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Abstract: In this paper, we consider a wireless network where a source tries to send messages to a destination

while keeping them secret from multiple eavesdroppers. To enhance secrecy, the transmission is performed with

a cooperation of friendly jammers which make artificial noise to confound eavesdroppers and beamforming tech-

nique to direct jamming signal to intended targets. The purpose is to determine beamforming coefficients in order
to maximize secrecy rate under the total jammer power constraint. The existing method solved this problem in a

special case in which the beamforming coefficients were designed to completely eliminate jamming signal at the

destination and a heuristic approach was applied to obtain a suboptimal solution for this case. We address this

problem via a new approach based on DC (Difference of Convex functions) programming and DCA (DC Algo-

rithm). We first reformulate this problems as a general DC program, i.e. minimizing a DC function under some

DC constraints, and develop a DCA based algorithm for solving it. The experimental results show that the secrecy

rate obtained by the proposed algorithm is better than those achieved by the existing one.
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1 Introduction

The confidentiality and privacy of user data are always

the main issues of interest in communication systems.

They are traditionally relied on cryptographic algo-

rithms. However, the explosive development of com-

putational tools nowadays becomes a threat to the se-
curity of cryptographic algorithms. Therefore, it re-

quires to develop new technologies in data transmis-

sion to ensure security and confidentiality for trans-

mitted data, besides cryptography. In this context,

physical layer security emerges as an effective method

for both ensuring the secure transmission without us-

ing encryption and aiding secret key exchange in cryp-

tography. It was introduced for the first time in [21]

based on the information-theoretic point of view. In
this seminal work, Wyner showed that for a wiretap

chanel in which the channel of the eavesdropper is

noisier than that of the user, it was possible to de-

sign a code such that a nonzero achievable secrecy rate

can be achieved without relying on encryption. This

approach has been later extended to parallel chan-

nels ([22],[23]), fading channel ([12]), multiple access

channel ([17],[18]), broadcast channel with confiden-

tial messages ([2],[4]).

In parallel with designing codes for meeting a se-

crecy rate, various techniques of signal processing are

exploited and developed in a wide range of commu-

nication systems in order to improve their secrecy.

Among them, node cooperation techniques are in-

creasingly used in many works and their efficiency

in enhancing secrecy is shown. In the node cooper-

ation techniques, one installs external nodes with the

aim of increasing secrecy rate. These nodes can play

a role as either relays to forward the information to
destinations with two well-known relaying protocols

amplify-and-forward (AF) and decode-and-forward

(DF) or friendly jammers to make artificial noise in

order to confound eavesdroppers. The cooperative

AF/DF relaying and cooperative jamming (CJ) are

to refer to such node cooperation techniques, respec-

tively. In addition, these node cooperation techniques

are often combined with the beamforming technique

to direct the received information to intended targets.
An arising issue is how to design appropriate beam-

forming coefficients so as to maximize the secrecy

rate subject to some power constraints. The various

relaying protocols lead to the mathematically differ-

ent forms of the secrecy rate maximization (SRM)

problem. Overall, the SRM problems derived in the

DF case are often simpler than those in the AF and
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CJ cases and the optimal/suboptimal solutions were

found in several specific DF schemes ([3], [10]). For

the AF and CJ scenario, rather than directly dealing

with complex programs, one can choose a simpler ap-

proach using zero-forcing or null-space in which the

beamforming coefficients are designed to completely

eliminate signal at eavesdroppers (with respect to the
AF scenario) or artificial noise at destinations (with

respect to the CJ scenario) ([3],[25],[20]). Neverthe-

less, the solution obtained by this method is only a

suboptimal. Besides, some works proposed a two-

level algorithm based on semidefinite relaxation tech-

nique to directly tackle the SRM problem in the AF

scenario ([24],[11]). However, the convergence of

this method is not guaranteed. Recently, some works

employ the sequential convex approximation method
which is actually a special version of DCA to handle

the models in the AF scenario ([19]).

In this paper, we consider the SRM problem in

a wireless system including one source, one destina-

tion, multiple friendly jammers and multiple eaves-

droppers. The joint beamforming and CJ techniques

are employed to enhance secrecy. This problem were

established in [3] and solved in a special case, namely

a null-space cooperative beamforming scheme, where

the artificial noise is assumed to be eliminated com-

pletely at the destination. It means that one con-
straint is added, which helps simplify the problem.

Despite that, only a suboptimal solution was found

for the simplified problem via a heuristic approach.

Here, we want to explore more efficient methods to

deal with this SRM problem. The approach based on

DC programming and DCA is an appropriate choice

due to the fact that it has been successfully applied to

many intractable nonconvex programs in various areas

including, among of others, communication systems
(e.g. [1], [19], [26], [9], [16] and the references in [8],

[5]). DC programming and DCA were introduced by

Pham Dinh Tao in 1985 and have been extensively de-

veloped by Le Thi Hoai An and Pham Dinh Tao since

1994 to become now classic and more and more popu-

lar (see e.g. [13], [7], [6], [15], [6], [5] and references

therein). A standard DC program involves minimiz-

ing a DC function over a convex set while a general

DC program involves minimizing a DC function on a
set defined by some convex constraints and some DC

constraints. The main idea of DCA is approximating

the second DC components by their linear minorant

and then solving the resulting convex subproblem at

each iteration.

Our contribution is to propose a new approach

based on DC programming and DCA for dealing with

the considered SRM problem in the null-space coop-

erative beamforming scheme. We first reformulate

this problem as a general DC program and design a

general DCA for solving it. It should be noted that in

DC programming, the standard DCA (DCA for mini-

mizing a DC function under some convex constraints)

has been exploited and successfully applied for solv-

ing nonconvex optimization problems in various ar-

eas of applied science since many years. However the

use of the general DCA, which is generalized from the
standard DCA, for DC programs with some DC con-

straints are relative new in the literature (see [15], [6]).

General DCAs permit to solve a wider class of non-

convex problems compared to standard DCAs, thus

being a promising nonconvex optimization tool. The

simulation results imply that the secrecy rate obtained

by the proposed general DCA schemes are consider-

ably better than those gained by the existing one.

The rest of this paper is organized as follows. In

Section 2, we describe the considered SRM problem.

The solution method is presented in Section 3. We

first give a brief introduction of DC programming and
DCA and then show how to apply these tools to solve

the considered problem in the null-space cooperative

beamforming scheme. Experimental results are re-

ported in Section 4. Finally, Section 5 concludes the

paper.

Notation: Let ()T , ()† and (.)∗ denote transpose,

conjugate transpose and conjugate, respectively; Im is

the identity matrix of size m×m; 〈., .〉 denotes the in-

ner product and ‖.‖ denotes the Euclidean norm. Re(.)

and Im(.) are the real part and the imaginary part of its

argument. A circularly symmetric Gaussian complex

random vector Z is denoted by Z ∼ CN (0, Γ).

2 Secrecy rate maximization via co-

operative jamming combined with

beamforming technique

In this section, we reconsider the model proposed in

[3]. The system is comprised of a source, a destina-

tion, M relays and K eavesdroppers. Each node is

equipped with a single antenna. In cooperative jam-

ming technique (CJ), the relays play a role as jam-

mers which transmit a weighted version of a jamming

signal z to the channel with the aim of confusing the

eavesdroppers, whereas the source sends the signal√
Psx to the channel. Denote h∗

SD ∈ C as the chan-

nel coefficient between the source and the destination,

h∗
SE ∈ CK as the vector of channel coefficients be-

tween the source and K eavesdroppers, h∗
RD ∈ CM

as the vector of channel coefficients between M re-

lays and the destination, H∗
RE as the M ×K matrix of

channel coefficients between M relays and K eaves-

droppers. Denote Ptot as the total transmit power bud-

get of all relays and w as a vector of relay weights.
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The received signal at the destination is

yd =
√

Psh
∗
SDx + h

†
RDwz + nd

and the received signals at the eavesdroppers are given

by

ye =
√

Psh∗
SEx + H

†
REwz + ne,

where nd represents complex Gaussian noise at

the destination with variance of σ2, and ne ∼
CN (0, σ2IK) is a noise vector at the K eavesdrop-

pers. Therefore, the achievable rate at the destination
is

Rd = log2

(

1 +
Ps|hSD|2

w†RRDw + σ2

)

and the achievable rate at the jth eavesdropper is

Rej
= log2

(

1 +
Ps|hSE(j)|2

w†RREj
w + σ2

)

,

where hSE(j) is the jth element of the vector hSE ,

RRD = hRDh
†
RD, RREj

= HRE(:, j)HRE(:, j)†

with HRE(:, j) is the jth column of the matrix HRE.

The problem of achievable secrecy rate maxi-

mization can be formulated as below ([3]).

max
w

min
j=1,...,K

log2

(

1 +
Ps|hSD|2

w†RRDw + σ2

)

(1)

− log2

(

1 +
Ps|hSE(j)|2

w†RREj
w + σ2

)

s.t w†w ≤ Ptot.

This problem is nonsmooth and nonconvex and

thus it is intractable. Therefore, one tries to simplify

it and then find a suboptimal solution. Because the

jamming signal, which is emitted by the friendly jam-

mers to confuse the eavesdroppers, might also affect

the destination, thus in a natural way one wants to de-
sign beamforming coefficients in order to completely

eliminate this noise at the destination. It means that

apart from the power constraint, w has to satisfy an ad-

ditional constraint h
†
RDw = 0. This constraint makes

the first term of the objective function in (1) become

a constant, so the problem (1) is simplified to the fol-

lowing form.

max
w

min
j=1,...,K

− log2

(

1 +
Ps|hSE(j)|2

w†RREj
w + σ2

)

(2)

s.t w†w ≤ Ptot.

h
†
RDw = 0.

Despite that, the existing method in [3] only provided

a suboptimal solution to (2) via a heuristic search. In

what follows, we will address the problem (2) based

on a general DCA that is a new tool in DC program-

ming.

3 Solution methods based on DC

programming and DCA

First, to facilitate the reader, let us introduce shortly

DC programming and DCA.

3.1 A brief introduction to DC programming

and DCA

DC Programming and DCA constitute the backbone

of smooth/nonsmooth nonconvex programming and

global optimization ([13],[14],[7]). They address a

problem of minimizing a function f which is a dif-

ference of convex functions on the whole space Rn or

a convex set C ⊂ R
n. Generally speaking, a standard

DC program takes the form

α = inf{f(x) := g(x)− h(x) : x ∈ R
n} (Pdc),

with g, h ∈ Γ0 (Rn), the convex cone of all lower

semicontinuous proper (i.e., not identically equal to

+∞) convex functions defined on Rn and taking val-

ues in R ∪ {+∞}. Such a function f is called a DC

function, and g−h is a DC decomposition of f , while

the convex functions g and h are DC components

of f. The vector space of DC functions, DC(Rn) =
Γ0(R

n) − Γ0(R
n), forms a wide class encompassing

all convex functions in particular and most real-life

nonconvex objective functions in general. DC pro-

gramming therefore constitutes an extension of con-

vex programming and covers most nonconvex pro-

grams.

The constrained DC program whose feasible set

C is convex always can be transformed into the
unconstrained DC program by adding the indicator

function of C, denoted by χC which is defined by

χC(x) = 0 if x ∈ C, and +∞ otherwise to the first

DC component.

Recall that, for a convex function, the subdiffer-

ential of ϕ at x0 ∈ dom(ϕ), denoted by ∂ϕ(x0), is

defined by

∂ϕ(x0) := {y ∈ R
n : ϕ(x) ≥ ϕ(x0) + 〈x− x0, y〉,

∀x ∈ Rn}.

The main idea of standard DCA is quite simple.

Starting from an initial point x0, the standard DCA

consists in constructing two sequences {xl} and {yl}
such that, for any l = 0, 1, 2, . . . yl ∈ ∂h(xl) and

xl+1 ∈ argmin{g(x)− 〈yl, x〉 : x ∈ R
n}.

Recently, the generalization of the standard DCA

was studied in [15], [6] to solve general DC programs
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with DC constraints as follows

min
x

f0(x), (3)

s.t fi(x) ≤ 0 ∀i = 1, ..., m,

x ∈ C,

where C ⊆ R
n is a nonempty closed convex set;

f, fi : R
n → R(i = 0, 1, ...,m) are DC functions.

It is apparent that this class of nonconvex programs
is the most general in DC programming and as a

consequence it is more challenging to deal with than

standard DC programs. Two approaches for general

DC programs were proposed in [15], [6] to overcome

the difficulty caused by the nonconvexity of the con-

straints. Both approaches are built on the main idea

of the philosophy of DC programming and DCA, that

is approximating (3) by a sequence of convex pro-

grams. The former was based on penalty techniques
in DC programming while the latter was relied on the

convex inner approximation method. Because we use

the idea of the second approach to solve the problem

mentioned in this article, we presented herein its main

scheme.

Since fi(i = 0, ..., m) are DC functions, they can be

decomposed into the difference of two convex func-

tions

fi(x) = gi(x)− hi(x), x ∈ R
n, i = 0, ..., m.

By linearizing the concave part of DC decompositions

of all DC objective function and DC constraints, it re-

sults in sequential convex subproblems of the follow-

ing form:

min
x

g0(x)− 〈yk
0 , x〉 (4)

s.t gi(x)− hi(x
k)− 〈yk

i , x− xk〉 ≤ 0,

∀i = 1, ..., m,

x ∈ C,

where xk ∈ R
n is a point at the current iteration,

yk
i ∈ ∂hi(x

k) ∀ i = 0, ..., m.
This linearization introduces an inner convex approx-

imation of the feasible set of (3) due to the fact that

hi(x) ≥ hi(x
k) + 〈yk

i , x− xk〉.
The general DCA scheme for the general DC pro-

gram (3) is described as follows:

The general DCA scheme
• Initialization. Choose an initial point x0; set

0←− k.

• Repeat.

Step 1. Compute yk
i ∈ ∂hi(x

k), i = 0, .., m,

Step 2. Compute xk+1 by solving the convex

subproblem (4)

Step 3. k ← k + 1,

• Until stopping condition

3.2 DC Programming and DCA for solving

(2)

The problem (2) can be equivalently rewritten as fol-

lows

min
w

max
j=1,...,K

(5)

log2

{

σ2 + w†RREj
w + Ps|hSE(j)|2

σ2 + w†RREj
w

}

s.t w†w ≤ Ptot,

h
†
RDw = 0.

Denote Cj = σ2 + Ps|hSE(j)|2, Tj =
[

Re(RREj
) −Im(RREj

)

Im(RREj
) Re(RREj

)

]

, j = 1, . . . , K,

M =

[

Re(h
†
RD) −Im(h

†
RD)

Im(h
†
RD) Re(h

†
RD)

]

, x =

[

Re(wT ) Im(wT )
]T

. The problem (5) is trans-

formed into the real form below.

min
x,t

t

s.t. xT x ≤ Ptot,

Mx = 0,

ln

(

Cj + xTTjx

σ2 + xTTjx

)

≤ t, ∀j = 1, . . . , K.

The DC formulation of the above problem is given by

min
x,t

t (6)

s.t. xT x ≤ Ptot,

Mx = 0.

Gj(x)−Hj(x) ≤ t ∀j = 1, . . . , K,

where Gj(x) =
ρj

2 ‖x‖2, Hj(x) =
ρj

2 ‖x‖2 − ln(Cj +

xTTjx) + ln(σ2 + xTTjx), in which ρj is chosen

such that both functions Gj and Hj are convex. The

choice of such ρj can be deduced from the lemma be-

low.

Lemma 1 Let B be a 2M × 2M symmetric and posi-

tive semidefinite matrix and N0 be a positive number.

(i) If ρ is greater than the maximal eigenvalue of ma-

trix 2B
N0

then the function v1(x) = 1
2ρ‖x‖2−ln(xT Bx+

N0) is convex.

(ii) If ρ is greater than the maximal eigenvalue of

matrix B
2N0

then the function v2(x) = 1
2ρ‖x‖2 +

ln(xT Bx + N0) is convex.

Proof 1 (i) The necessary and sufficient condition for

the function v1(x) to be convex is that 52v1(x) �
0 ∀x ∈ R

2M .
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We have52v1(x) = ρI− 2B
xT Bx+N0

+ 4Bx(Bx)T

(xT Bx+N0)2
.

Thus

52v1(x) � 0

⇔ ρ‖y‖2 − 2yT By

xT Bx + N0
+

4yT Bx(Bx)T y

(xT Bx + N0)2
≥ 0

∀y, x ∈ R
2M .

Since ρ is greater than the maximal eigenvalue of

matrix 2B
N0

, ρI � 2B
N0

. Thus yT
(

ρI− 2 B
N0

)

y ≥
0 ∀y ∈ R

2M . In addition, yT Bx(Bx)T y = (yT Bx)2 ≥
0 ∀y,x ∈ R

2M and xT Bx ≥ 0 ∀x ∈ R
2M due to the

positive semidefinite property of B. Therefore

ρ‖y‖2 − 2yT By

xT Bx + N0
+

4yT Bx(Bx)T y

(xT Bx + N0)2

≥ 2yT By

N0
− 2yT By

xT Bx + N0
≥ 0.

(ii) Similarly to the part (i), the function v2(x) is con-

vex if and only if

52v2(x) � 0 ∀x ∈ R
2M

⇔ ρ‖y‖2 +
2yT By

xT Bx + N0
− 4yT Bx(Bx)T y

(xT Bx + N0)2
≥ 0

∀y, x ∈ R
2M

⇔ ρ‖y‖2(xT Bx + N0)
2 + 2yT By(xT Bx + N0)

−4yT Bx(Bx)T y ≥ 0 ∀y, x ∈ R
2M .

The Cauchy-Schwarz inequality implies that

yT Bx(Bx)T y ≤ (xT Bx)(yT By) ∀y, x ∈ R
2M .

Moreover, the Cauchy inequality shows that

(xT Bx + N0)
2 ≥ 4N0(xT Bx) ∀x ∈ R

2M .

Therefore

ρ‖y‖2(xT Bx + N0)
2 + 2yT By(xT Bx + N0)

−4yT Bx(Bx)T y

≥ 4N0(ρ‖y‖2)(xT Bx)− 2(yT By)(xT Bx)

≥ 0 ∀y, x ∈ R
2M

The last inequality is deduced from the fact that ρ is

greater than the maximal eigenvalue of matrix B
2N0

,

hence ρI � B
2N0

that implies 4N0ρ‖y‖2 ≥ 2yT By and

xT Bx ≥ 0 since B � 0.

From Lemma 1 we can deduce that if ρj is the max-

imal eigenvalue of the matrix
(

2
Cj

+ 1
2σ2

)

Tj. then

Gj and Hj are convex. Following the idea of DCA,

at the kth iteration with the iterate xk, we compute

∇Hj(x
k) = ρjxk − 2Tjxk

Cj+xT Tjx
+

2Tjxk

σ2+xT Tjx
and then

solve the derived convex subproblem below.

min
x,t

t (7)

s.t xT x ≤ Ptot, (8)

Mx = 0, (9)

Gj(x)−Hj(x
k)− 〈∇Hj(x

k), x− x
k〉

≤ t, ∀j = 1, . . . , K. (10)

The general DCA scheme applied to (6), namely

DCA-NS, can be described as follows.

DCA-NS

Initialization: choose randomly V0 = (x0, t0) ∈
(R2M , R

+) as an initial guess, set a tolerance ε for

DCA-NS, k ← 0.

Repeat
• Calculate Vk+1 = (xk+1, tk+1) by solving the

subproblem (7).

• k ← k + 1.

Until
(

‖Vk−Vk−1‖

1+‖Vk−1‖
< ε or

|F (Vk)−F (Vk−1)|

1+|F (Vk−1)|
< ε

)

where F (Vk) = tk .

4 Numerical Results

4.1 The Comparative algorithm

The existing method, namely SubOpt-NS, given in [3]

provided a suboptimal solution to the problem (2).

More particularly, the problem (2) is equivalent to the

problem below.

max
w

min
j=1,...,K

|w†HRE(:, j)|2 + σ2

|hSE(j)|2 (11)

s.t. wT w ≤ Pt,

w
†
hRD = 0,

For each j = 1, . . . , K , the problem

max
w

|w†HRE(:, j)|2 + σ2

|hSE(j)|2 (12)

s.t. wT w ≤ Pt,

w
†
hRD = 0,

can be explicitly solved and its closed-form solution

was indicated in [3]. A suboptimal solution to (11) is

the one that obtains the highest secrecy rate among K
solutions attained from (12) when j = 1, . . . , K .
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4.2 Experimental setups

In this experiment, all the algorithms were imple-

mented in the Matlab 2013b, and performed on a PC

Intel Core i5-2500S CPU 2.70GHz of 4GB RAM. We
stopped the DCA schemes with the tolerance ε =
10−4. The channel coefficients h∗

RD, h∗
RE , H∗

RE are

drawn from a circularly-symmetric and zero mean

complex normal distribution with covariance matrix

IM , i.e. CN (0, IM ) and h∗
SD is generated from the

distribution CN (0, 1) . The noise variance is set to

σ2 = 1. The number of jammers is M = 10. The jam-

mers are constrained by the total power budget, which

is chosen from the set {20, 40, 60, 80, 100}. The re-
ported results were taken average over 100 indepen-

dent trials.

4.3 Numerical results
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Figure 1: Secrecy rate versus total jammer power Ptot

The Figure 1 illustrates the secrecy rate obtained

by two algorithms DCA-NS and SubOpt-NS versus

the total jammer power in four cases of the number

of eavesdroppers. Overall, it can be seen that the se-

crecy rate is increasing with increase in the total jam-

mer power and decreasing with increase in the number

of eavesdroppers. In all four cases of the number of

eavesdroppers, DCA-NS furnishes the better secrecy

rates than SubOpt. The gaps of secrecy rate obtained
by the DCA scheme and SubOpt are significant, espe-

cially when the total jammer power is small.

5 Conclusion

We have investigated DC programming and DCA

for solving the secrecy rate maximization problem in

a wireless network including multiple eavesdroppers

and using joint cooperative jamming and beamform-

ing technique. The general DCA based algorithm is

designed to deal with this problem in the null-space

cooperative beamforming scheme. Compared to the

existing method, the proposed DCA scheme achieves

superior secrecy rates. The efficiency of the proposed

DCA suggests that the approach based on DC pro-

gramming and DCA is worth considering when cop-

ing with hard nonconvex optimization problems in

physical layer security in particular as well as in com-

munication systems in general. The general DCA

adopted in this paper is a new approach in DC pro-
gramming, which permits to solve a wider class of

nonconvex optimization problems compared to the

standard DCA, thus contributing to an expansion of

applications of DC programming and DCA to more

diverse fields of applied science.
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