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Abstract: - In many border surveillance applications (such as military, homeland security, etc.), the 

wireless sensor networks cannot be deployed manually and the barrier coverage breaks can appear 

along a given surveillance line. This paper introduces a cluster-based algorithm and new metrics to 

determining the number and the positions of the additional nodes needed to be deployed by drones, 

robots, or moved in a network; in order to fill the gaps in a randomly deployed network. Simulation 

results show that the proposed algorithm optimizes the number of additional nodes and outperforms 

the alternative in 52,15% of cases while it performs similarly in the rest of the cases. The machine 

learning classification algorithms are used to show that the decision on choosing one or another 

algorithm is highly classifiable. Precisely, the proposed algorithm is shown to be the approach of 

choice in implementations where the sensing range is relatively small. 
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1 Introduction 
The WSNs have been widely employed in many 

long-term surveillance applications such as field 

surveillance, critical infrastructure protection and 

country border control [1]. Two fundamental WSN-

based application requirements are the ability of the 

network to sense each event in the region of interest 

(ROI), and its ability to communicate the sensed 

events (from each point of interest) to the sink node. 

The ROI can be a specific point - when the sensing 

coverage is referred as a point or target coverage, a 

specific region – when it is referred as the area 

coverage, a specific path – which is called the path 

coverage or the border line between two areas – 

named barrier coverage.  

In recent years, constructing sensor barrier is a 

very critical issue in wireless sensor networks for 

military and homeland security applications [2]. An 

example of WSN-based multi-layer border patrol 

architecture for national security is given in [3].  

Barrier coverage describes the ability of the 

network to detect an object crossing from one side 

of the barrier (line) to another. It is distinguished 

from the traditional coverage models in a sense that 

it aims to protect an area of interest or points of 

interest by simply having a chain of sensor nodes 

surrounding them rather than continually monitoring 

the entire area or all the points [4]. In applications 

when the sensor nodes are placed at the expected 

locations and (ideally) are not supposed to fail, the 

barrier coverage can be easily guaranteed. However, 

in reality, the nodes are very prone to failures so the 

barrier gaps can appear, for example, due to the 

environmental changes or due to the hardware 

failure.  Additionally, in actual applications, most 

cases of the ROI are in harsh environment, which 

make it difficult to obtain the expected locations and 

deploy the nodes there [5]. In these situations, the 

deployment will not guarantee the required sensing 

coverage and connectivity. Therefore, exploring the 

possibilities to assessing and healing the barrier 

holes in a quasi randomly deployed network is of a 

fundamental importance. 

In [6] the authors have derived the critical 

conditions for the existence of the barrier coverage. 

But, these conditions are very strict and therefore 

economically unfeasible, since they require a large 

number of sensor nodes. Hence, instead of using 

only static nodes, recently, most of the approaches 

in topology control rely on the nodes’ mobility, 

either by deploying fully mobile networks or by 
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deploying hybrid networks that consist of static and 

mobile nodes. Although it can dramatically prolong 

the network lifetime, the deployment of fully mobile 

network largely increases the cost of sensor nodes 

and the complexity of the protocol design [7]. 

Hybrid networks, on the other hand, combine the 

advantages of both static and mobile networks. In 

the context of barrier coverage, mobile nodes are 

used to bridge the barrier breaks, if any, after the 

initial deployment with the aim of minimizing the 

number of mobile nodes. 

This paper describes a new algorithm for the 

efficient barrier coverage gap bridging in hybrid 

networks where the final goal is creating the strong 

barrier coverage for border surveillance with as 

lower number of mobile nodes as possible. As 

compared to the previously used greedy algorithm, 

under the same conditions, the proposed algorithm 

showed better (52 %) or equal (48%) performances, 

but never underperformed it.  

The reminder of the paper is structured as 

follows. The proceeding section reviews previous 

work on finding, mending, and predicting the barrier 

holes in quasi randomly deployed WSNs for barrier 

coverage. Section III presents the modelling details 

and methods, i.e., the network and sensing models, 

mathematical definitions and presumptions, the 

algorithms’ description and functionality, and the 

evaluation methodology. The results are given in 

section IV. Finally, section V concludes the paper. 

 

 

2 Related work 
The problem of barrier coverage has been recently 

studied from different points of view. Most of the 

studies take advantage of mobile nodes in assisting 

the formation of the strong barrier coverage. 

A study on the achievement of the barrier 

coverage in reconfigurable hybrid network is 

presented in [1]. The authors propose a greedy 

algorithm to provide the efficient barrier coverage 

under different weather conditions. A study on 

improving the barrier coverage by using sensors 

with limited mobility is presented in [8] while in [9] 

the authors show the barrier coverage construction 

based on sensor’s density. Despite the predictable 

outcome, the authors show that the barrier coverage 

can be significantly improved with higher number 

of mobile nodes. Similar conclusions are derived in 

[2]. In this paper, the authors propose a network 

model and implement an algorithm that gives the 

number of mobile nodes to mend the barrier gaps in 

a given implementation. Although more focused on 

energy conservation, the authors in [10] use the 

same algorithm for mending barrier gaps via mobile 

sensor nodes with adjustable sensing ranges. A 

greedy algorithm for barrier constructing is 

presented in [11], while its variant and the idea of 

cluster based approach is given in [12]. 

In contrast to the mentioned works, our algorithm 

takes advantages of the fact that, in a randomly 

deployed (dense) network, clusters are likely to be 

created. The clusters compose connected graphs that 

are used by the algorithm as a fraction of barrier. 

We compare the outputs of the new algorithm with 

the outputs of the variant of greedy algorithm that is 

widely used in mentioned literature. In order to 

show the differences in performances between two 

algorithms, and to accentuate the most important 

parameters that influence these differences, to the 

best of our knowledge, we are the first to introduce 

the machine learning classification algorithms with 

the decision tree as a primary choice. 

 

 

3 Models and methods 
 

3.1 Network model 
The experimental framework and setups model the 

network topology for barrier coverage in military 

inaccessible zones, where sensors cannot be 

deployed manually. Instead, the nodes are deployed 

quasi-randomly (from the aircrafts or artillery) on 

the region along a given line. Hence, the ROI is 

considered to be of a 2-D rectangular shape with the 

length much larger than the width, i.e.,  𝑙 ≫ 𝑤. 

As in similarly focused researches [13], [14], 

[15], [16], we also adopt the widely-used uniform 

distribution of the nodes’ coordinates along the 

length and the width of the ROI. 

 

3.2 The sensing model 
Although, many other models have been proposed, 

the Boolean (or binary) sensing model ([17], [18]), 

is the mostly used one in modeling the sensing 

pattern. In real implementations, however, most of 

the nodes will not achieve the maximum (nominal) 

sensing range, because of the obstacles and other 

elements that influence the pattern of the sensing 

range. Furthermore, in practice, the sensing areas 

are never perfect disks. However, as stated in [19]; 

the disk model can provide lower and upper bounds 

for realistic irregular sensing areas. Therefore, we 

also adopt the Boolean sensing model but, as in 

Elfe’s approach [20], and in contrast to most of the 

related work, we introduce some additional 

unpredictability that aims to model the influence of 

the environment on the sensing range of the nodes.  
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The sensing range for a given node k was 

randomized and defined as the circular area around 

the node with the center at the node’s position and 

the radius between 𝑅𝑚 /2 and 𝑅𝑚 . The sensing 

radius of the node k is given with: 

𝑅𝑠𝑘 =
𝑅𝑚

2
+ 𝑟𝑘                        (1)  

Here, 𝑅𝑚  is the maximum nominal sensing range 

and 𝑟𝑘  is a uniformly distributed random variable 

which takes values between 0 and 𝑅𝑚/2. A sensor k 

can detect an intruder if the intruder is within the 

distance 𝑅𝑠𝑘  from the sensor. 

Nodes u and v are considered to be connected if 

the Euclidian distance between them is smaller or 

equal than the sum of their sensing ranges, i.e.,  

𝑑 𝑢, 𝑣 ≤ 𝑅𝑠𝑢 + 𝑅𝑠𝑣             (2)  (2  ) 

In Fig. 1, a simple two-node graph construction is 

depicted. 

d

u v

RsvRsu

 

Fig. 1. Nodes u and v are considered to be connected. 

In the given implementations, it is assumed that 

the communication radius is much greater than 

sensing range which is a realistic assumption in 

most cases bearing in mind that the sensing ranges 

are usually in order of tens of meters while the 

communication ranges are in order of hundreds of 

meters. 

.  

3.3 The algorithm description 
After the initial deployment of n static nodes, if the 

barrier coverage is not achieved, the mobile nodes 

should be guided to fill the barrier gaps. As usually 

presumed in literature, in hybrid networks, mobile 

nodes can be deployed at the same time with 

stationary nodes, or they can be deployed afterwards 

by using robots or drones. Eventually, the network 

should provide at least one barrier that does not 

allow an intruder to cross from one site to another 

without being detected.  

The coordinates of each stationary node are 

assumed to be known by combining the absolute 

positions from the on-board Global Positioning 

System (GPS) units and localization algorithms such 

as trilateration, triangulation, etc.  

The aim of the algorithm is to find the positions 

in a randomly deployed network where the 

additional nodes can be added in order for the strong 

barrier coverage to be achieved. The algorithm is 

optimal if it results in minimal number of additional 

nodes.    

In order to evaluate the efficiency of the 

proposed algorithm, we compare it with the existing 

greedy algorithm.  

Let’s suppose we have the topology of a 

randomly deployed network such as the one given in 

Fig 2.  

 
Fig. 2. A randomly deployed network. The lengthwise “paths” 

(barriers) as selected by two algorithms. 

Both algorithms begin at the starting edge x=0. 

The rightmost node of the cluster that intersects the 

edge line x=0, and that reaches the farthest point 

towards the destination, is chosen to find its next 

hop towards the line x=l. In the given scenario, the 

starting cluster would be cluster s, with its rightmost 

node 𝐵𝑠 .  

The present, widely used greedy algorithms, 

would chose node C for  𝐵𝑠
′𝑠 next hop by applying 

the following criteria: from all the nodes in 

communication range of  𝐵𝑠 , among those whose x 

coordinates are greater than 𝑥1 (Fig. 2), chose the 

closest one to 𝐵𝑠 . Then fill the gap between  𝐵𝑠  and 

the chosen node. The algorithm continues until a 

strong barrier is constructed between two vertical 

edges. The optimal positions for mobile nodes for 

creating strong barrier coverage in accordance to the 

existing greedy algorithm are depicted with the red 

lining in Fig. 2. Upon completing the strong barrier 

between x=0 and x=l, no intruder can cross 

undetected from y=0 to y=w (or vice versa). 

The proposed algorithm uses different approach. 

It is based on the high probability of automatic 

cluster creation in the network. Precisely, in 
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relatively densely deployed networks (such are 

usually WSNs), after the initial deployment, the 

nodes will get connected to each other in accordance 

to the criterion (2), and hence the network will be 

made of a set of connected sub graphs-clusters (e.g., 

such are clusters s, j, etc. in Fig.2), and a set of 

single nodes (e.g., node C in Fig. 2). In order to 

clarify the algorithm, we will introduce some new 

terms.  

First, we define two important lines: the starting 

edge of the algorithm x=0 and the ending edge of 

the algorithm x=l. 

Second, we define concepts related to the clusters 

as follows. After the initial deployment, for a given 

cluster p, among all the nodes that belong to the 

cluster, the node nearest to the line x=l will be 

defined as the best node 𝐵𝑝(𝑥𝐵𝑝 ,𝑦𝐵𝑝 ) of the cluster 

p while the node nearest to the line x=0 will be 

defined as the worst node 𝑉𝑝  𝑥𝑉𝑝 ,𝑦𝑉𝑝   of the cluster 

p.  

We also define the best value and the worst value 

of the cluster. The best value of the cluster p is 

𝛼𝑝 = 𝑥𝐵𝑝 , while the worst value is 𝛽𝑝 = 𝑥𝑉𝑝 .    

The algorithm works as follows: 
1) Deploy the network and initialize the number 

of mobile nodes to zero, i.e., m=0. 

2) If the strong barrier is achieved between x=0 
and x=l, return m=0 and terminate the 
algorithm. Otherwise, continue. 

3) Among all the clusters and single nodes that 
intersect x=0 with their sensing ranges, 
choose the one (s) that has the greatest best 
value. 

4) In communication range of the node 𝐵𝑠 , find 
the single node or the cluster t that meets the 
following criterion:  

min  
𝛽𝑡 − 𝛼𝑠

𝛼𝑡
 ,𝛽𝑡 > 𝛼𝑠 

5) Increment the number m as follows: 

𝑚 = 𝑅𝑂𝑈𝑁𝐷𝑈𝑃  
𝛽𝑡 − 𝛼𝑠 − 𝑅𝑉𝑡 − 𝑅𝐵𝑠

3
2 𝑅𝑚

 + 𝑚 

Here, 𝑅𝐵𝑠 ,  𝑅𝑉𝑡 ,𝑎𝑛𝑑 𝑅𝑚 , are the sensing 

radius of node 𝐵𝑠 , the sensing radius of the 

node 𝑉𝑡 , and nominal sensing radius, 

respectively. 
6) Include the cluster t in cluster s, i.e., merge s 

and t and expand the cluster s. 

7) If the strong barrier coverage from x=0 to 
x=d is not achieved, repeat from 4.  

Else, terminate the algorithm and return m.  
 

Regarding the calculation of the number m, it 
presents the quotient between the sensing gap 
between the nodes and the expected sensing range 
of the mobile nodes. This range was calculated as 

follows. Since the sensing radius varies between 
𝑅𝑚

2
 

and 𝑅𝑚 , the expected mean value is 
3𝑅𝑚

4
. So, the 

expected sensing range that occupies a mobile node 

could be estimated with  
3𝑅𝑚

2
. 

The same metrics were used in case of both 
algorithms and the number of mobile nodes was 
acquired for all the input vectors. 

While aware that the proposed algorithm might 
be less energy-efficient because it generally uses 
larger communication radius for searching and 
calculation (which could otherwise be adjusted to 
lower values), we explore the possibility to 
recognizing when both algorithms perform 
approximately equally (and hence the existing one 
would be more appropriate to be used) and when 
our algorithm outperforms the actual one for the 
given input parameters. 

      

3.4 The machine learning approach to 

algorithm classification 
Machine learning (ML) is the area of artificial 

intelligence that enables the automated discovery of 

patterns in data. The ML algorithms learn from 

experience, by inspecting the data structures, 

relations, and contents [21]. The ML algorithms are 

mainly used in classification, clustering, and 

regression.  

In order to discover to what extent and in which 

cases the proposed algorithm may be appropriate for 

use, as well as to create the decision framework for 

using one or another algorithm, we conduct an 

analysis based on machine learning algorithms for 

classification. We use three algorithms with 

different classification philosophy, with the accent 

on decision trees.  

The SVMs present one of the most efficient and 

widely used algorithms today. Based on the vectors 

from the train set, often by using special 

transformation functions (called kernels), the SVM 

tends to map the learning examples from input space 

to a new high-dimensional feature space in which 

examples are linearly separable. The aim is finding 

a hyper plane that maximizes its distances to the 
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support vectors, i. e., to find the weights that gives 

minimum value of the error function: 

 𝜙 𝑤, 𝜉 =
1

2
𝑤 ∗ 𝑤𝑇 + 𝐶  𝜉𝑖𝑖             (3) 

(3) 

with the following constraint: 

    1 ,   0,   1,T

i i i iy w x b i n         

where w is the matrix of coefficients, b is a 

constant, ξ is a slack variable (i.e., the error 

tolerance), n is the number of learning examples, 

and C is a regularization parameter. With the 

derived values of weights, the hyper-plane can be 

considered as optimal. This hyper plane now divides 

the space into two areas: one that is composed of 

(mainly) members of one class and another that 

contains (mainly) the members of another class.  

Neural networks use complex, non-linear decision 

boundaries for data classifications. They consist of 

layered, feed forward, completely connected 

network of artificial neurons, or nodes. An example 

of a NN map is given in Fig. 3. 

Input layer Hidden layer Output layer

Wij

 

Fig. 3. A NN map. 

Each connection has its weight associated with. 

The weights are randomly assigned to values 

between zero and 1 in initialization phase. Each 

node produces the linear combination of the inputs 

and the connection weights into a single scalar. By 

using back-propagation approach, the training set is 

used to set the weights. The derived set of weights is 

applied on the validation data in order to find the 

one that minimizes the sum of squared errors.  

The NNs are very robust with respect of noisy 

data. However, unlike decision trees, which produce 

intuitive rules that are highly descriptive and 

understandable, neural networks are relatively 

opaque to human interpretation [22]. 

On the other hand, besides classification, decision 

trees are also widely used for data description as 

well. A variant of the decision tree algorithm, the 

C4.5 (with its successor 5.0) is a landmark decision 

tree program that is probably the machine learning 

workhorse most widely used in practice to date [23]. 

The C4.5 algorithm is based on entropy reduction to 

selection the optimal splits for the tree nodes. If X is 

a variable whose k possible values have 

probabilities 𝑝1 ,𝑝2 ,…𝑝𝑘 , the entropy of X is defined 

with: 

𝐻 𝑋 = − 𝑝𝑗 𝑙𝑜𝑔2(𝑝𝑗 )𝑗          (4)  (5) 

Deeper tree usually gives higher precision regarding 

the training data. However, it can lead to over fitting 

which implies for the poorer performances on test 

data. Therefore, for the better generalization, tree is 

often pruned to the optimal level. 

 

 

4 Simulation results 
A simulation environment for algorithm 

implementation and testing is developed in Java. 

Under the same conditions, two algorithms were 

implemented: the variant of the greedy algorithm, 

and the cluster based algorithm.  

The parameters that were made variable in 

simulations, along with their maximum and 

minimum values, are shown in Table 1. 

Table 1.  The range of the input parameters.  

 Minimum Maximum 

Nominal sensing range (𝑅𝑚) 10 m 40 m 

Number of stationary nodes 40 140 

The area length (l) 600 m 1200 m 

The area width (w) 150 m 300 m 

Even though the sensing range may vary from the 

order of millimeters to hundreds of meters 

(depending on the type of sensor), we focus on mid 

range sensors that are mostly used in similar 

analysis. The nominal sensing ranges of our sensors 

were varied from 10m to 40m with the step of 5m. 

The distribution of the number of sensor nodes were 

slightly biased between values 80 and 100. In 

similar analysis, various proportions were used for 

ROI dimensions, such as 200mx500m [13], 

100mx1000m [1], 100mx2000m [14], 200mx2000m 

[4], etc. In our repeated simulations, for the area 

width more values were taken between 150m and 

210m, while the values on the length of the region 
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were chosen approximately uniformly in range from 

600m to 1200m. 

With the variation of the mentioned parameters, 

160 experimental setups were established with 30 

repeated simulations for each setup, which gives the 

total number of simulations to be 4800. Each setup 

were represented with the input vector [𝑅𝑚 ,𝑛,𝑤, 𝑙], 
and the output vector [𝑚𝑔 ,𝑚𝑝], where 𝑚𝑔  and 𝑚𝑝  

represent the average number of mobile nodes 

needed to mend the barrier gaps after 30 

simulations, according to the existing greedy and 

proposed algorithm, respectively.  

An algorithm is considered to be more efficient if 

it outputs the smaller number of mobile nodes.  

In all of the experiment setups, the proposed 

algorithm has shown better or equal performances 

as compared to the existing one. Precisely, it 

outperformed the existing algorithm in 52,15 % of 

cases while it had the same performance in 47,85 % 

of cases.   

In order to explore the predictability of when the 

proposed algorithm outperforms the existing one 

and when it gives the similar results, the difference 

𝑑 = 𝑚𝑝 −𝑚𝑔  were found for each of the 160 

vectors. This provides two classes for the 

classification algorithm – class 1: when 𝑑 > 0, and 

class 0: when 𝑑 = 0. These two classes were 

sufficient, since the existing algorithm never 

outperformed the proposed one.   

The main reason for classification is the energy 

consumption. The existing algorithm is expected to 

be more energy efficient since it uses smaller 

communication range. Therefore, in cases when the 

proposed algorithm does not bring the benefits in 

the sense of minimizing the number of mobile 

nodes, the existing algorithm should be used.  

In order to explore the ability of the data for 

classification, as described in section III, we use 

three algorithms, namely C5.0, NNs and SVMs. All 

the algorithms used 10-fold cross-validation for 

performance evaluation and were implemented in 

MATLAB with the verification in Weka. The results 

are shown in Table 2. 

 

 
 

 

Table 2.  The ability of identifying when the proposed 

algorithm outperforms the existing one with high probability. 

 

 

For better generalization, the outcomes of the 

C4.5 algorithm are given after postpruning. The best 

results on SVM are derived without space 

transformation while NNs use a usual three-layer 

construction with 10 nodes in hidden layer.  

From the presented results, it is obvious that the 

SVM and C4.5 are best choices for classification. In 

all cases, classification on appropriateness of using 

one or the other algorithm can be made with the 

high accuracy of around 80 %. This practically 

means that the machine learning classification 

algorithms may be used for decision making on 

which algorithm is better to be applied for the given 

input parameters, for the given ratio of  
𝑅𝑐

𝑅𝑠
, and for 

the given degree of the energy constraints.  

In order to show the importance of the specific 

attributes on the advantages of the proposed 

algorithm, a non-pruned tree is shown in Fig. 4. 

 

Fig. 4. Non-pruned decision tree shows the importance of the 

sensing radius. 

 C4.5 NNs SVM 

Overall accuracy 82.3 76.9 % 82.86 % 

Precision (YES) 90 % 78 % 83.3 % 

Recall (YES) 71.4 % 73 % 83.3 % 

F-measure (YES) 79.6 % 75.4 % 83.3 % 

Precision (NO) 77.5 % 76.1 % 83 % 

Recall (NO) 92.5 % 80.6 % 83 % 

F-measure (NO) 84.4 % 78.3 % 82.9 % 
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In Fig. 4, parameters 𝑥1 ,𝑥2 ,𝑥3 ,𝑎𝑛𝑑 𝑥4, represent 

R, n, w, and l, respectively. The output one means 

that the proposed algorithm outperforms the existing 

one, while the output zero means that both have the 

same output.  

From the Fig. 4, it is obvious that the first 

parameter that influences the outputs is the sensing 

radius R. Particularly, the classification algorithm 

shows that, when the sensing radius if small enough, 

the proposed algorithm outperforms the existing one 

with a high probability. After pruning, when 

𝑅 ≤ 22.5𝑚, the introduced algorithm will show 

better performances in 87 % of cases. The 

percentage will be even higher if 𝑅 ≤ 17.5𝑚. After 

R, the area length and the network density mostly 

influence the differences in outputs of the 

algorithms.. 

 

 

5 Conclusions 
The paper shows that clustering in densely deployed 

WSNs can be utilized for optimization on the 

number of mobile nodes when they are needed to 

mend the sensing coverage gaps in barrier coverage 

applications.  

The proposed solution can be used in WSN 

systems for border surveillance and homeland 

security, when the strong coverage has to be 

achieved in quasi randomly deployed networks. 

The proposed algorithm is tested under the same 

conditions as the variant of the widely used greedy 

algorithm. The average output from simulations was 

taken for each setup. 

The proposed algorithm has shown better or 

equal performances in all the simulations. Precisely, 

it outperformed the existing greedy algorithm in 52, 

15 % of cases. 

To the best of our knowledge, for the first time, 

the performance evaluation of this kind was 

conducted in context of machine learning 

algorithms, namely SVMs, NNs, and decision trees, 

with the accent on the latter one for a more 

understandable representation. As shown, the data 

were classifiable with the overall accuracy of nearly 

80 % and high f-measures, which imply that the 

machine learning classification can be used in 

decision making on which algorithm to be used in a 

specific implementation. 

The results also show that, when the sensing 

radius is small enough (𝑅𝑠 < 22,5𝑚), and 

especially when it is smaller than 17.5m, the 

proposed algorithm will almost surely outperform 

the existing ones. 

The derived results are particularly interesting 

because, in most of the real implementations, the 

communication is based on IEEE 802.15.4 standard 

while the sensing radius is often smaller than 18m. 
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