
Training Application for Industries by Means

of Virtual Reality Technology

MIHALACHE GHINEA

Department of Machines and Manufacturing Systems

University POLITEHNICA of Bucharest

Splaiul Independenţei, 313, sector 6, 060042, Bucharest

ROMANIA

ghinea2003@yahoo.com, www.pub.ro

GICU CĂLIN DEAC

Department of Machines and Manufacturing Systems

University POLITEHNICA of Bucharest

Splaiul Independenţei, 313, sector 6, 060042, Bucharest

ROMANIA

gicu.deac@gmail.com, www.pub.ro

CRINA NARCISA GEORGESCU

Department of Machines and Manufacturing Systems

University POLITEHNICA of Bucharest

Splaiul Independenţei, 313, sector 6, 060042, Bucharest

ROMANIA

 crina.deac@gmail.com, www.pub.ro

Abstract: One of the pylons of the Industry 4.0 is augmented and virtual reality. It can improve the perception

on the industrial processes in real time and more. The purpose of these research is to obtain a starting point

regarding the actual abilities to enlarge the use of VR HMDs (e.g.: HTC Vive, Oculus Rift, etc.), assembling

into a unique application, Virtual and Augmented Reality with Gesture Interaction. The project relies on the

Leap Motion controller. This controller have an integrated infrared depth camera wich can be used as an input

video feed for stereoscopic view on Oculus Rift, in the same time, projecting the raw images of your hands

into a 3D mesh that can interact with other objects in real-world space (in our case a 3D model of a complex

product). The pass through from the twin Leap Motion cameras covers the part of the mesh such that each

camera assures a distinct view of the hands, letting you see the actual depth. We can interact with the 3D

model and show some functional animations. We present a part of a industrial application of VR used into a

common industry (door locks manufacturing industry), which can be useful for research and for training and

advertising too.

Keywords: virtual reality, augmented reality, Oculus Rift, Leap Motion, Industry 4.0

1 Introduction
Augmented reality (AR) is defined as a live direct

or indirect view of the real-world environment

whose elements are improved (supplemented or

augmented) by computer-generated sensory input

such as GPS data or sound, video, graphics,

[8][11][14].
AR is linked to a broader concept named

mediated reality, where the view of reality is

modified (it can be even diminished rather than

augmented) by a computer. This technology

enhances the current user perception of the reality.

[1][2]. In exchange, virtual reality simulates the real

world. Augmentation is producing in real-time and

in semantic context with environmental elements.

[3][4].
The advanced AR technology including object

recognition and computer vision makes possible

that enclosing elements of the real words user

become intelligent, interactive.
Information about the elements of the

environment are superimposed on the real world

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 42 Volume 5, 2017

mailto:ghinea2003@yahoo.com
http://www.pub.ro/
mailto:gicu.deac@gmail.com
http://www.pub.ro/
mailto:%20crina.deac@gmail.com
http://www.pub.ro/

[1][3][4][5][6][7]. This information can be virtual or

real, e.g. seeing other real sensed or measured

information such as electromagnetic radio waves

overlaid in exact alignment with where they actually

are in space [9][10].

The new devices such as e.tablets, smartphones or

Augmented Reality eye-wear has encouraged the

development of applications especially in the area of

industrial maintenance and informative or

educational geolocation. Uses of virtual reality in

systems such as parts analysis and simulation, staff

support, layout and construction planning or

supervising can no longer be set in the future.

Augmented Reality as a Virtual Support to

Industries.

The development of Augmented Reality

Technology to assist industries with precise site or

field information in real-time is today a foreseeable

reality to be used in almost any domain. For instance,

a project management in building and construction

will be more easily and safely carried out when site

managers can virtually view and monitor work in

progress in real time through Augmented Reality

markers placed on parts or equipment being built.

Pointing a camera to factory on-site piece of

equipment can match it to the digital map of the plant

and verify it is in its designated location, not only

freeing the staff from cumbersome paper layout plans

but also providing the operators with virtual reality

contextual information.

Industry decision makers can make timely

decisions when management foresees how a piece of

equipment or a machine once built will fit in its final

environment, by merely looking at the

superimposition of field data fed through Augmented

Reality Systems.

1.1 Enhancing productivity and work

behavior

It is now possible to mix Augmented Reality with

geolocation, recognition and tracking technologies.

The instant information coupled with enhanced

perception will ensure that Augmented Reality

systems play a big role in how people and

companies work in the future.

Milgram defined a continuum of Real to Virtual

environments, where Augmented Reality is one part

of the general area of Mixed Reality (Figure 1). In

both Augmented Virtuality and Virtual

Environments (a.k.a Virtual Reality), the

surrounding environment is virtual, while in AR the

surrounding environment is real. This survey

focuses on Augmented Reality and does not cover

Augmented Virtuality or Virtual Environments

[12][13][14].

Until recently, most AR interfaces were based

on the desktop metaphor or used designs from

Virtual Environments research. One main trend in

interaction research specifically for AR systems is

the use of heterogeneous designs and tangible

interfaces. Heterogeneous approaches blur the

boundaries between real and virtual, taking parts

from both worlds. Tangible interfaces emphasize

the use of real, physical objects and tools. Since in

AR systems the user sees the real world and often

desires to interact with real objects, it is appropriate

for the AR interface to have a real component

instead of remaining entirely virtual.

Fig.1 Milgram's Continuum of real to virtual

environments

Virtual Reality (VR is all about the creation of a

virtual world that users can interact with. Users are

isolated from the real world while immersed in a

full synthetic environment, as far as the immersive

experience is achieved by the wearing of a VR

helmet (e.g.: Oculus Rift).

On the other hand, Augmented Reality (AR)

blends virtual reality contents with the real world.

As a result, users can interact with virtual contents

while continuing to be in touch with the real life

around them. This experience is achieved by the

wearing of AR glasses (e.g.: Google Glasses).

Technically speaking, the main difference

between the two systems seems to be a transparency

mask issue. VR scenes are completely opaque over

the entire display (i.e. you cannot see the real world

around you). AR glasses are transparent (you see

the real environment) and pixels where virtual

contents are drawn have an opacity value in order to

overwrite the real world light information. From

this point of view, VR is simply a transparency

mask limit case of AR, where transparency has a

null value over the entire display.

Often it seems that VR and AR are two different

worlds that do not overlap. But what if we imagine

VR and AR on the same next generation device?

Why do not have a unique system that could

provide both AR and VR experiences? Well, it is

not so simple as it looks like.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 43 Volume 5, 2017

2 Research activity
The purpose of these research is to provide a

practical guide of the real possibilities to extend the

way of using VR HMDs (e.g.: Oculus Rift, HTC

Vive etc.), gathering together Virtual Reality,

Augmented Reality and Gesture Interaction in a

unique project (Figure 2).

The project relies on the Leap Motion

controller, a small puck-like device that tracks the

motion of your arms and hands. This controller can

be mounted on the HMD.

Fig.2 Leap motion controller mounted on Oculus Rift

Leap motion controller have an integrated

infrared depth camera. This video camera can be

used as an input video feed for stereoscopic view on

an HMD like Oculus Rift, in the same time,

projecting the raw images of user hands into a 3D

mesh that can interact with other objects in real-

world space. The visible part of the mesh is covered

by the passthrough from the twin Leap Motion

cameras. Each camera provides a separate view of

the user hands, so the user can see the image with

actual depth.

Using this approach has a powerful impact in

VR because your real hands can now actually pass

through (or disappear behind) virtual objects. The

hands can interact properly with other 3D objects in

the scene because they are 3D and have visual

capabilities that you expect. Using AR hands also

reduces jitter effects, since there’s no longer an

artificially generated rigged hand wich is

unresponsive when the hands are not recognized

propperly.. While the hand image in VR might shift

or become transparent, it won’t suddenly shift in the

wrong direction as a rigged hand.

The Image Hands are also designed to provide

users with dynamic feedback on the Leap Motion

Controller’s tracking confidence [1]. When your

hand assumes a high-confidence pose, it will glow

blue. The glow disappears as confidence values

drop (Figure 3).

The Leap Motion controller uses infrared stereo

cameras as tracking sensors. The images provided

by this twin cameras can be accessed using the

Controller.Images or Frame.Images functions

[1][16]. These functions provide an ImageList

object, containing the Image objects.

Controller.Images provides the most recent set of

images and Frame.Images provides the set of

images analysed to create that frame and can be

slightly obsolete compared to the images returned

directly by the Controller.

Fig. 3 Image hands preview

When it obtains an image from one of the

cameras, a grid highlighting the significant and

complex distortion is superimposed on the image

(Figure 4). The images can be used for: Head-

Mounted Display video pass-through, Augmented

Reality, Computer Vision. The Image API

(Application Programming Interface) provides a

buffer containing the sensor brightness values and a

buffer containing the camera calibration map, which

can be used to correct lens distortion and other

optical imperfections in the image data[1][16].

Fig.4 Distorted image from camera

2.1 Image Distortion
When a ray of light enters one of the Leap Motion

cameras, the lens bends the light ray so that it hits

the sensor. The sensor records it as a greyscale

value of brightness at a relative pixel location.

Because no lens is perfect, the ray of light does not

land on the sensor in the perfect optically spot. The

calibration map provides usefull data to correct this

imperfection by calculating the true angle of the

original ray of light. It is posible to triangulate the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 44 Volume 5, 2017

https://developer.leapmotion.com/documentation/csharp/api/Leap.Controller.html#csharpclass_leap_1_1_controller_1aa98ec4aa16d4d39e5e0b3cc46e6cd4d5
https://developer.leapmotion.com/documentation/csharp/api/Leap.Frame.html#csharpclass_leap_1_1_frame_1aa98ec4aa16d4d39e5e0b3cc46e6cd4d5
https://developer.leapmotion.com/documentation/csharp/api/Leap.ImageList.html
https://developer.leapmotion.com/documentation/csharp/api/Leap.Image.html

3D location of a feature identified in both images.

Tthe calibration map corrects lens distortion but not

correct the perspective distortion [1][15].

2.2 Image Ray Correction
We can get the camera Raw images using:

controller.setPolicy(Leap::Controller::POLICY_IM

AGES);

After image orientation, getting raw images and

getting calibration map, it must make the correction

of the image ray.

 The raw image distortion can be corrected in two

ways [1][15][16]:

- Using the Image.Warp() and Image.Rectify()

functions.

- Using the data from the Image.Distortion

buffer directly.

 The Warp() and Rectify() functions are the

simpler method, but is relatively slow because it

process each pixel individually on the CPU. The

Distortion buffer is designed to be used with a GPU

shader program and can correct the entire raw

image while maintaining a good application frame

rate.

We use a 3D object modelled in Catia and

imported in Cinema 4D where we created all the

animations. We have two scripts, one script for

reading point clouds of the 3D model and one script

for extract this points, for interaction with the model

with image hands [1].

3 Finding improvements

With a satisfactory precision, CAD models can be

imported into certain programs for 3D animation.

This fact is more and more important for

applications in industry, medicine, biology (to name

only few of them), as they need quite realistic

image.

Fig.5 The parts of the door lock system

Thus, Image API applications become

increasingly useful to outcomes not necessarily

spectacular but closer to reality. In figure 5, the real

image of a door lock system, with all its parts, is

presented.

 Conceiving a CAD model (Figure 6) by means

of an application such as CATIA could lead to a

virtual representation of the real model with a 100%

accuracy. Although 3D scanning could be a

solution, as well, even faster and cheaper, the

incosistencies that introduce the real mode must be

taken into consideration.

Fig.6 The CAD model of the door lock system

The project was developped in Unity 3D, using

the Leap Motion Core Unity Assets and the

LMHeadMountedRig prefab wich include a camera

and hand controller setup wich replace the standard

camera from scene (Figure 7). The scripts from

LMHeadMountedRig adjust automaticaly the

position of stereo camera in order to correct

interpupillary distance and compensate the video

lag in augmented scenes. For LMHeadMountedRig

we use the AR World AR hands option. The

ThresholdOverlay shader can be asigned to an

overlay quad composited over the scene to display

the hands even if are not recognized as hands.

In addition to prefabs and scripts included in the

asset package it is possible to access tracking data

directly by Leap Motion API:

using UnityEngine;

using System.Collections.Generic;

using Leap;

public class LeapBehavior : MonoBehaviour {

 LeapProvider provider;

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 45 Volume 5, 2017

Fig.7 Unity Interface LMHeadMountedRig prefab

 void Start ()

 {

 provider =

FindObjectOfType<LeapProvider>() as

LeapProvider;

 }

 void Update ()

 {

 Frame frame = provider.CurrentFrame;

 foreach (Hand hand in frame.Hands)

 {

 if (hand.IsLeft)

 {

 transform.position =

hand.PalmPosition.ToVector3() +

hand.PalmNormal.ToVector3() *

(transform.localScale.y * .5f + .02f);

transform.rotation = hand.Basis.Rotation();

 }

 }

 }

}

To a better immersion of the user in the virtual

space we wanted to use the image provided by the

Leap Motion Camera as a passthrough texture.

We have to functions to display and correct

distorsions:

ImagePassthrough::updateImage()and

ImagePassthrough::updateDistortion()

void ImagePassthrough::updateDistortion(int idx,

const Leap::Image& image) {

 std::shared_ptr<Leap::GL::Texture2>& distortion

= m_Distortion[idx];

 const float* data = image.distortion();

 const int width = image.distortionWidth()/2;

 const int height = image.distortionHeight();

 const int bytesPerPixel = 2 * sizeof(float); // XY

per pixel

 const size_t numBytes = static_cast<size_t>(width

* height * bytesPerPixel);

 Leap::GL::Texture2PixelData pixelData(GL_RG,

GL_FLOAT, data, numBytes);

 if (!distortion || numBytes !=

m_DistortionBytes[idx]) {

 Leap::GL::Texture2Params

params(static_cast<GLsizei>(width),

static_cast<GLsizei>(height));

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 46 Volume 5, 2017

 params.SetTarget(GL_TEXTURE_2D);

 params.SetInternalFormat(GL_RG32F);

params.SetTexParameteri(GL_TEXTURE_WRAP_

S, GL_CLAMP_TO_EDGE);

params.SetTexParameteri(GL_TEXTURE_WRAP_

T, GL_CLAMP_TO_EDGE);

params.SetTexParameteri(GL_TEXTURE_MAG_F

ILTER, GL_LINEAR);

params.SetTexParameteri(GL_TEXTURE_MIN_FI

LTER, GL_LINEAR);

 distortion =

std::shared_ptr<Leap::GL::Texture2>(new

Leap::GL::Texture2(params, pixelData));

 m_DistortionBytes[idx] = numBytes;

 } else {

 distortion->TexSubImage(pixelData);

 }

}

void ImagePassthrough::updateImage(int idx, const

Leap::Image& image) {

 GLenum format = (image.width() == 640) ?

GL_LUMINANCE : GL_RGBA;

 m_Color = (format == GL_RGBA);

 std::shared_ptr<Leap::GL::Texture2>& tex =

m_Textures[idx];

 const unsigned char* data = image.data();

 const int width = image.width();

 const int height = image.height();

 const int bytesPerPixel = image.bytesPerPixel();

 const size_t numBytes = static_cast<size_t>(width

* height * bytesPerPixel);

 Leap::GL::Texture2PixelData pixelData(format,

GL_UNSIGNED_BYTE, data, numBytes);

 if (!tex || numBytes != m_ImageBytes[idx]) {

 Leap::GL::Texture2Params

params(static_cast<GLsizei>(width),

static_cast<GLsizei>(height));

 params.SetTarget(GL_TEXTURE_2D);

 params.SetInternalFormat(format);

params.SetTexParameteri(GL_TEXTURE_WRAP_

S, GL_CLAMP_TO_EDGE);

params.SetTexParameteri(GL_TEXTURE_WRAP_

T, GL_CLAMP_TO_EDGE);

params.SetTexParameter(GL_TEXTURE_MAG_FI

LTER, GL_LINEAR);

params.SetTexParameteri(GL_TEXTURE_MIN_FI

LTER, GL_LINEAR);

 tex = std::shared_ptr<Leap::GL::Texture2>(new

Leap::GL::Texture2(params, pixelData));

 m_ImageBytes[idx] = numBytes;

 } else {

 tex->TexSubImage(pixelData);

 }

}

We use the LeapProvider object to transform

the frame data into the proper frame of reference to

match the hands displayed in a scene.

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

/// <summary>

/// Enables rescaling of an object while preventing

rescaling of specified child objects

/// </summary>

public class CompensatedRescale : MonoBehaviour

{

 [Header("Scale-Invariant Children")]

 public List<Transform> compensated;

 [Header("Control Keys")]

 public KeyCode unlockHold =

KeyCode.RightShift;

 public KeyCode resetScale = KeyCode.R;

 public KeyCode increaseScale = KeyCode.Equals;

 public KeyCode decreaseScale = KeyCode.Minus;

 [Range(0,1)]

 public float decreaseFactor = 0.625f; //40 mm CFS

/ 64 mm IPD

 [Range(0.25f,4f)]

 public float newScaleFactor = 1f;

 private float oldScaleFactor = 1f;

 private Vector3 initialScale;

 // Use this for initialization

 void OnEnable () {

 initialScale = transform.localScale;

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 47 Volume 5, 2017

 }

 void OnDisable () {

 ResetScale ();

 }

 // Update is called once per frame

 void Update () {

 if (unlockHold != KeyCode.None &&

 !Input.GetKey (unlockHold)) {

 return;

 }

 if (Input.GetKeyDown (resetScale)) {

 ResetScale();

 return;

 }

 if (Input.GetKeyDown (increaseScale)) {

 IncreaseScale();

 Debug.Log ("IncreaseScale");

 return;

 }

 if (Input.GetKeyDown (decreaseScale)) {

 DecreaseScale();

 Debug.Log ("DecreaseScale");

 return;

 }

 if (oldScaleFactor != newScaleFactor) {

 ApplyRescale (newScaleFactor /

oldScaleFactor);

 oldScaleFactor = newScaleFactor;

 Debug.Log("newScaleFactor = " +

newScaleFactor);

 }

 }

 public void ResetScale() {

 oldScaleFactor = newScaleFactor = 1f;

 float multiplier = (

 (initialScale.x / transform.localScale.x) +

 (initialScale.y / transform.localScale.y) +

 (initialScale.z / transform.localScale.z)

) / 3f;

 ApplyRescale(multiplier);

 }

 public void IncreaseScale() {

 ApplyRescale(1f / decreaseFactor);

 }

 public void DecreaseScale() {

 ApplyRescale(decreaseFactor);

 }

 void ApplyRescale(float multiplier) {

 transform.localScale *= multiplier;

 foreach (Transform child in compensated) {

 child.localScale /= multiplier;

 }

 }

}

To read the imported 3D model we have the read

function:

using UnityEngine;

using System.Collections;

public class test_different_file_read :

MonoBehaviour {

 float[,] imported_model;

 // Use this for initialization

 void Start () {

 }

 public void DoSomething()

 {

 imported_model =

ReadPointCloudFile.stored_point_cloud;

 for (int i = 0; i < 100; i++)

 {

 Debug.Log(imported_model[i, 2]);

 }

 }

 // Update is called once per frame

 void Update () {

 }

}

To start the animation of the 3D model we use a

script wich trigger the animation by pressing the

space key:

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 48 Volume 5, 2017

public bool animation_bool;

 void Update()

 {

 if(animation_bool == true)

 {

 animation.Play("asa-abloy");

 }

 if(Input.GetButtonDown("space"))

 {

 animation_bool = true;

 }

 }

Fig. 8 3D model moved in VR by image hands

 The present article exibiths the collective

endeavors of the reserch team aiming to achieve a

post-processing software that enables the virtual

immersion as being the real one. Unfortunately,

only by using virtual immersion equipment one can

understand how impressive the advancement is. The

images in Figures 8, are the ones precessed by

means of the above mentioned method.

4 Conclusions

All over the world, VR technology is used today for

training applications in a variety of process

industries, and enables personnel subjection to

simulated hazardous situation in a safe, highly

visual and interactive way.

Customized simulations of plants layouts,

dynamic processes and comprehensive virtual

environments can be set up and allow users to move

within the virtual plants or systems, making

operational decisions and investigating processes at

a glance.

Our aim is to couple activity of lab AVRENG

(Augmented & Virtual Reality for Engineering),

from University POLITEHNICA of Bucharest with

virtual reality and virtual environments applications

for future industrial workspaces. We want to gather

expertise from partner members and determine the

future research agenda for the development and use

of virtual reality (VR) technologies. The working

team on Education and Training is specifically

focused on understanding how VR is used to

support learning in educational and industrial

contexts.

This paper represents the very first steps of VR

technology currently in use or development for

training in industry. It remains important to identify

potential future development of VR training

applications and also to overcome the existent

barriers.

 For the next version of our application, we think

about implementing a color stereoscopic camera to

provide our industrial partners with an improved

experience and a higher accuracy.

References:

[1] Mihalache Ghinea, Gicu Calin Deac, Crina

Narcisa Georgescu. (2016) Improving the

Quality of Image in Virtual Reality

Applications for Industry. WSEAS

Conference, 3rd International Conference

onAeronautical and Mechanical Engineering

(AEME '16) Bern, Switzerland December 17-

19, 2016, published in:International Journal of

Computers, 1, 284-289, ISSN: 2367-8895
[2] Graham, M., Zook, M., and Boulton, A. ,

Augmented reality in urban places: contested

content and the duplicity of code, Transactions

of the Institute of British Geographers, DOI:

10.1111/j.1475-5661.2012.00539.x 2012.

[3] Steuer, J. Defining Virtual Reality: Dimensions

Determining Telepresence, Department of

Communication, Stanford University, 15 Oct.,

1993.

[4] *** Introducing Virtual Environments National

Center for Supercomputing Applications,

University of Illinois.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 49 Volume 5, 2017

[5] Chen, B.X. If You’re Not Seeing Data, You’re

Not Seeing, Wired, 25 August 2009.

[6] Maxwell, K. Augmented Reality, Macmillan

Dictionary Buzzword.

[7] Azuma, R. A Survey of Augmented Reality

Presence: Teleoperators and Virtual

Environments, pp. 355–385, August 1997.

[8] Zhanpeng, H.,Pan H., et al. Mobile augmented

reality survey: a bottom-up approach.

[9] Phenomenal Augmented Reality, IEEE

Consumer Electronics, Vol. 4, No. 4, October

2015.

[10] Archibald, C., Petriu, E. Time-frequency

perspectives, with applications, in Advances in

Machine Vision, Strategies and Applications,

World Scientific Series in Computer Science:

Volume 32.

[11] Metz, R. Augmented Reality Is Finally Getting

Real Technology Review, 2 August 2012.

[12] Fleet Week: Office of Naval Research

Technology- Virtual Reality Welder Training,

eweek, 28 May 2012.

[13] Rolland, J. Baillott, Y. Goon, A..A., Survey of

Tracking Technology for Virtual

Environments, Center for Research and

Education in Optics and Lasers, University of

Central Florida.

[14] Azuma, R., Balliot, Y., Behringer, R., Feiner,

S., Julier, S., MacIntyre, B. Recent Advances in

Augmented Reality, Computers & Graphics,

November 2001.

[15] https://developer.leapmotion.com/documentati

on/csharp/index.htm

[16] http://iiif.io/api/image/2.0

WSEAS TRANSACTIONS on COMPUTER RESEARCH
Mihalache Ghinea, Gicu Călin Deac,

Crina Narcisa Georgescu

E-ISSN: 2415-1521 50 Volume 5, 2017

