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Abstract: New constructions of 3-dimensional optical orthogonal codes are presented. In each case the codes have
ideal autocorrelation λa = 0, and cross correlation of λc = 1. All codes produced are demonstrated to be optimal.
The constructions utilize a particular automorphism (a Singer cycle) of PG(k,q), the finite projective geometry
of dimension k over the field of order q, or its affine analogue in AG(k, q).
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1 Introduction
Optical code division multiple access (OCDMA) con-
tinues to be of great interest among multiple access
systems due to ease of implementation, support for
asynchronous and secure communication, soft traffic
handling capability, and strong performance with high
numbers of users [1]. The work of Salehi et. al. [2]
[3], spearheaded the use of optical orthogonal codes
for OCDMA, and these codes continue to be highly
effective over a quarter of a century later.
An (n,w, λa, λc)-optical orthogonal code (OOC) is
a family of (1-dimensional) binary sequences (code-
words) of length n, and constant Hamming weight w
satisfying the following two conditions:

• (auto-correlation property) for any codeword c =
(c0, c1, . . . , cn−1) and for any integer 1 ≤ t ≤

n− 1, we have
n−1∑
i=1

cici+t ≤ λa,

• (cross-correlation property) for any two distinct
codewords c, c′ and for any integer 0 ≤ t ≤ n−

1, we have
n−1∑
i=0

cic
′
i+t ≤ λc,

where each subscript is reduced modulo n.
An (n,w, λa, λc)-OOC C with λa = λc is de-

noted an (n,w, λ)-OOC. The number of codewords
is the size or capacity of the code, denoted |C|. For
fixed values of n, w, λa and λc, the largest size of
an (n,w, λa, λc)-OOC is denoted Φ(n,w, λa, λc). An
(n,w, λa, λc)-OOC is said to be optimal if |C| =
Φ(n,w, λa, λc). Optimal OOCs facilitate the largest

possible number of asynchronous users to transmit in-
formation efficiently and reliably.

A limitation of 1-D OOCs is that the auto-
correlation cannot be zero, and to maintain mini-
mal autocorrelation of 1 the code length must in-
crease rapidly with the number of users. The 1-
D-OOCs spread input data bits only in the time
domain. Technologies such as wavelength-division-
multiplexing (WDM) and dense-WDM enable the
spreading of codewords in both space and time [4], or
in wavelength and time [5]. Hence, codewords may
be considered as Λ × T (0, 1)-matrices. These codes
are referred to in the literature as multiwavelength,
multiple-wavelength, wavelength-time hopping, and
2-dimensional OOCs (2D-OOCs). An additional di-
mension permits codes with at most a single pulse per
row, yielding autocorrelation zero and thereby impro-
ving the OCDMA performance in comparison with 1-
D OCDMA. For optimal constructions of 2-D OOC’s
see [6, 7, 8]. Later, a third dimension was added which
gave an increase the code size and the performance of
the code [9]. In 3-D OCDMA the optical pulses are
spread in three domains space, wave-length, and time,
with codes referred to as space/wavelength/time spre-
ading codes, or 3-D OOC.

1.1 3-D OOCs and Bounds
We denote by (Λ×S × T,w, λa, λc) a 3D-OOC with
constant weight w, Λ wavelengths, space spreading
length S, and time-spreading length T (hence, each
codeword may be considered as an Λ× S × T binary
array). The autocorrelation and cross correlation of an
(Λ × S × T,w, λa, λc)-3D-OOC have the following
properties.
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• (auto-correlation property) for any codeword
A = (ai,j,k) and for any integer 1 ≤ t ≤ T − 1,

we have
S−1∑
i=0

Λ−1∑
j=0

T−1∑
k=1

ai,j,kai,j,k+t ≤ λa,

• (cross-correlation property) for any two distinct
codewords A = (ai,j,k), B = (bi,j,k) and
for any integer 0 ≤ t ≤ T − 1, we have
S−1∑
i=0

Λ−1∑
j=0

T−1∑
k=0

ai,j,kbi,j,k+t ≤ λc,

where each subscript is reduced modulo T . There are
practical considerations to be made with regard to the
implementation of these codes. First, in optical code-
division multiple-access (OCDMA) applications, mi-
nimal correlation values are most desirable. Imple-
mentation is simplified (and more cost effective) when
λa = 0 [10]. Codes satisfying λa = 0 will be said to
be ideal here. Ideal codes with minimal autocorrela-
tion λc = 1 are our main focus.

A wavelength/time plane is called a spatial plane,
a space/time plane is called a wavelength plane, and
a space/wavelength plane is called a temporal plane.
One way to achieve λa = 0 is to select codes with
at most one pulse per spatial plane. Such codes are
referred to as at most one pulse per plane (AMOPP)
codes. AMOPP codes of maximal weight S have a
single pulse per spatial plane, and are referred to as
SPP codes. Codes with at most one pulse per wave-
length plane also enjoy zero autocorrelation, and are
denoted AMOPW codes. AMOPW codes of maximal
weight Λ are single pulse per wavelength (SPW) co-
des. Codes with at most one (resp. exactly one) pulse
per temporal plane do not necessarily have λa = 0 are
referred to as AMOPT and SPT codes respectively.
As it is of interest to construct codes with as large
cardinality as possible, we now discuss some upper
bounds on the size of codes.

In order to develop new bounds for codes with
ideal autocorrelation we introduce the notion of Ham-
ming correlation. Given two 1-dimensional code-
words over any alphabet, the Hamming correlation is
the number of non-zero agreements between the two
codewords. By an (n,w, λ)m+1-code, we denote a
code of length n, with constant weight w, and maxi-
mum Hamming correlation λ over an alphabet of size
m+1 (containing zero). For binary codes (m = 1) the
subscript 2 is typically dropped. Let A(n,w, λ)m+1

denote the maximum size of an (n,w, λ)m+1-code.
The bound of Johnson [11] establishes the following
bound in the binary case.

Theorem 1 (Johnson Bound [11]) .

A(n,w, λ) ≤
⌊
n

w

⌊
(n− 1)

w − 1

⌊
· · ·
⌊

(n− λ)

w − λ

⌋⌋
· · ·
⌋
.

If w2 − nλ > 0 then

A(n,w, λ) ≤
⌊
n(w − λ)

w2 − nλ

⌋
.

Continuing with the binary case, Agrell et. al.
[12] establish the following bound.

Theorem 2 ( [12]) .

A(n,w, λ) ≤ n if 0 < w2 − nλ ≤ w − λ

By identifying alphabet elements with mutually
distinct binary strings of length m and weight at
most one, an (n,w, λ)m+1 code can be considered an
(nm,w, λ)-code. As such the bounds on binary co-
des can easily be adapted to the non-binary case. Mo-
reover, observe that an (n,w, λ)m+1 code attaining
the bound A(n,w, λ)m+1 must have a coordinate in
which at least w·A(n,w,λ)m+1

mn codewords have a com-
mon nonzero entry. As observed in [13], shortening
the code with respect to this coordinate gives a code
with at most A(n− 1, w − 1, λ− 1)m+1 codewords.

Theorem 3 ([13])

A(n,w, λ)m+1 ≤
⌊mn
w
A(n− 1, w − 1, λ− 1)m+1

⌋
Observing that A(n,w, 0)m+1 = m

⌊
n−λ
w−λ

⌋
, Theo-

rems 1, 2, and 3 then give the following.

Theorem 4 (Johnson Bound Non-binary) .

A(n,w, λ)m+1 ≤
⌊
mn

w

⌊
m(n− 1)

w − 1

⌊
· · ·
⌊
m(n− λ)

w − λ

⌋⌋⌋
.

If w2 > mnλ then

A(n,w, λ)m+1 ≤ min
{
mn,

⌊
mn(w − λ)

w2 −mnλ

⌋}
.

We note that the first bound in Theorem 4 may
also be found in [14] with a proof (quite different from
that given here) in [15].

Observe that by choosing a fixed linear ordering,
each codeword from an (Λ × S × T,w, λ) 3D-OOC
C can be viewed as a binary constant weight (w) code
of length ΛST . Moreover, by including the T distinct
cyclic shifts of each codeword we obtain a correspon-
ding constant weight binary code of size T · |C|. It
follows that

|C| ≤
⌊
A(ΛST,w, λ)

T

⌋
(1)

From the equation (1) and Theorem 4 we obtain
the following bounds for 3-D OOCs.
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Theorem 5 (Johnson Bound for 3D OOCs [16])
Let C be a (Λ× S × T,w, λ)-OOC. Then

Φ(C) ≤
⌊

ΛS

w

⌊
ΛST − 1

w − 1

⌊
· · ·
⌊

ΛST − λ
w − λ

⌋⌋
· · ·
⌋
.

(2)

If w2 > ΛSTλ then

Φ(C) ≤ min
{

ΛS,

⌊
ΛS(w − λ)

w2 − ΛSTλ

⌋}
. (3)

We note that the first bound (2) may also found in
[17].

Specializing now to ideal codes we observe that
a (Λ × S × T,w, 0, λ) 3D-OOC C can be viewed as
a constant weight (w) code of length ΛS over an al-
phabet of size T + 1 containing zero (See Fig. 1 (a),
(b)). By including the T distinct cyclic shifts of each
codeword we obtain a corresponding constant weight
code of size T · |C|.

s1

λ1

t1

s2

λ2

t2

s3

λ3

t3

(a)

s1

(b)

s1

(c)

Figure 1: (a) A codeword from an ideal 3-D OOC,
black cubes indicate 1, white indicate 0. (b) Each
of the ΛS space/wavelength sections correspond to a
(possibly zero) element from an alphabet of size T+1.
(c) If the code is AMOPP, then each of the S spatial
planes correspond to a (possibly zero) element from
an alphabet of size ΛT + 1.

It follows that

|C| ≤
⌊
A(ΛS,w, λ)T+1

T

⌋
. (4)

From Theorem 4 and the equation (4) we obtain
the following bound for ideal 3-D OOCs.

Theorem 6 [Johnson Bound for Ideal 3D OOC]
Let C be an (Λ× S × T,w, 0, λ)-OOC, then

Φ(C) ≤ J(Λ× S × T,w, 0, λc)

=

⌊
ΛS

w

⌊
T (ΛS − 1)

w − 1

⌊
· · ·
⌊
T (ΛS − λ)

w − λ

⌋⌋
· · ·
⌋

Note that from Theorem 6 we see that if C is an
ideal 3D OOC of maximal weight (w = ΛS ) then
Φ(C) ≤ T λ

Similarly, (Fig. 1 (c)) an AMOPP OOC corre-
sponds to a constant weight code of length S over an
alphabet of size ΛT + 1 (containing zero). Conse-
quently we obtain the following bound on AMOPP
codes. This bound is also found (with a different
proof) in [18], and in [16].

Theorem 7 [Johnson Bound for AMOPP OOC]
Let C be an (Λ×S×T,w, 0, λ)-AMOPP OOC, then

Φ(C) ≤
⌊

1

T

⌊
ΛST

w

⌊
ΛT (S − 1)

w − 1

⌊
· · ·
⌊

ΛT (S − λ)

w − λ

⌋⌋⌋
From the above theorem, we see that if C is an

SPP code (an AMOPP code of maximal weight S)
then |C| ≤ ΛλT λ−1.
As observed in [16], similar reasoning also gives the
following two Theorems
Theorem 8 [Johnson Bound for AMOPW OOC]
Let C be an (Λ×S×T,w, 0, λ)-AMOPW OOC, then

Φ(C) ≤
⌊

1

T

⌊
ΛST

w

⌊
ST (Λ− 1)

w − 1

⌊
· · ·
⌊
ST (Λ− λ)

w − λ

⌋⌋⌋
Theorem 9 [Johnson Bound for AMOPT OOC]
Let C be an (Λ×S × T,w, 0, λ)-AMOPT OOC, then

Φ(C) ≤
⌊

1

T

⌊
ΛST

w

⌊
ΛS(T − 1)

w − 1

⌊
· · ·
⌊

ΛS(T − λ)

w − λ

⌋⌋⌋
Codes meeting the bounds in Theorems 5 - 9 will

be said to be J-optimal. At present, constructions of
infinite families of optimal ideal 3D OOCs are rela-
tively scarce. The codes appearing in the literature
seem to be exclusively of the AMOPP or SPP type.
According to the bounds established above, it would
seem that for comparable dimensions and weight it
may be possible to construct ideal codes with larger
capacity than the AMOPP or AMOPW codes. This
is indeed the case. In the following sections we will
provide constructions of codes meeting the bounds in
Theorem 6. Table 1 will perhaps serve place our con-
structions in context.
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Table 1: Summary of known constructions of families
of optimal ideal 3D OOC. Unless stated otherwise,
λc = 1.

p a prime, q a prime power, θ(k, q) = qk+1−1
q−1

Conditions Constraint Reference
w = S ≤ p for all p divi-
ding ΛT

SPP [19]

w = S = Λ = T = p SPP [20]

w = S = 4 ≤ Λ = q,
T ≥ 2

SPP [20]

w = S = q + 1,
Λ = q > 3, T = p > q

SPP [20]

w = S = 3
Λ ≡ T mod 2

SPP [18]

w = 3, ΛT (S − 1) even,
ΛT (S − 1)S ≡ 0 mod 3,
and
S ≡ 0, 1 mod 4 if T ≡ 2
mod 4 and Λ is odd.

AMOPP [18]

w = q + 1, T = θ(d, q),
ΛS = θ(m− 1, qd+1),
d > 0,m > 1

Th’m 14

w = qd+1, T = q − 1,
ΛST = q2d+2 − 1,

Th’m 15

2 Preliminaries

Our techniques will rely heavily on the properties of
finite projective and affine spaces. Such techniques
have been used successfuly in the construction of in-
finite families of optimal OOCs (for 1-D codes see
[21, 22, 23, 24, 25], for 2-D codes see [6, 26]) We start
with a brief overview of the necessary concepts. By
PG(k, q) we denote the classical (or Desarguesian)
finite projective geometry of dimension k and order
q. PG(k, q) may be modeled with the affine (vector)
space AG(k+ 1, q) of dimension k+ 1 over the finite
field GF (q). Under this model, points of PG(k, q)
correspond to 1-dimensional subspaces of AG(k, q),
projective lines correspond to 2-dimensional affine
subspaces, and so on. A d-flat Π in PG(k, q) is a
subspace isomorphic to PG(d, q); if d = k − 1, the
subspace Π is called a hyperplane. Elementary coun-
ting shows that the number of d-flats in PG(k, q) is
given by the Gaussian coefficient[
k + 1
d+ 1

]
q

=
(qk+1 − 1)(qk+1 − q) · · · (qk+1 − qd)
(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)

(5)

In particular the number of points of PG(k, q) is
given by θ(k, q) = qk+1−1

q−1 . We will use θ(k) to re-
present this number when q is understood to be the
order of the field. Further, we shall denote by L(k)
the number of lines in PG(k, q). For a point set A in
PG(k, q) we shall denote by 〈A〉 the span of A, so
〈A〉 = PG(t, q) for some t ≤ k.

A Singer group of PG(k, q) is a cyclic group
of automorphisms acting sharply transitively on the
points. The generator of such a group is known as a
Singer cycle. Singer groups are known to exist in clas-
sical projective spaces of any order and dimension and
their existence follows from that of primitive elements
in a finite field.

In the sequel we make use of a Singer group that
is most easily understood by modelling a finite pro-
jective space using a finite field. If we let β be a
primitive element of GF (qk+1), the points of Σ =
PG(k, q) can be represented by the field elements
β0 = 1, β, β2, . . . , βn−1 where n = θ(k). The non-
zero elements ofGF (qk+1) form a cyclic group under
multiplication. It is not hard to show that multiplica-
tion by β induces an automorphism, or collineation,
on the associated projective space PG(k, q) (see e.g.
[27]). Denote by φ the collineation of Σ defined by
βi 7→ βi+1. The map φ clearly acts sharply transiti-
vely on the points of Σ.

We can construct 3-D codewords by considering
orbits under subgroups ofG. Let n = θ(k) = Λ ·S ·T
where G is the Singer group of Σ = PG(k, q). Since
G is cyclic there exists a unique subgroup H of order
T (H is the subgroup with generator φΛS).

Definition 10 (Projective Incidence Array)
Let Λ, S, T be positive integers such that
n = θ(k) = Λ · S · T . For an arbitrary point-
set A in Σ = PG(k, q) we define the Λ × S × T
incidence array A = (ai,j,k), 0 ≤ i ≤ Λ − 1,
0 ≤ j ≤ S − 1, 0 ≤ k ≤ T − 1 where ai,j,k = 1 if
and only if the point corresponding to βi+j·Λ+k·SΛ is
in A.

IfA is a pointset of Σ with corresponding Λ×S×
T incidence array A of weight w, then φΛS induces a
cyclic shift on the temporal planes of A. For any such
set A, consider its orbit OrbH(A) under the group
H generated by φΛS . The set A has full H-orbit if
|OrbH(A)| = T = n

ΛS and short H-orbit otherwise.
If A has full H-orbit then a representative member of
the orbit and corresponding 3-D codeword is chosen.
The collection of all such codewords gives rise to a
(Λ× S × T,w, λa, λc)-3D-OOC, where

λa = max
0≤i<j≤ T−1

{
|φΛS·i(A) ∩ φΛS·j(A)|

}
(6)
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and

λc = max
0≤i,j≤ T−1

{
|φΛS·i(A) ∩ φΛS·j(A′)|

}
(7)

ranging over all A, A′ with full H-orbit.

2.1 An affine analogue of the Singer auto-
morphism

A further automorphism of Σ = PG(k, q) shall play
a role in our constructions. It may be viewed as an
affine analogue of the Singer automorphism. If a hy-
perplane Π∞ (at infinity) is removed from PG(k, q),
what remains is AG(k, q)-the k-dimensional affine
space. One way to model AG(k, q) is to view the
points as the elements of GF (qk). Recall that the set
GF (qk)∗ of non-zero elements ofGF (qk) forms a cy-
clic group under multiplication. Take α to be a primi-
tive element (generator) of GF (qk)∗. Each nonzero
affine point corresponds in the natural way to αj for
some j, 0 ≤ j ≤ qk − 2. Denote by ψ the mapping
of AG(k, q) defined by ψ(αj) = αj+1 and ψ(0) = 0.
The map ψ is an automorphism of AG(k, q) and, mo-
reover, ψ admits a natural extension to an automor-
phism ψ̂ of PG(k, q). Denote by Ĝ the group gene-
rated by ψ̂. The fundamental properties of the group
Ĝ central to the constructions here are (for details, see
e.g. [28] [27].):

1. Ĝ fixes the point P0 corresponding to the field
element 0, and acts sharply transitively on the
qk − 1 nonzero affine points of PG(k, q).

2. Ĝ acts cyclically transitively on the points of
Π∞. In particular the subgroup H = 〈ψ̂θ(k−1)〉
fixes Π∞ pointwise.

The 3D-OOCs constructed using affine pointsets
will therefore consist of codewords of dimension Λ×
S × T , where Λ · S · T = qk − 1.

Definition 11 (Affine Incidence Array) Let Λ, S, T
be positive integers such that qk − 1 = Λ · S · T .
For an arbitrary pointsetA in AG(k, q) we define the
Λ×S×T incidence arrayA = (ai,j,k), 0 ≤ i ≤ Λ−1,
0 ≤ j ≤ S−1, 0 ≤ k ≤ T −1 where ai,j,k = 1 if and
only if the point corresponding to αi+Λj+SΛk is in A.

If A is a set of w nonzero affine points with cor-
responding Λ × S × T incidence array A of weight
w, then ψ̂ΛS induces a cyclic shift on the temporal
planes of A. For any such set A, consider its orbit
OrbĤ(A) under the group Ĥ = 〈ψ̂ΛS〉. If A has full
Ĥ-orbit then a representative member of the orbit and

corresponding 3-dimensional codeword (say c) is cho-
sen. The collection of all such codewords give rise to
a (Λ× S × T,w, λa, λc)-3D-OOC, where

λa = max
0≤i<j≤ T−1

{
|ψ̂SΛ·i(A) ∩ ψ̂SΛ·j(A)|

}
(8)

and

λc = max
0≤i,j≤ T−1

{
|ψ̂SΛ·i(A) ∩ ψ̂SΛ·j(A′)|

}
(9)

ranging over all A, A′ with full Ĥ-orbit.

3 Optimal Ideal codes

3.1 Codes from projective lines, λc = 1

Let Σ = PG(k, q) whereG = 〈φ〉 is the Singer group
of Σ as in the previous section. Our work will rely on
the following results about orbits of flats.

Theorem 12 (Rao [27], Drudge[29] ) In
Σ = PG(k, q), there exists a short G-orbit of
d-flats if and only if gcd(k + 1, d + 1) 6= 1. In the
case that d + 1 divides k + 1 there is a short orbit
S which partitions the points of Σ (i.e. constitutes a
d-spread of Σ). There is precisely one such orbit, and

theG-stabilizer of any Π ∈ S is StabG(Π) = 〈φ
θ(k)
θ(d) 〉.

Let Σ = PG(k, q), k odd with Singer group
G = 〈φ〉. Let S be the line spread determined (as in
Theorem 12) by G where say StabG(S) = H . Con-
sider a line ` /∈ S . ` is incident with precisely q + 1
members of S and H acts sharply transitively on the
points of each line of S, so ` is of full H-orbit, that
is |OrbH(`)| = q + 1, and the lines in OrbH(`) are
disjoint. It follows that the number of full H-orbits of
lines is

# orbits =
L(k)− |S|
q + 1

=
1

q + 1
·
[

(qk+1 − 1)(qk+1 − q)
(q2 − 1)(q2 − q)

− θ(k)

q + 1

]
=
q · θ(k) · θ(k − 2)

(q + 1)2
(10)

For each full H-orbit of lines, select a represen-
tative member and corresponding (projective) Λ ×
S × q + 1 3-D incidence array (codeword) where
ΛS = θ(k)

q+1 are fixed positive integers. The collection
of all such codewords comprises a (Λ×S×(q+1), q+
1, λa, λc)-3DOOCC. As two lines intersect in at most
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one point we have (Equation (7)) λc = 1. Moreover,
since the lines in any particular full H-orbit OrbH(`)
are disjoint, we have (Equation 6) λa = 0. Hence, C
is a (Λ × T × (q + 1), q + 1, 0, 1)-OOC. From the
bound (Theorem 6) we have

Φ(C) = Φ (Λ× S × (q + 1), q + 1, 0, 1)

≤

 θ(k)
q+1

q + 1

(q + 1)( θ(k)
q+1 − 1)

q


=
θ(k) · q2 · θ(k − 2)

q(q + 1)2
(11)

Comparing (10) and (11) we see that C is in fact op-
timal. Noting that θ(k)

q+1 = θ(k−1
2 , q2), we have shown

the following as in [16].

Theorem 13 Let q be a prime power and let t ≥ 1.
For any factorisation ΛS = θ(t, q2) There exists a
J-optimal (Λ× S × (q + 1), q + 1, 0, 1)-OOC.

In the codes constructed in Theorem 13, code-
words correspond to lines of Σ = PG(k, q) not con-
tained in a particular line-spread. In an analogous way
we may generalize whereby codewords correspond to
lines that are not contained in any element of a d-
spread of Σ. We describe this construction as follows.
Choose d ≥ 1, m > 1 such that k + 1 = m(d + 1).
Let G = 〈φ〉 be the Singer group as above, and let S
be the d-spread determined (as in Theorem 12) by G
where say StabG(S) = H =

〈
φt
〉

where t = θ(k)
θ(d) .

Let ΛS = t be any integral factorization. Let ` be
a line not contained in any spread element (a d-flat
in S), and let A be the Λ × S × θ(d) projective in-
cidence array corresponding to `. As above, ` has
a full H-orbit. Moreover, as H acts sharply transi-
tively on the points of each spread element, it fol-
lows that A, when considered as a Λ × S × θ(d) co-
deword, satisfies λa = 0. For each such line ` we
choose a representative element of it’s H-orbit and
include it’s corresponding incidence array as a co-
deword. The aggregate of these codewords gives an
ideal (Λ × S × θ(d), q + 1, 0, 1)-3D OOC,C. Let us
now determine the capacity of C. Elementary coun-
ting shows

L(k) =
θ(k)θ(k − 1)

q + 1

We now have

|C| =
L(k)− L(d) · θ(k)

θ(d)

θ(d)

=
θ(k)θ(k − 1)

θ(d)(q + 1)
− θ(d− 1)θ(k)

θ(d)(q + 1)

=
θ(k)

θ(d)(q + 1)
[θ(k − 1)− θ(d− 1)] (12)

From Theorem 6 we have the corresponding Johnson
Bound is

Φ(C) ≤

 θ(k)
θ(d)

q + 1

θ(d)
(
θ(k)
θ(d) − 1

)
q


=

θ(k)

θ(d)(q + 1)

(
θ(k)− θ(d)

q

)
=

θ(k)

θ(d)(q + 1)
[θ(k − 1)− θ(d− 1)] (13)

Comparing (12) and (13) we see the codes obtai-
ned are J-optimal. With the observation that θ(k)

θ(d) =

θ(m− 1, qd+1), we have shown the following [16].

Theorem 14 For d ≥ 1, m > 1, and ΛS = θ(m −
1, qd+1), there exists a J-optimal (Λ × S × θ(d), q +
1, 0, 1)-OOC .

3.2 Ideal Codes from Affine Flats, λc = 1

In this subsection we will establish the truth of the
following theorem.

Theorem 15 For q a prime power, for each d ≥ 0,
and for any factorisation ΛS = θ(2d+ 1) there exists
an optimal (Λ× S × q − 1, qd+1, 0, 1)-OOC.

Let Σ = PG(k, q) where E = Σ \ Π∞ is the
associated affine space AG(k, q). Let Ĝ = 〈ψ̂〉 be the
map as described in Section 2.1 based on the primitive
element α of GF (qk)∗. Our affine analog of Theorem
12 follows from Theorem 8 of [27].

Theorem 16 (Rao [27]) A d-flat Π in PG(k, q) is of
full Ĝ-orbit if and only if the origin P0 /∈ Π and Π is
not a subset of Π∞.

With notation as above, let k = 2d + 1, Σ =
PG(k+1, q),AG(k+1, q) = E = Σ\Π∞, Ĝ = 〈ψ̂〉,
and Ĥ = 〈ψ̂θ(k−1)〉. Let S be a d-spread of Π∞,
where say S = {S1, S2, . . . , Sqd+1+1}.

Each affine (d + 1)-flat Γ extends to a projective
(d + 1)-flat Γ̂ of Σ which must meet Π∞ in a d-flat.
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Simple counting shows each Si to be incident with
precisely qd+1 − 1 of these (d+ 1)-flats which do not
contain the affine zero point. Denote the aggregate of
these projective (resp. affine) (d+1)-flats by Γ̂i (resp.
Γi) , 1 ≤ i ≤ qk+1 − 1. Under the action of Ĥ , each
Γ̂i has full orbit (Theorem 16), so in particular there
are θ(k) distinct orbits of the Γ̂i’s.

Let ΛS = θ(k), and T = q − 1. For each (full)
Ĥ orbit of Γi’s select a representative member and a
corresponding Λ×S×T affine incidence array (code-
word). Let the aggregate of these codewords of weight
qd+1 be the code C. To prove Theorem 15 it remains
to show λa = 0, λc = 1, and that C is optimal.

We claim that |Γi ∩ Γj | ≤ 1 for i 6= j. Indeed,
if two points P,Q ∈ Γi ∩ Γj , then the projective line
〈P,Q〉 meets Π∞ in a point of Γ̂i ∩ Γ̂j . As S is a
spread it follows that Γ̂i ∩Π∞ = Γ̂j ∩Π∞ and there-
fore Γi = Γj . As a result we have λc = 1. Likewise,
a dimension argument shows λa = 0. Optimality fol-
lows from the second bound in Theorem 5.

4 Conclusion

In this paper we provided constructions of infinite fa-
milies of 3-dimensional OOC’s. In each case the fa-
milies have ideal autocorrelation λa = 0 and are opti-
mal. A key feature of the constructions presented in-
volve two or more parameters that may grow without
bound and at each stage produce optimal codes.
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