
Frequent Pattern Mining under Multiple Support Thresholds

SADEQ DARRAB, BELGIN ERGENÇ
Computer Engineering

Izmir Institute of Technology
Urla/İzmir TURKEY

sadeqaldrab@gmail.com, belginergenc@iyte.edu.tr
dworld.iyte.edu.tr

Abstract: - Traditional methods use a single minimum support threshold to find out the complete set of frequent
patterns. However, in real word applications, using single minimum item support threshold is not adequate
since it does not reflect the nature of each item. If single minimum support threshold is set too low, a huge
amount of patterns are generated including uninteresting patterns. On the other hand if it is set too high, many
of interesting patterns (called rare items) may be lost. Recently, several methods have been studied to tackle the
rare item problem by avoiding using single minimum item support threshold. The nature of each item is
considered where different items are specified with different Minimum Item Support thresholds (MIS) instead
of using single support threshold. By this, the complete set of frequent patterns is generated without creating
uninteresting patterns and losing substantial patterns. In this paper, we propose an efficient method, Multiple
Item Support Frequent Pattern growth algorithm, MISFP-growth, to mine the complete set of frequent patterns
with multiple item support thresholds. In this method, Multiple Item Support Frequent Pattern Tree, MISFP-
Tree, is constructed to store all crucial information to mine frequent patterns. Since the construction of the
MISFP-Tree is done with respect to minimum of MIS; post pruning and reconstruction phases are not required.
In order to show the efficiency of the proposed method, it is compared with a recent tree-based algorithm, CFP-
growth++ and various experiments are conducted on both real and synthetic datasets. Experimental results
reveal that MISFP-growth outperforms in terms of execution time and memory space while we vary MIS
values of items.

Key-Words: - Association rule mining, Frequent patterns, Rare itemsets, Multiple support thresholds

Acknowledgements: This work is partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK)
under ARDEB 3501 Project No: 114E779

1 Introduction
Data mining is a nontrivial process of discovering
interesting knowledge from large databases.
Association Rule Mining (ARM) is an important
pattern analysis technique of data mining that
focuses on finding out the sequences of actions or
events known as itemsets (patterns) that are items
that occur together. It has drawn attention since it
was first proposed in [1]. This is due to its
applicability in various domains e.g. medical field,
elections, telecommunication firms, etc. The overall
goal of ARM is to discover all interesting rules from
a dataset that have the form: 𝑋𝑋 →𝑌𝑌 | 𝑋𝑋 ∩ 𝑌𝑌 = Ø
where X and Y are the set of items in the dataset.
An interesting rule should satisfy two statistical
measures known as minimum support threshold
denoted as minsup and minimum confidence
threshold denoted as minconf where minsup refers to
the percentage of transactions in the dataset that
contain 𝑋𝑋 ∪ 𝑌𝑌 whereas minconf denotes to the

conditional probability of finding 𝑋𝑋 ∪ 𝑌𝑌 given the
transactions that contain X.

Association rules can be found in two essential
steps as follows;
1. Finding all frequent patterns that exceed a given

minsup.
2. Generating association rules from frequent

patterns that are found in step 1 where frequent
pattern satisfies both of minsup and minconf.
Since the first step is expensive, almost all

research on ARM focuses on generating the
frequent patterns. Once the frequent patterns are
generated, generating association rules is
straightforward since confidence does not possess
closure property as support.

As mentioned before, discovering frequent
patterns is an essential step of ARM that aims to
extract a set of items that frequently co-occur
(itemset) in a database. Frequent itemsets (patterns)
should satisfy user-specified minimum support
threshold, minsup. Numerous methods have been

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 1 Volume 4, 2016

proposed in order to find out frequent patterns with
a single minsup [1, 2, 3, 4, 5, 6]. Using the single
minsup considerably reduces the search space and
computation by avoiding a huge amount of
infrequent itemsets from being handled. However,
mining frequent patterns with the single minsup
faces two problems: 1) extremely large amounts of
meaningless patterns are generated if the minsup is
set too low, 2) useful patterns may be lost when the
minsup is set too high. This problem is called rare
item problem [7]. Recently, several studies have
been performed to mine both of frequent and
interesting rare itemsets. Instead of using a single
minsup threshold for all items, separate minsup
threshold is assigned to each item based on the
characteristic of the item/itemset.

Since MSapriori [7], many methods have been
proposed to reduce search space and execution time
while generating frequent patterns under multiple
item support (MIS) [8, 9, 10, 11]. These methods
discover all meaningful rules with MIS, including
rarely occurring ones by applying different MIS to
each item. They can be classified into two types: 1)
Apriori-like methods [7, 8, 9] and 2) FP-growth-like
methods [10, 11].

In Apriori-like methods, the databases have to be
scanned many times to create all candidates items
since they are based on Apriori algorithm. They
consume an enormous amount of runtime,
especially when databases contain too many
transactions since they have to perform several
database scans with their candidate generation-and-
test approach. In order to overcome this weakness
FP-growth-like methods were proposed. These
methods require database scan at most twice as they
use FP-Tree to hold all necessary information that is
needed in mining process. They construct MIS-Tree
with a single scan and then the tree is pruned and re-
constructed in order to eliminate redundant nodes.

However, these methods are still far from being
efficient since they require 1) huge amount of
memory due to the management of irrelevant nodes,
and 2) high execution time for post prune-and-
reconstruct phase.

In this paper, we propose an efficient algorithm
called Multiple Item Support Frequent Pattern
growth, MISFP-growth, which is an extended
version of FP-growth [3]. MISFP-growth is
designed to mine frequent patterns under MIS over
large databases. MISFP-growth use Multiple Item
Support Frequent Pattern tree, MISFP-Tree, which
is based on FP-Tree, to hold all necessary
information that is used to discover the complete set
of frequent patterns with MIS. At the same time, a
frequent item header table, MIN-MIS-Frequent

table, is generated with all items that have support
no less than the minimum of minimum item support
(MIS) thresholds (MIN-MIS). Since MISFP-Tree is
constructed based on MIN-MIS, it does not need
any pruning and reconstruction. MISFP-growth,
extracts frequent patterns from MISFP-Tree. The
experimental results on both sparse and dense
datasets show the superiority of MISFP-growth in
comparison to a similar recent algorithm in terms of
runtime and memory while varying item support
thresholds.

The remaining of this paper is organized as
follows. In section 2, we give preliminaries of the
challenge. In section 3, the proposed MISFP-growth
algorithm is presented. Experimental results are
shown in section 4 while the related work is
discussed in section 5. Conclusion is given in
section 6.

2 Preliminaries
In this section, we introduce the basic terminology
related to frequent pattern mining under both of
single and multiple thresholds.

Let I = {i1, i2, … , im } represents the set of m
distinct items, and DB = {T1, T2, … , Tn} be a
transaction database where Ti (i ∈ [1…n]) is a
transaction, which contains a set of items in I. Each
transaction is associated with an identifier, called
TID. A transaction can be defined as Ti = (TIDi, X),
which is a tuple has number TID and contains an
itemset {X}. The itemset X= {x1, x2... xk} is a set of
k items in T. Thus, the itemset {X} have at least one
item and at most all items in specific transaction.
The itemset that contains K items is called K-
itemset. If support of the itemset is greater than or
equal to minsup, then it is a frequent pattern. The
support of the itemset X, denoted as sup(X), is the
number of transactions that contain {X} in DB as
follows:

𝑠𝑠𝑢𝑢𝑢𝑢(𝑋𝑋,𝐷𝐷𝐵𝐵) ∶= {𝑇𝑇𝐼𝐼𝐷𝐷| (𝑇𝑇𝐼𝐼𝐷𝐷, 𝐼𝐼) ∈ 𝐷𝐷𝐵𝐵,𝑋𝑋 ⊆ 𝐼𝐼}
Definition 1 (Frequent Pattern with Single
Threshold): Let DB be a transaction database over
a set of items I, and minsup is minimum support
threshold given by the user. The set of frequent
patterns in DB, which exceeds minsup is defined as
follows:

𝐹𝐹(𝐷𝐷𝐵𝐵,𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑢𝑢𝑢𝑢) = {X ⊆ I , sup(X, DB)/|𝐷𝐷𝐵𝐵| ≥ 𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑢𝑢𝑢𝑢},
where F represents all the frequent itemsets in DB
and |𝐷𝐷𝐵𝐵| is the number of transactions in DB.
Example. Suppose there are two itemsets: K = {x, y,
z} and Z = {n, m} with actual support = 70%, 40%,
respectively in a given database and the minsup is
set at 50%.
According to definition 1, the K itemset is frequent
as its support exceeds minsup = 50%, whereas Z is

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 2 Volume 4, 2016

infrequent itemset as its support does not satisfy
minsup.

Definition 2 Multiple Item Support (MIS): Let I
be a set of I items I = {i1,…, in}, an itemset X =
{i1, …, ik}, the minimum item support(MIS) of
itemset X is defined as follows. 𝑀𝑀𝐼𝐼𝑀𝑀(𝑋𝑋) =
MIN{MIS(𝑚𝑚1), MIS(𝑚𝑚2), … , MIS(𝑚𝑚𝑘𝑘)}.
Example. Assume that an itemset K = {x, y, z} has
an actual support = 8% in a given database. Suppose
that the MIS and the actual support of items are
given as follows:
𝑀𝑀𝐼𝐼𝑀𝑀(𝑥𝑥) = 5%,𝑀𝑀𝐼𝐼𝑀𝑀(𝑦𝑦) = 10% 𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀𝐼𝐼𝑀𝑀 (𝑧𝑧) = 15%,
𝑠𝑠𝑢𝑢𝑢𝑢(𝑥𝑥) = 10%, 𝑠𝑠𝑢𝑢𝑢𝑢(𝑦𝑦) = 9% 𝑎𝑎𝑛𝑛𝑎𝑎 𝑠𝑠𝑢𝑢𝑢𝑢 (𝑧𝑧) = 11%.

Then the MIS of the itemset K can be defined as
follows:
𝑀𝑀𝐼𝐼𝑀𝑀(𝐾𝐾) = 𝑀𝑀𝐼𝐼𝑀𝑀 {𝑀𝑀𝐼𝐼𝑀𝑀(𝑥𝑥) = 5%,𝑀𝑀𝐼𝐼𝑀𝑀(𝑦𝑦) = 10%, 𝑀𝑀𝐼𝐼𝑀𝑀 (𝑧𝑧) =
15%} = 5%. Thus, the itemset K is frequent with
support = 8%, which exceeds MIS of K = 5%.

3 MISFP-growth algorithm
The proposed method, MISFP-growth, is extended
version of FP-growth [3]. Its approach is similar to
FP-growth with slight differences. Main differences
between MISFP-growth and FP-growth are as
follows;
1. FP-growth is used to create frequent patterns

based on single threshold whereas MISFP-
growth is used to mine frequent patterns with
multiple item support thresholds.

2. Items in FP-growth method are arranged in
descending order in terms of their actual support
whereas in MISFP-growth items are sorted in
descending order in terms of their support
threshold values.
MISFP-growth reduces search space based on

the minimum of minimum item support threshold,
MIN-MIS. This idea plays a big role to reduce
search space since it is used to discard unpromising
items that play no role in creating frequent patterns
at high order.
Discarding property (MIN-MIS): Any item that
has support less than MIN-MIS is discarded and is
not used in building up MISFP-Tree.

We build our tree by only those promising items
that have support more or equal to MIN-MIS.
MISFP-growth utilizes MISFP-tree, an extended
prefix-tree, which compresses all transactions of
database in horizontal data format in memory. This
enables MISFP-growth to search for the complete
set of frequent patterns without the requirement of
generating a large number of candidate itemsets.
MISFP-growth requires the following essential
steps:

1. Scan database DB once to find out the actual
support of each item.

2. Find the lowest minimum support threshold
(MIN-MIS) among all items in database.

3. Scan DB once again to collect items that satisfy
MIN-MIS in each transaction, sort them in the
descending order of their predefined MIS and
insert these items into the MISFP-Tree. If the
appropriate node of an item exists, its count is
increased by one. Otherwise, a new node is
inserted in the MISFP-Tree.

4. Create MIN-MIS-frequent header table of
MISFP-Tree, which is used to hold items with
support no less than MIN-MIS in descending
order of MIS values of items. It consists of
item-name, MIS of item and the head of node-
link that point to item’s occurrences in the
MISFP-Tree. Nodes that have the same item-
name are linked in sequence. Such node-links
simplify tree traversal.

5. Build the conditional pattern base and the
conditional MISFP-Tree of each suffix item
whose support is greater or equal to its
predefined MIS. These two data structures
represent the knowledge extracted from MISFP-
Tree.
As a summary, MISFP-growth algorithm

involves two main steps to create the whole set of
frequent patterns and rare patterns with MIS as
follows; construction of MISFP-Tree (steps 1-4) and
mining frequent patterns from MISFP-Tree (step 5).
3.1 Construction of MISFP-Tree
A multiple support frequent pattern tree (MISFP-
Tree) is a tree structure that can be defined as
follows.
• It composes of a root named as null, a set of

item prefix sub trees as the children of the root,
and a MIN-MIS-frequent item header table
which contains all items that have support more
than MIN-MIS.

• Each node in the item prefix subtree composes
of three fields: item-name, count and node link,
where item-name represents the item that this
node presents, count records the number of
transactions represented by the portion of the
branch reaching to this node, and node-link
links to the next node in the MISFP-Tree
carrying the same item-name, or null if there is
none.

• Each entry in the MIN-MIS-frequent item
header table consists of three fields: item-name,
item’s minimum support thresholds and head of
node-link which points to the first node in the
MISFP-Tree carrying the item-name.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 3 Volume 4, 2016

• All the items in the table are sorted in
descending order in terms of their minimum
item support thresholds values.

• The MISFP-Tree and header table consist only
of items that have support no less than MIN-
MIS.

Table 1 (a). Transaction database

Table 1 (b). MIS and actual support of items

Example. Given a transaction database DB as
shown in Table 1(a) and the multiple item supports
of items in Table 1(b), construct the MISFP-Tree
with MIS in DB.

To build MISFP-Tree from the data in Table 1
(a) with the multiple predefined minimum support
values in Table 1(b), the process works as follows.
1. Scan database once to find the support of items

in the database DB. The Table 1 (b) shows the
items, MIS of items and their actual support in
the consecutive rows of the table.

2. Find out the least minimum support threshold
among all minimum item support thresholds of
items: MIN-MIS = min {MIS(a), MIS(b), …,
MIS(h)} = 2.

3. Compare the actual support of items with MIN-
MIS value (i.e, 2) and each item has support less
than 2 is discarded since they play no role in
generation of frequent patterns. Hence, items
{h, e, d} are discarded. The remaining items that
have support no less than 2 are arranged
according to their minimum item support
thresholds in descending order as shown in the
right column in Table 1 (a).

Fig.1 (a). After inserting the first transaction

Fig.1 (b). After inserting the second transaction

 Fig.1 (c). MISFP-Tree with all transactions

4. Scan database once again to construct MISFP-
Tree. We use items in the right column of the
Table 1 a) to build our tree. The process of
inserting transactions into the tree works as
follows.
4.1 The root of MISFP-Tree is created and

labeled as “null”.
4.2 For the first transaction {a, c, f}; the first

branch of MSFP-Tree is created as shown in
Fig.1 (a). Notice that all items in the
transaction are inserted into the tree in
descending order in term of their minimum
item support thresholds.

4.3 For the second transaction {a, c, f, g}; since
it shares the prefix {a, c, f} with the first
transactions, the count of each node along
the prefix is increased by 1, a new node (g:
1) is generated and linked as child of (f:2)
as shown in Fig.1 (b).

4.4 By repeating the steps 4.2 and 4.3
consecutive transactions are added to the

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 4 Volume 4, 2016

tree. Fig.1 (c) shows the complete MISFP-
Tree after we insert all transactions.

3.2 Mining frequent patterns from MISFP-
Tree
MISFP-growth is similar to CFP-growth++ [11] in
extracting the complete set of frequent patterns from
MISFP-Tree with the following difference.

Since we do not discard those items whose
support greater than MIN-MIS and less than their
predefined MIS, those items can be used to generate
frequent patterns with others but from them no
frequent pattern can be generated. Therefore, we
avoid generating conditional pattern base and
conditional MISFP-tree for these items by checking
the item’s support of each item against its
predefined MIS.

In order to mine frequent patterns from MISFP-
Tree shown in Fig.1 (c), we start to mine frequent
patterns that can be created from item {g} since it
has the least minimum threshold among all items in
the MIN-MIS-frequent header table. Following the
node-link of item {g}, there are two branches that
contain that item {g}; { a:3, c: 2, f:2, g:1} and {b:1,
f:1, g:1}. Considering the item “g” as suffix item, all
frequent patterns are generated based on item “g”
with support no less than MIS of suffix item, here
item {g} (i.e, 2). Since items are ordered in
descending order in terms of their minimum item
support thresholds, the item {g} has the least
minimum threshold among all items on these paths.
Therefore, all patterns that have support less than 2
cannot be frequent.

Hence, the conditional pattern base of item {g} is
{ a:1, c:1, f:1} and {b:1, f:1}. Notice that since the
counter value of {g} in each path is 1, the counter of
the nodes in these two branches is set to 1. After the
conditional pattern base of item {g} are identified,
the g’s conditional MISFP-Tree is created by adding
the counts along the link and searching for patterns
that exceed the minimum support threshold value of
item {g}.

In the conditional MISFP-Tree for suffix item
{g}, since only the item {f }has support no less than
the minimum support threshold of item {g} (i.e., 2),
the only conditional frequent pattern {(fg:2)} is
generated. Since the support count of the remaining
items {a, b, c} is 1, no frequent patterns can be
created from them. Thus, we create g’s conditional
frequent pattern (fg:2). By repeating the same
process for the remaining items in MIN-MIS
frequent header table, we find out the whole set of
frequent patterns as shown in Table 2.

Table 2. The complete set of frequent patterns

4 Performance Evaluation
In this section, the proposed method, MISFP-
growth, is compared with the recent tree based
method, CFP-growth++ [11], to discover frequent
patterns under multiple support thresholds. To
verify the effectiveness and efficiency of the
proposed method, several experiments are
conducted using five datasets with different
characteristics. In these experiments, we measure
the performance of two methods in terms of
execution time and memory space.

4.1 Experimental environment and datasets
We conduct two experiments using different type of
datasets to measure the performance and efficiency
of the proposed method, MISFP-growth. All
experiments are executed on an Intl(R) core i7 -
5500u CPU@ 3.40 GHz with 8GB main memory,
running on Microsoft Windows 10 operating
system. All the programs are implemented with C#.

Table 3. Characteristics of datasets

We use two kinds of datasets in our experiments;
one synthetic dataset (T10I4D100K) and four real
world datasets (Kosarak, Pumsb, Retail, and
Mushroom). The synthetic dataset T10I4D100K is
created with the data generator [2] which is widely
used for evaluating frequent pattern mining
algorithms. The real world datasets are taken from
FIMI repository [14]. The important characteristics
of the synthetic and real word datasets are shown in
Table 3. The density1 of a dataset indicates the
similarity of the transactions.

1 Density (%) = (Average Transaction Length / # of Distinct
Items) × 100

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 5 Volume 4, 2016

We use the following formula for assigning MIS
to items that is based on their actual supports [7].
LS represents the least minimum item support,
β ∈ [0,1] represents the parameter used to control
how the minimum support values of items should be
related to their occurrences in the database and 𝑓𝑓(𝑚𝑚)
represents the number of transactions that contain
item i (the support of item i).

𝑀𝑀𝐼𝐼𝑀𝑀(𝑚𝑚) = �𝑓𝑓(𝑚𝑚) ∗ 𝛽𝛽 , 𝑓𝑓(𝑚𝑚) ∗ 𝛽𝛽 > 𝐿𝐿𝑀𝑀
𝐿𝐿𝑀𝑀 , 𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

�

Notice, if β = 1 and 𝑓𝑓(𝑚𝑚) ≥ LS, then the
minimum item support threshold values of items are
the actual support of items, 𝑓𝑓(𝑚𝑚), whereas if β = 0,
then there is only one minimum support LS and the
same process of mining with single threshold is
implemented as FP-growth algorithm. In our
experiments the β parameter is calculated by the
following formula: 𝛽𝛽 = 1

𝛼𝛼
.

According to this formula, increasing the value
of α leads to decrease in MIS of items and that
increases the number of frequent patterns that are
generated. In these experiments, the value of α is
increased and the value of LS is fixed. For the
datasets Kosarak, Retail, T10I4D100k and
Mushroom, α is varied from 1 to 10 and we set LS
at 0.001, 0.001, 0.01 and 0.1 respectively. In quite
dense dataset, Pumsb, α is varied from 1 to 1.9 and
we set LS at 0.6. This is because it has a high
number of distinct items and the average transaction
length is large as well. For example, when the value
of 𝛂𝛂 is set to 1.5 and LS = 0.6, the number of
frequent itemsets discovered from the Pumsb dataset
is about 2 million as shown in Fig.2 (d). Figs.2 (a),
(b), (c), (d) and (e) show the number of frequent
patterns, which are generated with respect to α. It
can be seen from the graphs that increasing α leads
to increase in the number of frequent patterns for all
datasets.

4.2 Execution time
The execution time comparison of MISFP-growth
and CFP-growth++ is shown in Figs.3 (a), (b), (c),
(d), (e). The performance of two algorithms with
various α is measured on the given five datasets.
Note that, the execution time here means the total
runtime time, which is the period between input and
output. The experimental results reveal that our
proposed method, MISFP-growth, is substantially
faster than CFP-growth++ almost in all cases. This
is due to the fact that CFP-growth++ method spends
too much time to rebuild the MIS-Tree when there

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 6 Volume 4, 2016

are lots of useless items. It has to carry out an
exhaustive search to prune unpromising items.
Then, MIS-Tree has to be traversed to merge child
nodes carrying the same name and linked to same
parent.

Once MISFP-Tree of MISFP-growth is built, no
pruning and reconstruction is needed since it
contains only useful items that satisfy MIN-MIS.
Furthermore, in the mining process we avoid
generating patterns from unpromising items and we
skip them in building conditional pattern base and
conditional MISFP-Tree. For a very dense dataset
like Mushroom, the performance of two methods is
almost the same. This is due to the fact that there are
few items that have to be discarded during
rebuilding of MIS-Tree of CFP-growth++.

The speedup of the proposed method is

summarized in Table 4. In this table, column 4 in
contains the minimum speedup (MIN) and the
maximum speedup (MAX) of MISFP-growth
against the compared method. The speedup2 is
defined as the ratio between the execution time of
CFP-growth++ and MISFP-growth. Speedup can be
up to magnitude of 8-9 on sparse dataset like Retail.
On the other hand, on a dense dataset like
Mushroom, execution time of MISFP-growth can be
half of CFP-growth++. As a summary, from this
table it can be seen that MISFP-growth is more
efficient than CFP-growth++ for all sparse and
dense datasets.

Table 4. Speedup summary of MISFP-growth with
varied α

4.3 Memory usage
In this section we demonstrate the results of the
experiment that is carried on to compare memory
usage performance of MISFP-growth and CFP-
growth++ on the datasets given in Table 3. Similar
to execution time experiment, we change α and fix

2 speedup = execution time of CFP-growth++ / execution
time of MISFP-growth

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 7 Volume 4, 2016

the value of LS. Figs. 4. (a), (b), (c), (d) and (e)
show memory consumption of the two algorithms
on the given datasets. As it can be noticed from the
graphs, MISFP-growth, consumes much less
memory than CFP-growth++ for all five datasets.
This is due to the absence of items that play no role
to create any frequent patterns. MISFP-growth
discards the items that play no role to generate any
frequent patterns and constructs the MISFP-Tree by
only items that can be utilized to create frequent
patterns.
 In CFP-growth++, MIS-Tree is built by items
which cannot generate any frequent patterns and the
tree is rebuilt once again to discard meaningless
items by pruning and merging operations. In
addition, CFP-growth++ consumes more memory to
store all items from a dataset in MIN-frequent
header table and then those useless items are
discarded from this table during rebuilding the tree.
In the proposed method, MISFP-growth, MIN-MIS-
frequent header table contains only the useful items
that can be utilized to create frequent patterns.

Table 5 shows the memory gain3 of the proposed
method compared to CFP-growth++ under varied α.
Column 4 in this table shows the minimum memory
gain (MIN) and the maximum memory gain (MAX)
of MISFP-growth against the compared method.

Table 5. Memory gain summary of MISFP-growth
with varied α

 It can be noticed that MISFP-growth consumes
less memory in all cases except in Mushroom
dataset where the memory consumption of the
proposed method is slightly less than memory
consumption of the compared method. For a sparse
dataset like Kosarak, memory gain can reach up to
41%, on the other hand for a dense dataset like
Mushroom memory gain can be 6% only.

 4.4 Discussion on Results
Experimental results show that the proposed method
significantly outperforms CFP-growth++ on both
real and synthetic datasets in terms of execution
time, memory usage and scalability. As it can be

3 Memory gain = (Memory consumption of CFP-growth++ - Memory
consumption of MISFP-growth) / Memory consumption of CFP-
growth++

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 8 Volume 4, 2016

observed from the Tables 4 and 5, the speedup in
execution time and memory gain is quite high for
the sparse datasets but not quite significant for very
dense datasets (like Mushroom). On the sparse
datasets, the generated trees are much bigger than
those on dense datasets. Hence, the bigger is the
tree, the more is time cost. Thus, MISFP-growth is
much more efficient than CFP-growth++ on sparse
datasets. With very dense datasets, MISFP-growth
and CFP-growth++ work almost the same. This is
quite expected, as in the case of very dense dataset,
most of items are frequent and only a few pruning
effort is needed in MIS-Tree built up. For example,
in the case of Mushroom dataset, we can observe
that the performance efficiency of two compared
methods is almost the same.

5 Related work
An efficient heuristic algorithm has been proposed
in order to mine frequent patterns [2]. Apriori
algorithm deploys a breadth-first search to count the
support of (k+1)-itemsets that are created from
frequent k-itemsets. It achieves good performance
by reducing the search space as the downward
closure property is utilized. Since it is considered an
innovation that opened new doors for many frequent
patterns mining applications, many variants of
Apriori have been proposed to enhance the
performance of Apriori such as Matrix Apriori [12],
BitApriori [13], etc. On the other hand, the multiple
database scan approach of Apriori algorithm is very
I/O expensive for large databases. In addition, due
to the candidate generation-and-test approach, it
requires huge computational time and memory
usage when too many candidate itemsets are
generated.

To handle these weaknesses, FP-growth [3] and
its improvements [4, 5, 6] have been proposed to
generate frequent patterns without creating a huge
amount of candidate itemsets as Apriori. FP-growth
methods utilizes FP-tree, an extended prefix-tree,
which compresses all transactions of database in
horizontal data format in memory. This enables FP-
growth to search for the complete set of frequent
patterns, which eliminates reduces the number of
database scans.

Above methods are used to find frequent patterns
with single minsup but using only a single minsup
implicitly assumes that all items in the data are of
the same nature or have similar frequencies in the
database. In fact frequent pattern mining based on
single threshold might cause abundance of
meaningless frequent patterns (low threshold) or
loss of useful patterns (high threshold). To tackle
this problem which is called a rare itemset problem,

MSapriori [7] has been proposed to discover
frequent patterns with multiple support thresholds. It
is an extension of Apriori algorithm. As downward
closure property implies, an itemset is frequent if
and only if all its subsets are frequent but this does
not hold when we assign multiple minsup values to
items/itemsets. Frequent itemsets are found if an
itemset satisfies the lowest MIS value among items
within it. In this method, the frequent items are
assigned with a higher MIS value whereas rare
items are assigned with a lower MIS value.

Two other methods have been proposed to mine
frequent patterns with MIS based on Apriori [8, 9].
These methods work as MSapriori with the some
differences as follows. In [8], it first finds all the
frequent 1-itemsets for the given database by
comparing the support of each item with its
predefined minimum support. It then finds all the
frequent k-itemsets for the database by comparing
the support of each candidate k-itemset with the
maximum of the minimum supports of the items
contained in it. In [9], all the steps are same as that
used in MSapriori with following exception: 1) it
discovers frequent patterns (L) by basic Apriori with
a single minimum support, 2) choose all frequent
patterns from L that satisfy the definition of frequent
patterns with multiple minimum supports from L.
These methods [7, 8, 9] are based on Apriori
algorithm. Therefore, they adopt an Apriori-like
candidate set generation-and-test approach and it is
always costly in terms of memory and execution
time when the database is large and frequent
patterns are long.

To address this problem, a multiple item support
tree (MIS-Tree) which extends the FP-tree structure
[3], has been proposed for storing compressed and
crucial information about frequent patterns [10]. A
MIS-Tree-based mining method, CFP-growth
algorithm was developed for mining the complete
set of frequent patterns with multiple minimum
support thresholds. It finds out the whole set of
frequent itemsets with a single scan of the
transaction database. However, CFP-growth
expends too much time for discovering the whole
set of frequent patterns since it repeats growth
process until each conditional pattern base becomes
empty for each item. This is because downward
closure property no longer holds in multiple item
support framework.

To reduce the search space, an improved CFP-
growth method called CFP-growth++ has been
proposed [11]. In this method, four different pruning
operations have been introduced to reduce the
search space and avoid growth process until each
conditional pattern base becomes empty.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 9 Volume 4, 2016

CFP-growth++ has to conduct an exhaustive
search in reconstruction of the tree structure. This is
due to time that is consumed for punning useless
items. Then, MIS-Tree has to be scanned to merge
any child nodes linked to same parent node. In
addition, initial tree occupies large memory space
since it is built with all items in the database.

6 Conclusion
In this paper, we propose an efficient algorithm,
MISFP-growth that is based on FP-growth
algorithm and is designed to discover interesting
patterns involving both of frequent and rare patterns.
It constructs MISFP-Tree to hold all necessary
information that are needed in mining process. This
tree is efficiently constructed with only useful items
that play role to generate frequent and rare patterns.
Thus, reconstructing the tree is not needed. The
experimental results indicate that MISFP-growth
performs better than CFP-growth++ in term of both
runtime and memory consumption.

Up to now, a few methods have been proposed to
mine frequent patterns with MIS. We can sense that
there is much more to do in this field. For upcoming
studies, we plan 1) to carry on more experiments to
understand the scalability performance of MISFP-
growth, 2) to extend MISFP-growth with the
capability of finding meaningful rare patterns with
multiple thresholds without generating a huge
number of frequent patterns, and 3) to extend
MISFP-growth to mine frequent patterns under MIS
in incremental databases.

References:
[1] Agrawal, Rakesh, Tomasz Imieliński, and

Arun Swami. "Mining association rules
between sets of items in large databases",
ACM SIGMOD Record. Vol. 22. No. 2. ACM,
1993.

[2] Agrawal, Rakesh, and Ramakrishnan Srikant.
"Fast algorithms for mining association
rules", Proc. 20th int. conf. very large data
bases, VLDB. Vol. 1215. 1994.

[3] Han, Jiawei, Jian Pei, and Yiwen Yin. "Mining
frequent patterns without candidate
generation", ACM SIGMOD Record. Vol. 29.
No. 2. ACM, 2000.

 [4] Grahne, Gosta, and Jianfei Zhu. "Fast
algorithms for frequent itemset mining using
fp-trees", Knowledge and Data Engineering,
IEEE Transactions on 17.10 (2005): 1347-
1362.

[5] Jalan, Shalini, Anurag Srivastava, and G. K.
Sharma. "A non-recursive approach for FP-tree
based frequent pattern generation", Research
and Development (SCOReD), 2009 IEEE
Student Conference on. IEEE, 2009.

[6] Zhang, Wei, Hongzhi Liao, and Na Zhao.
"Research on the FP growth algorithm about
association rule mining", Business and
Information Management, 2008. ISBIM'08.
International Seminar on. Vol. 1. IEEE, 2008.

 [7] Liu, Bing, Wynne Hsu, and Yiming Ma.
"Mining association rules with multiple
minimum supports", Proceedings of the fifth
ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM,
1999.

[8] Lee, Yeong-Chyi, Tzung-Pei Hong, and Wen-
Yang Lin. "Mining association rules with
multiple minimum supports using maximum
constraints", International Journal of
Approximate Reasoning 40.1 (2005): 44-54.

[9] Xu, Tiantian, and Xiangjun Dong. "Mining
frequent patterns with multiple minimum
supports using basic Apriori." Natural
Computation (ICNC), 2013 Ninth International
Conference on. IEEE, 2013.

[10] Hu, Ya-Han, and Yen-Liang Chen. "Mining
association rules with multiple minimum
supports: a new mining algorithm and a
support tuning mechanism", Decision Support
Systems 42.1 (2006): 1-24.

 [11] Kiran, R. Uday, and P. Krishna Reddy. "Novel
techniques to reduce search space in multiple
minimum supports-based frequent pattern
mining algorithms", Proceedings of the 14th
International Conference on Extending
Database Technology. ACM, 2011.

[12] Pavón, Judith, Sidney Viana, and Santiago
Gómez. "Matrix Apriori: Speeding Up the
Search for Frequent Patterns", Databases and
Applications. 2006.

[13] Le, Thi, Thi Nguyen, and Tae Chong Chung.
"BitApriori: an apriori-based frequent itemsets
mining using bit streams", Information Science
and Applications (ICISA), 2010 International
Conference on. IEEE, 2010.

[14] Frequent Itemset Mining Implementations
Repository http://fimi.ua.ac.be/data/

WSEAS TRANSACTIONS on COMPUTER RESEARCH Sadeq Darrab, Belgin Ergenç

E-ISSN: 2415-1521 10 Volume 4, 2016

http://fimi.ua.ac.be/data/

