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Abstract: - Traditional methods use a single minimum support threshold to find out the complete set of frequent 
patterns. However, in real word applications, using single minimum item support threshold is not adequate 
since it does not reflect the nature of each item. If single minimum support threshold is set too low, a huge 
amount of patterns are generated including uninteresting patterns. On the other hand if it is set too high, many 
of interesting patterns (called rare items) may be lost. Recently, several methods have been studied to tackle the 
rare item problem by avoiding using single minimum item support threshold. The nature of each item is 
considered where different items are specified with different Minimum Item Support thresholds (MIS) instead 
of using single support threshold. By this, the complete set of frequent patterns is generated without creating 
uninteresting patterns and losing substantial patterns. In this paper, we propose an efficient method, Multiple 
Item Support Frequent Pattern growth algorithm, MISFP-growth, to mine the complete set of frequent patterns 
with multiple item support thresholds. In this method, Multiple Item Support Frequent Pattern Tree, MISFP-
Tree, is constructed to store all crucial information to mine frequent patterns. Since the construction of the 
MISFP-Tree is done with respect to minimum of MIS; post pruning and reconstruction phases are not required. 
In order to show the efficiency of the proposed method, it is compared with a recent tree-based algorithm, CFP-
growth++ and various experiments are conducted on both real and synthetic datasets. Experimental results 
reveal that MISFP-growth outperforms in terms of execution time and memory space while we vary MIS 
values of items. 
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1 Introduction 
Data mining is a nontrivial process of discovering 
interesting knowledge from large databases. 
Association Rule Mining (ARM) is an important 
pattern analysis technique of data mining that 
focuses on finding out the sequences of actions or 
events known as itemsets (patterns) that are items 
that occur together. It has drawn attention since it 
was first proposed in [1]. This is due to its 
applicability in various domains e.g. medical field, 
elections, telecommunication firms, etc. The overall 
goal of ARM is to discover all interesting rules from 
a dataset that have the form: 𝑋𝑋 →𝑌𝑌 | 𝑋𝑋 ∩  𝑌𝑌 =  Ø  
where X and Y are the set of items in the dataset. 
An interesting rule should satisfy two statistical 
measures known as minimum support threshold 
denoted as minsup and minimum confidence 
threshold denoted as minconf where minsup refers to 
the percentage of transactions in the dataset that 
contain  𝑋𝑋 ∪ 𝑌𝑌 whereas minconf denotes to the 

conditional probability of finding 𝑋𝑋 ∪ 𝑌𝑌 given the 
transactions that contain X.  

Association rules can be found in two essential 
steps as follows; 
1. Finding all frequent patterns that exceed a given 

minsup.  
2. Generating association rules from frequent 

patterns that are found in step 1 where frequent 
pattern satisfies both of minsup and minconf.  
Since the first step is expensive, almost all 

research on ARM focuses on generating the 
frequent patterns. Once the frequent patterns are 
generated, generating association rules is 
straightforward since confidence does not possess 
closure property as support.  

As mentioned before, discovering frequent 
patterns is an essential step of ARM that aims to 
extract a set of items that frequently co-occur 
(itemset) in a database. Frequent itemsets (patterns) 
should satisfy user-specified minimum support 
threshold, minsup. Numerous methods have been 
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proposed in order to find out frequent patterns with 
a single minsup [1, 2, 3, 4, 5, 6]. Using the single 
minsup considerably reduces the search space and 
computation by avoiding a huge amount of 
infrequent itemsets from being handled. However, 
mining frequent patterns with the single minsup 
faces two problems: 1) extremely large amounts of 
meaningless patterns are generated if the minsup is 
set too low, 2) useful patterns may be lost when the 
minsup is set too high. This problem is called rare 
item problem [7]. Recently, several studies have 
been performed to mine both of frequent and 
interesting rare itemsets. Instead of using a single 
minsup threshold for all items, separate minsup 
threshold is assigned to each item based on the 
characteristic of the item/itemset.  

Since MSapriori [7], many methods have been 
proposed to reduce search space and execution time 
while generating frequent patterns under multiple 
item support (MIS) [8, 9, 10, 11]. These methods 
discover all meaningful rules with MIS, including 
rarely occurring ones by applying different MIS to 
each item. They can be classified into two types: 1) 
Apriori-like methods [7, 8, 9] and 2) FP-growth-like 
methods [10, 11].  

In Apriori-like methods, the databases have to be 
scanned many times to create all candidates items 
since they are based on Apriori algorithm. They 
consume an enormous amount of runtime, 
especially when databases contain too many 
transactions since they have to perform several 
database scans with their candidate generation-and-
test approach. In order to overcome this weakness 
FP-growth-like methods were proposed. These 
methods require database scan at most twice as they 
use FP-Tree to hold all necessary information that is 
needed in mining process. They construct MIS-Tree 
with a single scan and then the tree is pruned and re-
constructed in order to eliminate redundant nodes.  

However, these methods are still far from being 
efficient since they require 1) huge amount of 
memory due to the management of irrelevant nodes, 
and 2) high execution time for post prune-and-
reconstruct phase.  

In this paper, we propose an efficient algorithm 
called Multiple Item Support Frequent Pattern 
growth, MISFP-growth, which is an extended 
version of FP-growth [3]. MISFP-growth is 
designed to mine frequent patterns under MIS over 
large databases. MISFP-growth use Multiple Item 
Support Frequent Pattern tree, MISFP-Tree, which 
is based on FP-Tree, to hold all necessary 
information that is used to discover the complete set 
of frequent patterns with MIS. At the same time, a 
frequent item header table, MIN-MIS-Frequent 

table, is generated with all items that have support 
no less than the minimum of minimum item support 
(MIS) thresholds (MIN-MIS). Since MISFP-Tree is 
constructed based on MIN-MIS, it does not need 
any pruning and reconstruction. MISFP-growth, 
extracts frequent patterns from MISFP-Tree. The 
experimental results on both sparse and dense 
datasets show the superiority of MISFP-growth in 
comparison to a similar recent algorithm in terms of 
runtime and memory while varying item support 
thresholds.  

The remaining of this paper is organized as 
follows. In section 2, we give preliminaries of the 
challenge. In section 3, the proposed MISFP-growth 
algorithm is presented.  Experimental results are 
shown in section 4 while the related work is 
discussed in section 5. Conclusion is given in 
section 6. 

2 Preliminaries  
In this section, we introduce the basic terminology 
related to frequent pattern mining under both of 
single and multiple thresholds.  

Let I = {i1, i2, … , im } represents the set of m 
distinct items, and DB = {T1, T2, … , Tn}  be a 
transaction database where Ti (i ∈ [1…n]) is a 
transaction, which contains a set of items in I. Each 
transaction is associated with an identifier, called 
TID.  A transaction can be defined as Ti = (TIDi, X), 
which is a tuple has number TID and contains an 
itemset {X}.  The itemset X= {x1, x2... xk} is a set of 
k items in T. Thus, the itemset {X} have at least one 
item and at most all items in specific transaction. 
The itemset that contains K items is called K-
itemset. If support of the itemset is greater than or 
equal to minsup, then it is a frequent pattern. The 
support of the itemset X, denoted as sup(X), is the 
number of transactions that contain {X} in DB as 
follows:  

𝑠𝑠𝑢𝑢𝑢𝑢(𝑋𝑋,𝐷𝐷𝐵𝐵) ∶= {𝑇𝑇𝐼𝐼𝐷𝐷| (𝑇𝑇𝐼𝐼𝐷𝐷, 𝐼𝐼) ∈ 𝐷𝐷𝐵𝐵,𝑋𝑋 ⊆ 𝐼𝐼} 
Definition 1 (Frequent Pattern with Single 
Threshold): Let DB be a transaction database over 
a set of items I, and minsup is minimum support 
threshold given by the user. The set of frequent 
patterns in DB, which exceeds minsup is defined as 
follows: 

𝐹𝐹(𝐷𝐷𝐵𝐵,𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑢𝑢𝑢𝑢) = {X ⊆ I , sup(X, DB)/|𝐷𝐷𝐵𝐵| ≥ 𝑚𝑚𝑚𝑚𝑛𝑛𝑠𝑠𝑢𝑢𝑢𝑢}, 
where F represents all the frequent itemsets in DB 
and |𝐷𝐷𝐵𝐵| is the number of transactions in DB. 
Example. Suppose there are two itemsets: K = {x, y, 
z} and Z = {n, m} with actual support = 70%, 40%, 
respectively in a given database and the minsup is 
set at 50%. 
According to definition 1, the K itemset is frequent 
as its support exceeds minsup = 50%, whereas Z is 
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infrequent itemset as its support does not satisfy 
minsup. 

Definition 2 Multiple Item Support (MIS): Let I 
be  a  set  of I items  I = {i1,…, in}, an itemset X = 
{i1, …, ik}, the minimum item support(MIS) of 
itemset X is defined as follows. 𝑀𝑀𝐼𝐼𝑀𝑀(𝑋𝑋) =
MIN{MIS(𝑚𝑚1), MIS(𝑚𝑚2), … , MIS(𝑚𝑚𝑘𝑘)}. 
Example. Assume that an itemset K = {x, y, z} has 
an actual support = 8% in a given database. Suppose 
that the MIS and the actual support of items are 
given as follows: 
𝑀𝑀𝐼𝐼𝑀𝑀(𝑥𝑥) = 5%,𝑀𝑀𝐼𝐼𝑀𝑀(𝑦𝑦) = 10% 𝑎𝑎𝑛𝑛𝑎𝑎 𝑀𝑀𝐼𝐼𝑀𝑀 (𝑧𝑧) = 15%, 
𝑠𝑠𝑢𝑢𝑢𝑢(𝑥𝑥) = 10%, 𝑠𝑠𝑢𝑢𝑢𝑢(𝑦𝑦) = 9% 𝑎𝑎𝑛𝑛𝑎𝑎 𝑠𝑠𝑢𝑢𝑢𝑢 (𝑧𝑧) = 11%. 

Then the MIS of the itemset K can be defined as 
follows: 
𝑀𝑀𝐼𝐼𝑀𝑀(𝐾𝐾) = 𝑀𝑀𝐼𝐼𝑀𝑀 {𝑀𝑀𝐼𝐼𝑀𝑀(𝑥𝑥) = 5%,𝑀𝑀𝐼𝐼𝑀𝑀(𝑦𝑦) =  10%, 𝑀𝑀𝐼𝐼𝑀𝑀 (𝑧𝑧) =
15%} =  5%. Thus, the itemset K is frequent with 
support = 8%, which exceeds MIS of K = 5%. 

3 MISFP-growth algorithm  
The proposed method, MISFP-growth, is extended 
version of FP-growth [3]. Its approach is similar to 
FP-growth with slight differences. Main differences 
between MISFP-growth and FP-growth are as 
follows; 
1. FP-growth is used to create frequent patterns 

based on single threshold whereas MISFP-
growth is used to mine frequent patterns with 
multiple item support thresholds. 

2. Items in FP-growth method are arranged in 
descending order in terms of their actual support 
whereas in MISFP-growth items are sorted in 
descending order in terms of their support 
threshold values. 
MISFP-growth reduces search space based on 

the minimum of minimum item support threshold, 
MIN-MIS. This idea plays a big role to reduce 
search space since it is used to discard unpromising 
items that play no role in creating frequent patterns 
at high order. 
Discarding property (MIN-MIS):  Any item that 
has support less than MIN-MIS is discarded and is 
not used in building up MISFP-Tree. 

We build our tree by only those promising items 
that have support more or equal to MIN-MIS. 
MISFP-growth utilizes MISFP-tree, an extended 
prefix-tree, which compresses all transactions of 
database in horizontal data format in memory. This 
enables MISFP-growth to search for the complete 
set of frequent patterns without the requirement of 
generating a large number of candidate itemsets. 
MISFP-growth requires the following essential 
steps: 

1. Scan database DB once to find out the actual 
support of each item. 

2. Find the lowest minimum support threshold 
(MIN-MIS) among all items in database. 

3. Scan DB once again to collect items that satisfy 
MIN-MIS in each transaction, sort them in the 
descending order of their predefined MIS and 
insert these items into the MISFP-Tree. If the 
appropriate node of an item exists, its count is 
increased by one. Otherwise, a new node is 
inserted in the MISFP-Tree. 

4. Create MIN-MIS-frequent header table of 
MISFP-Tree, which is used to hold items with 
support no less than MIN-MIS in descending 
order of MIS values of items. It consists of 
item-name, MIS of item and the head of node-
link that point to item’s occurrences in the 
MISFP-Tree. Nodes that have the same item-
name are linked in sequence. Such node-links 
simplify tree traversal. 

5. Build the conditional pattern base and the 
conditional MISFP-Tree of each suffix item 
whose support is greater or equal to its 
predefined MIS. These two data structures 
represent the knowledge extracted from MISFP-
Tree.  
As a summary, MISFP-growth algorithm 

involves two main steps to create the whole set of 
frequent patterns and rare patterns with MIS as 
follows; construction of MISFP-Tree (steps 1-4) and 
mining frequent patterns from MISFP-Tree (step 5). 
3.1 Construction of MISFP-Tree 
A multiple support frequent pattern tree (MISFP-
Tree) is a tree structure that can be defined as 
follows. 
• It composes of a root named as null, a set of 

item prefix sub trees as the children of the root, 
and a MIN-MIS-frequent item header table 
which contains all items that have support more 
than MIN-MIS. 

• Each node in the item prefix subtree composes 
of three fields: item-name, count and node link, 
where item-name represents the item that this 
node presents, count records the number of 
transactions represented by the portion of the 
branch reaching to this node, and node-link 
links to the next node in the MISFP-Tree 
carrying the same item-name, or null if there is 
none. 

• Each entry in the MIN-MIS-frequent item 
header table consists of three fields: item-name, 
item’s minimum support thresholds and head of 
node-link which points to the first node in the 
MISFP-Tree carrying the item-name. 
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• All the items in the table are sorted in 
descending order in terms of their minimum 
item support thresholds values. 

• The MISFP-Tree and header table consist only 
of items that have support no less than MIN-
MIS. 

Table 1 (a). Transaction database 

 
 
 
Table 1 (b). MIS and actual support of items 

 
 
 
 
Example. Given a transaction database DB as 
shown in Table 1(a) and the multiple item supports 
of items in Table 1(b), construct the MISFP-Tree 
with MIS in DB. 

To build MISFP-Tree from the data in Table 1 
(a) with the multiple predefined minimum support 
values in Table 1(b), the process works as follows. 
1. Scan database once to find the support of items 

in the database DB. The Table 1 (b) shows the 
items, MIS of items and their actual support in 
the consecutive rows of the table.  

2. Find out the least minimum support threshold 
among all minimum item support thresholds of 
items: MIN-MIS  = min {MIS(a), MIS(b), …, 
MIS(h)} = 2. 

3. Compare the actual support of items with MIN-
MIS value (i.e, 2) and each item has support less 
than 2 is discarded since they play no role in 
generation of frequent patterns. Hence, items 
{h, e, d} are discarded. The remaining items that 
have support no less than 2 are arranged 
according to their minimum item support 
thresholds in descending order as shown in the 
right column in Table 1 (a).  

 
Fig.1 (a). After inserting the first transaction 

 
Fig.1 (b). After inserting the second transaction 

 
   Fig.1 (c).  MISFP-Tree with all transactions 

4. Scan database once again to construct MISFP-
Tree. We use items in the right column of the 
Table 1 a) to build our tree. The process of 
inserting transactions into the tree works as 
follows. 
4.1 The root of MISFP-Tree is created and 

labeled as “null”.  
4.2 For the first transaction {a, c, f}; the first 

branch of MSFP-Tree is created as shown in 
Fig.1 (a). Notice that all items in the 
transaction are inserted into the tree in 
descending order in term of their minimum 
item support thresholds.  

4.3 For the second transaction {a, c, f, g}; since 
it shares the prefix {a, c, f} with the first 
transactions, the count of each node along 
the prefix is increased by 1, a new node (g: 
1) is generated and linked as child of (f:2) 
as shown in Fig.1 (b). 

4.4 By repeating the steps 4.2 and 4.3 
consecutive transactions are added to the 
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tree. Fig.1 (c) shows the complete MISFP-
Tree after we insert all transactions. 

3.2 Mining frequent patterns from MISFP-
Tree 
MISFP-growth is similar to CFP-growth++ [11] in 
extracting the complete set of frequent patterns from 
MISFP-Tree with the following difference. 

Since we do not discard those items whose 
support greater than MIN-MIS and less than their 
predefined MIS, those items can be used to generate 
frequent patterns with others but from them no 
frequent pattern can be generated. Therefore, we 
avoid generating conditional pattern base and 
conditional MISFP-tree for these items by checking 
the item’s support of each item against its 
predefined MIS.   

In order to mine frequent patterns from MISFP-
Tree shown in Fig.1 (c), we start to mine frequent 
patterns that can be created from item {g} since it 
has the least minimum threshold among all items in 
the MIN-MIS-frequent header table. Following the 
node-link of item {g}, there are two branches that 
contain that item {g};  { a:3, c: 2, f:2, g:1} and {b:1, 
f:1, g:1}. Considering the item “g” as suffix item, all 
frequent patterns are generated based on item “g” 
with support no less than MIS of suffix item, here 
item {g} (i.e, 2).  Since items are ordered in 
descending order in terms of their minimum item 
support thresholds, the item {g} has the least 
minimum threshold among all items on these paths. 
Therefore, all patterns that have support less than 2 
cannot be frequent.  

Hence, the conditional pattern base of item {g} is 
{ a:1, c:1, f:1} and {b:1, f:1}.  Notice that since the 
counter value of {g} in each path is 1, the counter of 
the nodes in these two branches is set to 1. After the 
conditional pattern base of item {g} are identified, 
the g’s conditional MISFP-Tree is created by adding 
the counts along the link and searching for patterns 
that exceed the minimum support threshold value of 
item {g}.  

In the conditional MISFP-Tree for suffix item 
{g}, since only the item {f }has support no less than 
the minimum support threshold of item {g} (i.e., 2), 
the only conditional frequent pattern {(fg:2)} is 
generated. Since the support count of the remaining 
items {a, b, c} is 1, no frequent patterns can be 
created from them. Thus, we create g’s conditional 
frequent pattern (fg:2). By repeating the same 
process for the remaining items in MIN-MIS 
frequent header table, we find out the whole set of 
frequent patterns as shown in Table 2.    

                                                   

Table 2. The complete set of frequent patterns 

 

4 Performance Evaluation 
In this section, the proposed method, MISFP-
growth, is compared with the recent tree based 
method, CFP-growth++ [11], to discover frequent 
patterns under multiple support thresholds. To 
verify the effectiveness and efficiency of the 
proposed method, several experiments are 
conducted using five datasets with different 
characteristics. In these experiments, we measure 
the performance of two methods in terms of 
execution time and memory space.  

4.1 Experimental environment and datasets 
We conduct two experiments using different type of 
datasets to measure the performance and efficiency 
of the proposed method, MISFP-growth.  All 
experiments are executed on an Intl(R) core i7 -
5500u CPU@ 3.40 GHz with 8GB main memory, 
running on Microsoft Windows 10 operating 
system. All the programs are implemented with C#. 

Table 3. Characteristics of datasets 

We use two kinds of datasets in our experiments; 
one synthetic dataset (T10I4D100K) and four real 
world datasets (Kosarak, Pumsb, Retail, and 
Mushroom). The synthetic dataset T10I4D100K is 
created with the data generator [2] which is widely 
used for evaluating frequent pattern mining 
algorithms. The real world datasets are taken from 
FIMI repository [14]. The important characteristics 
of the synthetic and real word datasets are shown in 
Table 3. The density1 of a dataset indicates the 
similarity of the transactions.  

1 Density (%) =  (Average Transaction Length / # of Distinct 
Items) × 100 
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We use the following formula for assigning MIS 
to items that is based on their actual supports [7].  
LS represents the least minimum item support, 
β ∈ [0,1] represents the parameter used to control 
how the minimum support values of items should be 
related to their occurrences in the database and 𝑓𝑓(𝑚𝑚) 
represents the number of transactions that contain 
item i (the support of item i).  

𝑀𝑀𝐼𝐼𝑀𝑀(𝑚𝑚) = �𝑓𝑓(𝑚𝑚) ∗  𝛽𝛽  , 𝑓𝑓(𝑚𝑚) ∗  𝛽𝛽 > 𝐿𝐿𝑀𝑀
𝐿𝐿𝑀𝑀  ,                    𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒

� 

Notice, if β = 1 and 𝑓𝑓(𝑚𝑚) ≥ LS, then the 
minimum item support threshold values of items are 
the actual support of items, 𝑓𝑓(𝑚𝑚), whereas if β = 0, 
then  there is only one minimum support LS and the 
same process of mining with single threshold is 
implemented as FP-growth algorithm. In our 
experiments the β parameter is calculated by the 
following formula: 𝛽𝛽 = 1

𝛼𝛼
. 

According to this formula, increasing the value 
of α leads to decrease in MIS of items and that 
increases the number of frequent patterns that are 
generated. In these experiments, the value of α is 
increased and the value of LS is fixed.  For the 
datasets Kosarak, Retail, T10I4D100k and 
Mushroom, α is varied from 1 to 10 and we set LS 
at 0.001, 0.001, 0.01 and 0.1 respectively. In quite 
dense dataset, Pumsb, α is varied from 1 to 1.9 and 
we set LS at 0.6. This is because it has a high 
number of distinct items and the average transaction 
length is large as well. For example, when the value 
of 𝛂𝛂 is set to 1.5 and LS = 0.6, the number of 
frequent itemsets discovered from the Pumsb dataset 
is about 2 million as shown in Fig.2 (d).  Figs.2 (a), 
(b), (c), (d) and (e) show the number of frequent 
patterns, which are generated with respect to α. It 
can be seen from the graphs that increasing α leads 
to increase in the number of frequent patterns for all 
datasets.  

 

 

 

 

 
4.2 Execution time 
The execution time comparison of MISFP-growth 
and CFP-growth++ is shown in Figs.3 (a), (b), (c), 
(d), (e). The performance of two algorithms with 
various α is measured on the given five datasets. 
Note that, the execution time here means the total 
runtime time, which is the period between input and 
output. The experimental results reveal that our 
proposed method, MISFP-growth, is substantially 
faster than CFP-growth++ almost in all cases. This 
is due to the fact that CFP-growth++ method spends 
too much time to rebuild the MIS-Tree when there 
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are lots of useless items. It has to carry out an 
exhaustive search to prune unpromising items. 
Then, MIS-Tree has to be traversed to merge child 
nodes carrying the same name and linked to same 
parent.  

Once MISFP-Tree of MISFP-growth is built, no 
pruning and reconstruction is needed since it 
contains only useful items that satisfy MIN-MIS.  
Furthermore, in the mining process we avoid 
generating patterns from unpromising items and we 
skip them in building conditional pattern base and 
conditional MISFP-Tree. For a very dense dataset 
like Mushroom, the performance of two methods is 
almost the same. This is due to the fact that there are 
few items that have to be discarded during 
rebuilding of MIS-Tree of CFP-growth++. 

  

 

 

 

 

 
The speedup of the proposed method is 

summarized in Table 4. In this table, column 4 in 
contains the minimum speedup (MIN) and the 
maximum speedup (MAX) of MISFP-growth 
against the compared method. The speedup2 is 
defined as the ratio between the execution time of 
CFP-growth++ and MISFP-growth. Speedup can be 
up to magnitude of 8-9 on sparse dataset like Retail. 
On the other hand, on a dense dataset like 
Mushroom, execution time of MISFP-growth can be 
half of CFP-growth++. As a summary, from this 
table it can be seen that MISFP-growth is more 
efficient than CFP-growth++ for all sparse and 
dense datasets.  

Table 4.  Speedup summary of MISFP-growth with 
varied α 

 
4.3 Memory usage 
In this section we demonstrate the results of the 
experiment that is carried on to compare memory 
usage performance of MISFP-growth and CFP-
growth++ on the datasets given in Table 3. Similar 
to execution time experiment, we change α and fix 

2 speedup = execution time of CFP-growth++ / execution 
time of MISFP-growth 
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the value of LS. Figs. 4. (a), (b), (c), (d) and (e) 
show memory consumption of the two algorithms 
on the given datasets. As it can be noticed from the 
graphs, MISFP-growth, consumes much less 
memory than CFP-growth++ for all five datasets. 
This is due to the absence of items that play no role 
to create any frequent patterns. MISFP-growth 
discards the items that play no role to generate any 
frequent patterns and constructs the MISFP-Tree by 
only items that can be utilized to create frequent 
patterns.  
 In CFP-growth++, MIS-Tree is built by items 
which cannot generate any frequent patterns and the 
tree is rebuilt once again to discard meaningless 
items by pruning and merging  operations. In 
addition, CFP-growth++ consumes more memory to 
store all items from a dataset in MIN-frequent 
header table and then those useless items are 
discarded from this table during rebuilding the tree. 
In the proposed method, MISFP-growth, MIN-MIS-
frequent header table contains only the useful items 
that can be utilized to create frequent patterns.  

     

 
 

 

 

 

 
Table 5 shows the memory gain3 of the proposed 
method compared to CFP-growth++ under varied α. 
Column 4 in this table shows the minimum memory 
gain (MIN) and the maximum memory gain (MAX) 
of MISFP-growth against the compared method.      

Table 5. Memory gain summary of MISFP-growth 
with varied α 

 
   It can be noticed that MISFP-growth consumes 
less memory in all cases except in Mushroom 
dataset where the memory consumption of the 
proposed method is slightly less than memory 
consumption of the compared method. For a sparse 
dataset like Kosarak, memory gain can reach up to 
41%, on the other hand for a dense dataset like 
Mushroom memory gain can be 6% only.      

 4.4 Discussion on Results 
Experimental results show that the proposed method 
significantly outperforms CFP-growth++ on both 
real and synthetic datasets in terms of execution 
time, memory usage and scalability. As it can be 

3 Memory gain = (Memory consumption of CFP-growth++ - Memory 
consumption of MISFP-growth) / Memory consumption of CFP-
growth++ 
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observed from the Tables 4 and 5, the speedup in 
execution time and memory gain is quite high for 
the sparse datasets but not quite significant for very 
dense datasets (like Mushroom). On the sparse 
datasets, the generated trees are much bigger than 
those on dense datasets. Hence, the bigger is the 
tree, the more is time cost. Thus, MISFP-growth is 
much more efficient than CFP-growth++ on sparse 
datasets. With very dense datasets, MISFP-growth 
and CFP-growth++ work almost the same. This is 
quite expected, as in the case of very dense dataset, 
most of items are frequent and only a few pruning 
effort is needed in MIS-Tree built up. For example, 
in the case of Mushroom dataset, we can observe 
that the performance efficiency of two compared 
methods is almost the same. 

5 Related work 
An efficient heuristic algorithm has been proposed 
in order to mine frequent patterns [2]. Apriori 
algorithm deploys a breadth-first search to count the 
support of (k+1)-itemsets that are created from 
frequent k-itemsets. It achieves good performance 
by reducing the search space as the downward 
closure property is utilized. Since it is considered an 
innovation that opened new doors for many frequent 
patterns mining applications, many variants of 
Apriori have been proposed to enhance the 
performance of Apriori such as Matrix Apriori [12], 
BitApriori [13], etc. On the other hand, the multiple 
database scan approach of Apriori algorithm is very 
I/O expensive for large databases. In addition, due 
to the candidate generation-and-test approach, it 
requires huge computational time and memory 
usage when too many candidate itemsets are 
generated. 

To handle these weaknesses, FP-growth [3] and 
its improvements [4, 5, 6] have been proposed to 
generate frequent patterns without creating a huge 
amount of candidate itemsets as Apriori. FP-growth 
methods utilizes FP-tree, an extended prefix-tree, 
which compresses all transactions of database in 
horizontal data format in memory. This enables FP-
growth to search for the complete set of frequent 
patterns, which eliminates reduces the number of 
database scans.  

Above methods are used to find frequent patterns 
with single minsup but using only a single minsup 
implicitly assumes that all items in the data are of 
the same nature or have similar frequencies in the 
database. In fact frequent pattern mining based on 
single threshold might cause abundance of 
meaningless frequent patterns (low threshold) or 
loss of useful patterns (high threshold). To tackle 
this problem which is called a rare itemset problem, 

MSapriori [7] has been proposed to discover 
frequent patterns with multiple support thresholds. It 
is an extension of Apriori algorithm. As downward 
closure property implies, an itemset is frequent if 
and only if all its subsets are frequent but this does 
not hold when we assign multiple minsup values to 
items/itemsets. Frequent itemsets are found if an 
itemset satisfies the lowest MIS value among items 
within it. In this method, the frequent items are 
assigned with a higher MIS value whereas rare 
items are assigned with a lower MIS value.   

Two other methods have been proposed to mine 
frequent patterns with MIS based on Apriori [8, 9]. 
These methods work as MSapriori with the some 
differences as follows. In [8], it first finds all the 
frequent 1-itemsets for the given database by 
comparing the support of each item with its 
predefined minimum support. It then finds all the 
frequent k-itemsets for the database by comparing 
the support of each candidate k-itemset with the 
maximum of the minimum supports of the items 
contained in it. In [9], all the steps are same as that 
used in MSapriori with following exception: 1) it 
discovers frequent patterns (L) by basic Apriori with 
a single minimum support, 2) choose all frequent 
patterns from L that satisfy the definition of frequent 
patterns with multiple minimum supports from L. 
These methods [7, 8, 9] are based on Apriori 
algorithm. Therefore, they adopt an Apriori-like 
candidate set generation-and-test approach and it is 
always costly in terms of memory and execution 
time when the database is large and frequent 
patterns are long. 

To address this problem, a multiple item support 
tree (MIS-Tree) which extends the FP-tree structure 
[3], has been proposed for storing compressed and 
crucial information about frequent patterns [10]. A 
MIS-Tree-based mining method, CFP-growth 
algorithm was developed for mining the complete 
set of frequent patterns with multiple minimum 
support thresholds. It finds out the whole set of 
frequent itemsets with a single scan of the 
transaction database. However, CFP-growth 
expends too much time for discovering the whole 
set of frequent patterns since it repeats growth 
process until each conditional pattern base becomes 
empty for each item. This is because downward 
closure property no longer holds in multiple item 
support framework.  

To reduce the search space, an improved CFP-
growth method called CFP-growth++ has been 
proposed [11]. In this method, four different pruning 
operations have been introduced to reduce the 
search space and avoid growth process until each 
conditional pattern base becomes empty.  
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CFP-growth++ has to conduct an exhaustive 
search in reconstruction of the tree structure. This is 
due to time that is consumed for punning useless 
items. Then, MIS-Tree has to be scanned to merge 
any child nodes linked to same parent node. In 
addition, initial tree occupies large memory space 
since it is built with all items in the database.  
 
6 Conclusion  
In this paper, we propose an efficient algorithm, 
MISFP-growth that is based on FP-growth 
algorithm and is designed to discover interesting 
patterns involving both of frequent and rare patterns. 
It constructs MISFP-Tree to hold all necessary 
information that are needed in mining process. This 
tree is efficiently constructed with only useful items 
that play role to generate frequent and rare patterns. 
Thus, reconstructing the tree is not needed. The 
experimental results indicate that MISFP-growth 
performs better than CFP-growth++ in term of both 
runtime and memory consumption. 

Up to now, a few methods have been proposed to 
mine frequent patterns with MIS. We can sense that 
there is much more to do in this field. For upcoming 
studies, we plan 1) to carry on more experiments to 
understand the scalability performance of MISFP-
growth, 2) to extend MISFP-growth with the 
capability of finding meaningful rare patterns with 
multiple thresholds without generating a huge 
number of frequent patterns, and 3) to extend 
MISFP-growth to mine frequent patterns under MIS 
in incremental databases. 
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