when centring the desired
output value for each separate classifier, as did the
user modelling.

Dataset Average Error Correctly Classified % Correct Selected Best %
Wine 0.03 178 from 178 100% 100%
Iris 0.05 150 from 150 100% 97%
Zoo 0.02 85 from 101 84% 94.5%

Abalone 0.002 4093 from 4177 98% 73%
Hayes-Roth 0.09 130 from 132 99% 50%

Liver 0.04 345 from 345 100% 74%

Table 1. Classifier Test results. Average output error and number of correct classifications. All datasets points
normalised to be in the range 0 to 1.

Dataset Average Error Correctly Classified % Correct Selected Best %
UM 0.05 138 from 145 95% 97.9%

Bank notes 0.05 100 from 100 100% 61%
Heart 0.08 187 from 187 100% 84%

Letters 0.009 1207 from 4000 30% 82%

Table 2. Classifier Test results. The same criteria as for Table 1, but a separate test dataset to the train dataset.

6 Conclusion
This paper has extended the work reported in [8]

and corrected the error in that paper, to show that
the classifier can work to a very high standard. In
this paper, separate classifiers are used and trained
on each category batch and so the process would
branch through different classifier sets to find each
result. This paper also gives a very basic proof for
why the classifier should work. The test results are

almost as good as the unbeatable results of the first
paper, with probably only 1 failure from that earlier
test set. Are there some new best results however?
The classifier is almost instantaneous. There is no
complicated setup and it will always produce the
same result, so this should make it an attractive
option for some cases. These tests have also helped
to show that a classifier selects some averaged value
to represent a category. It does not select any of the

WSEAS TRANSACTIONS on COMPUTER RESEARCH Kieran Greer

E-ISSN: 2415-1521 52 Volume 6, 2018

data rows exactly but a distinct value somewhere in
the range space of all of the data points. When a
new data row is presented, it is the adjustment to
this averaged value that determines what category it
belongs to. In fact, generalisation could be a
weakness of the method, or overfitting, because it
does re-classify on smaller and smaller subsets of
the data. For the letters dataset, for example, it did
correctly classify 15585 of the 16000 train
examples, with an average error of 0.002, but with
1038 counts coming from equal classifications. This
was by far the largest equal classifications count,
with other datasets producing a 0 count there.
Branching appears to be the only option at the
moment. Other ideas did not work as well, but this
research does offer an interesting alternative to the
more commonly applied approaches.

References:

[1] Akkar, H.A. and Mahdi, F.R., 2016.
Evolutionary algorithms for neural networks
binary and real data classification. Int J Sci
Technol Res, 5(7), pp.55-60.

[2] Asim, A., Li, Y., Xie, Y. and Zhu, Y. (2002).
Data Mining For Abalone, Computer Science
4TF3 Project, Supervised by Dr. Jiming Peng,
Department of Computing and Software,
McMaster University, Hamilton, Ontario.

[3] Dershowitz, N. and Falkovich, E. (2015).
Cellular Automata are Generic, U. Dal Lago
and R. Harmer (Eds.): Developments in
Computational Models 2014 (DCM 2014).
EPTCS 179, pp. 17-32, doi:10.4204/EPTCS.
179.2.

[4] Fisher, R.A. (1936). The use of multiple
measurements in taxonomic problems, Annual
Eugenics, 7, Part II, pp. 179-188, also in
Contributions to Mathematical Statistics (John
Wiley, NY, 1950).

[5] Forina, M. et al. (1991). PARVUS - An
Extendible Package for Data Exploration,
Classification and Correlation. Institute of
Pharmaceutical and Food Analysis and
Technologies, Via Brigata Salerno, 16147
Genoa, Italy.

[6] Frey, P.W. and Slate, D.J. (1991). Letter
recognition using Holland-style adaptive
classifiers, Machine learning, Vol. 6, No. 2,
pp. 161-182.

[7] Friedman, J.H. (1989). Regularized
Discriminant Analysis, Journal of the
American Statistical Association, Vol. 84, No.
405, pp. 165-175.

[8] Greer, K. (2017). A New Oscillating-Error
Technique for Classifiers, Cogent Engineering,
Taylor and Francis Online, https://doi.org/10.
1080/23311916.2017.1293480. Also available
on arXiv at http://arxiv.org/abs/ 1505.05312.

[9] Greer, K. (2015). A Single-Pass Classifier for
Categorical Data, Special Issue on: IJCSysE
Recent Advances in Evolutionary and Natural
Computing Practice and Applications, Int. J.
Computational Systems Engineering,
Inderscience, Vol. 3, Nos. 1/2, pp. 27 - 34.
Also available on arXiv at http://arxiv.org/abs/
1503.02521.

[10] Greer, K. (2013). Artificial Neuron Modelling
Based on Wave Shape, BRAIN. Broad
Research in Artificial Intelligence and
Neuroscience, Vol. 4, Issues 1-4, pp. 20-25,
ISSN 2067-3957 (online), ISSN 2068-0473
(print).

[11] Gurevich, Y. (2000). Sequential Abstract State
Machines Capture Sequential Algorithms,
ACM Transactions on Computational Logic
Vol. 1, No. 1, pp. 77 – 111, doi:10.1145/
343369.343384. Available at http://research.
microsoft.com/~gurevich/opera/141.pdf.

[12] Hayes-Roth, B. and Hayes-Roth, F. (1977).
Concept Learning and the Recognition and
Classification of Exemplars, Journal of Verbal
Learning and Verbal Behavior, Vol. 16, No. 3,
pp. 321-338.

[13] Kahraman, H.T., Sagiroglu, S. and Colak, I.
(2013). The development of intuitive
knowledge classifier and the modeling of
domain dependent data, Knowledge-Based
Systems, Vol. 37, pp. 283-295.

[14] Kurgan, L.A., Cios, K.J., Tadeusiewicz, R.,
Ogiela, M. and Goodenday, L.S. (2001).
Knowledge Discovery Approach to
Automated Cardiac SPECT Diagnosis,
Artificial Intelligence in Medicine, Vol. 23,
No. 2, pp 149-169.

[15] Liver dataset (2016). https://archive.ics.uci.
edu/ml/datasets/Liver+Disorders.

[16] Lohweg, V., Dörksen, H., Hoffmann, J. L.,
Hildebrand, R., Gillich, E., Schaede, J., and
Hofmann, J. (2013). Banknote authentication
with mobile devices. In IS&T/SPIE Electronic
Imaging (pp. 866507-866507). International
Society for Optics and Photonics.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Kieran Greer

E-ISSN: 2415-1521 53 Volume 6, 2018

[17] Potter, M.A. and De Jong, K.A., 2000.
Cooperative coevolution: An architecture for
evolving coadapted subcomponents.
Evolutionary computation, Vol. 8, No. 1, pp.1-
29.

[18] UCI Machine Learning Repository (2016).
http://archive.ics.uci.edu/ml/.

[19] Zoo database (2016).
https://archive.ics.uci.edu/ml/datasets/Zoo.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Kieran Greer

E-ISSN: 2415-1521 54 Volume 6, 2018

