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Abstract: - Wireless communication systems often suffer problems from multipath and interfering signals. This 
paper compares two types of adaptive beamforming algorithms for optimising and setting the weights of smart 
antenna systems, namely the Least Mean Square algorithm (LMS) and Sample Matrix Inversion (SIM). The 
direction of the main beam of the antenna system is adjusted to enhance the desired signal, while interfering 
signals are mitigated by having nulls pointed in their directions. The mathematical formulations and necessary 
conditions for the above algorithms are derived and verified by numerical examples, with overall behaviour 
obtained by MATLAB simulation. Performance evaluations are made for different cases of arrival angles, and 
in conclusion, the advantages and disadvantages of each algorithm are presented. 
 
Key-Words: - Adaptive beam forming, Antenna array, Least Mean Square algorithm (LMS), Sample Matrix 
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1 Introduction 
     A smart antenna system is an array with a digital 
signal processing ability to receive and transmit in 
an adaptive manner [1-2]. Although it may seem 
that such smart systems are novel, the fundamentals 
are not new [3]; in the 1970s and 1980s two special 
issues of the IEEE Transactions on Antennas and 
Propagation were devoted to smart antenna arrays 
and associated signal processing algorithms [4-5]. 
The use of smart antennas in telecommunication 
systems initially attracted attention in military 
applications, finding usage for several years in 
electronic warfare (EWF) in countermeasures to 
electronic jamming. In military radar systems, 
similar approaches were already used through the 
conventional Bartlett beamformer [3]. However, 
today's advanced powerful low-cost digital signal 
processors, Application Specific Integrated Circuits 
(ASICs), and general purpose processors (DSP),  in 
addition to innovative adaptive signal processing 
methods, now make commercial smart antenna 
systems increasingly viable. 
     Smart antenna patterns are controlled via 
algorithms based upon certain criteria: maximizing 
the signal-to interference ratio plus noise (SINR), 
minimizing the variance (MV), minimizing the 
mean square error (MSE), steering toward a useful 
source, nulling interfering signals, or tracking 

moving users [1, 2, 6, 7, 8]. Among proven benefits 
of smart antenna use in cellular system base stations 
are increased spectrum efficiency and channel 
capacity arising from extended range coverage and 
reduction of co-channel interference [1, 9, 10]. 
Furthermore, reduction of multipath fading can be 
achieved. Perhaps two of the most important 
advantages are the ability to minimize co-channel 
interference, by isolating signals originating from 
different directions, and the ability to avert radiation 
of signals in directions where another mobile user or 
base station is known already. This isolation of 
signals with different angles of arrival or spatial 
signatures is the essential property exploited by 
antenna arrays [11, 12].  
     This paper is organized as follows: the principles 
of adaptive beamforming are given in section 2, 
while the necessary equations and conditions used 
to realize smart antenna systems are given in section 
3. The basic theory of both LMS and SMI 
algorithms is presented in sections 4 and 5 
respectively. Section 6 discusses the simulation 
results and the performance of the proposed system 
with each algorithm. Finally, section 7 gives a 
concluding summary and comparison of 
performance. 
 
2 Adaptive Beam Forming  
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     Adaptive Beam Forming is a mechanism which 
uses an array of antennas to accomplish maximum 
transmission and reception in a particular direction 
on the basis of directional estimations, while 
signals, even of the same frequency, from other 
directions are rejected [13]. This can be 
accomplished by varying the weights of each 
antenna element within the array. Although signals 
from different transmitters may use the same 
frequency, they will arrive at different angles. This 
spatial separation is utilized to isolate the desired 
signal from undesired signals. Thomas Biedka in his 
work (2001) provided a framework for the analysis 
and development of blind adaptive beamforming 
algorithms: by using adaptive antenna arrays, the 
control system has complete flexibility and 
determines how the gains of the arrays are adjusted 
[18]. In this method, gains are adjusted such that the 
control system can maximize the gain from a 
desired source while attenuating the signal from an 
interfering user, as shown in Figure 1 [6]. In 2007, 
Shubair et al. explained how to apply the least mean 
square (LMS) and multiple signal classification 
(MUSIC) methods, giving a practical design of a 
smart antenna system employing direction-of-arrival 
estimation and adaptive beamforming technique 
[16].  In their work, Rani et al. (2009) examined the 
use of beam forming for adaptive antennas, with 
adaptive methods to determine the weights in 
WCMDA mobile communication [14]. Bahri and 
Bendimerad (2009) suggested a downlink multi-
input multi-output multiple carrier CDMA system 
which integrated the LMS method for adaptive 
beamforming purposes [15]. In [17], Susmita Das 
(2009) describes and compares various reference-
signal based methods in addition to blind adaptive 
methods. 

 
Fig1: Adaptive antenna array.  

 
3 Mathematical Model of Adaptive 
Antenna Array  

In general, adaptive beam forming is an effective 
technique because it makes use of a digital 
algorithm which dynamically optimizes the array 
pattern according to the changing electromagnetic 
environment [6]. Therefore, adaptive arrays 
maximize the signal-to-interference-plus-noise ratio 
(SINR) and not just the signal-to noise ratio (SNR). 
This dynamic adaptation of the antenna array 
response directs focused beams to specific users and 
constitutes a new mechanism for multiuser access to 
the base station [1]. A generic adaptive beam former 
is shown in Fig.2, where the weight vector 𝑤𝑤 is 
calculated using the signal vector 𝑥𝑥(𝑘𝑘) received by 
multiple antennas 
 

 
 

Fig.2: Traditional beam former array. 
 

Let one desired signal be arriving from angle 𝜃𝜃0 
with M interferers at angles 𝜃𝜃1, ... , 𝜃𝜃𝑀𝑀 as shown in 
Fig.2: the signals and interferers are received by an 
array of  elements with N potential weights. Each 
received signal also includes additive Gaussian 
noise. Time is represented by the 𝑘𝑘 time samples. 
The weighted array output can be given [8]:  
 

𝑦𝑦(𝑘𝑘) =  𝑤𝑤�𝐻𝐻 . �̅�𝑥(𝑘𝑘)  (1) 
 
with 𝑤𝑤� , the array weights, given by: 
 

𝑤𝑤� = [𝑤𝑤1 𝑤𝑤2  … …   𝑤𝑤𝑁𝑁]𝑇𝑇 (2) 
 
�̅�𝑥(𝑘𝑘) = 

𝑎𝑎�0𝑠𝑠(𝑘𝑘) + [ 𝑎𝑎�1 𝑎𝑎�2 …  𝑎𝑎�𝑀𝑀].

⎣
⎢
⎢
⎢
⎡
𝑖𝑖1(𝑘𝑘)
𝑖𝑖2(𝑘𝑘)

.

.
   𝑖𝑖𝑀𝑀(𝑘𝑘)⎦

⎥
⎥
⎥
⎤

+ 𝑛𝑛�(𝑘𝑘) 

 
 

(3) 

 
�̅�𝑥(𝑘𝑘)  = �̅�𝑥𝑠𝑠(𝑘𝑘) + 𝑥𝑥𝑖𝑖� (𝑘𝑘) + 𝑛𝑛�(𝑘𝑘) (4) 

where 
�̅�𝑥𝑠𝑠(𝑘𝑘) = desired signal vector  
 �̅�𝑥𝑖𝑖(𝑘𝑘) = interfering signals vector, and  
𝑛𝑛�(𝑘𝑘) = zero mean Gaussian noise for each channel.  
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𝑎𝑎�𝑖𝑖  is the N-element array steering vector for each 𝜃𝜃𝑖𝑖 ,  
direction of arrival. 
 
We can rewrite Equation (1) in the expanded 
notation of Equation (4) as:  
   
𝑦𝑦(𝑘𝑘) = 𝑤𝑤�  𝐻𝐻 · [�̅�𝑥𝑠𝑠(𝑘𝑘) + �̅�𝑥𝑖𝑖(𝑘𝑘) + 𝑛𝑛�(𝑘𝑘)], or 

𝑦𝑦(𝑘𝑘) = 𝑤𝑤�𝐻𝐻 · [�̅�𝑥𝑠𝑠(𝑘𝑘) + 𝑢𝑢�(𝑘𝑘)] 
 

(5) 
where 𝑢𝑢�(𝑘𝑘) =  �̅�𝑥𝑖𝑖(𝑘𝑘) + 𝑛𝑛�(𝑘𝑘)  is the undesired 
signal. 
 
The weighted array output power for the desired 
signal is given by [2] 
 

𝜎𝜎𝑠𝑠2 = 𝐸𝐸[| 𝑤𝑤�𝐻𝐻 . �̅�𝑥𝑠𝑠 |2] =  𝑤𝑤�𝐻𝐻  .𝑅𝑅�𝑠𝑠𝑠𝑠  .𝑤𝑤�  (6) 
 
where 𝑅𝑅�𝑠𝑠𝑠𝑠  is the signal correlation matrix, given by 
 

 𝑅𝑅�𝑠𝑠𝑠𝑠 = 𝐸𝐸[ �̅�𝑥𝑠𝑠  �̅�𝑥𝑠𝑠𝐻𝐻  ] (7) 
 
The weighted array output power for undesired 
signals is  
 

 𝜎𝜎𝑢𝑢2 = 𝐸𝐸[| 𝑤𝑤�𝐻𝐻 .𝑢𝑢�|2]  = 𝑤𝑤�𝐻𝐻 .  𝑅𝑅�𝑢𝑢𝑢𝑢  .𝑤𝑤�  (8) 
 

𝑅𝑅�𝑢𝑢𝑢𝑢 = 𝑅𝑅�𝑖𝑖𝑖𝑖 + 𝑅𝑅�𝑛𝑛𝑛𝑛  (9) 
                                            
where 𝑅𝑅�𝑖𝑖𝑖𝑖  = correlation matrix for interferers, and 
𝑅𝑅�𝑛𝑛𝑛𝑛= correlation matrix for noise. 
 
Taking the first element as a reference, the steering 
vector a(θ) of signal N is given by following 
equation: 
 

a(θ) =

⎣
⎢
⎢
⎢
⎢
⎡

1
exp(jβdsinθ)

.

.

.
exp(jβd(N − 1)sinθ)⎦

⎥
⎥
⎥
⎥
⎤

 

 
 

(10) 

 
where β denotes the propagation constant, and d 
denotes the distance between every two adjacent 
elements. 
 
Finally, the array factor can be expressed as: 
 

𝐴𝐴𝐴𝐴 = 𝑤𝑤𝐻𝐻  𝑎𝑎(𝜃𝜃) (11) 
 
4 Least Mean Square Algorithm 
    One of the simplest algorithms for adaptive 
processing is based on Least Mean Square (LMS) 
error. The LMS algorithm belongs to the trained 

algorithm category in which a reference signal is 
used to update the weights at each iteration [19], so 
that we search for the optimal weight, which would 
make the array output as close as possible to the 
reference signal. This is the weight that minimizes 
the mean square error (MSE) as shown in Fig. 3. 
The algorithm contains three steps in each 
recursion:  
• compute the processed signal with the current 

weights,  
• generate the error between the processed signal 

and the desired signal, and  
• adjust the weights using the new error 

information by the gradient method [6].  
•  

 
Fig.3: Block diagram of MSE adaptive system. 

 
The error can be defined as the desired signal minus 
the weighted output of the array: 
 

𝜀𝜀(𝑘𝑘) = 𝑑𝑑(𝑘𝑘) −𝑤𝑤�𝐻𝐻  �̅�𝑥(𝑘𝑘)  (12) 
 
The squared error is given by 
 

|𝜀𝜀(𝑘𝑘)|2 = |𝑑𝑑(𝑘𝑘) −𝑤𝑤�𝐻𝐻  �̅�𝑥(𝑘𝑘)|2 (13) 
 
The cost function is defined as 
 

𝐽𝐽( 𝑤𝑤�  ) = 𝐷𝐷 − 2 𝑤𝑤�𝐻𝐻  �̅�𝑟 + 𝑤𝑤�𝐻𝐻  𝑅𝑅� 𝑥𝑥𝑥𝑥  𝑤𝑤�  (14) 
 

�̅�𝑟 = 𝐸𝐸[𝑑𝑑∗. (�̅�𝑥𝑠𝑠 (𝑘𝑘) + �̅�𝑥𝑖𝑖 (𝑘𝑘) + 𝑛𝑛�)] (15) 
 

𝑅𝑅�𝑥𝑥𝑥𝑥  = 𝐸𝐸[�̅�𝑥�̅�𝑥𝐻𝐻] = 𝑅𝑅�𝑠𝑠𝑠𝑠 + 𝑅𝑅�𝑢𝑢𝑢𝑢  (16) 
                                                      

where  𝐷𝐷 = |𝑑𝑑(𝑘𝑘)|2 and  �̅�𝑟 = 𝐸𝐸[𝑑𝑑∗. �̅�𝑥(𝑘𝑘)] 
 
The quantity in equation (14) is usually called the 
cost function and it is convenient to find its 
minimum value in order to find the optimum 
weights of the system. This achieved by taking the 
gradient of Equation (14) with respect to the weight 
vector ∇w� (. )  
and equating it to zero [6]: 
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∇w� (𝐸𝐸[|𝜀𝜀|2]) = 2 𝑅𝑅�𝑥𝑥𝑥𝑥𝑤𝑤� − 2 �̅�𝑟 
The optimum weights providing the minimum MSE 
can be found by simplifying the above equation as: 
 

𝑤𝑤�𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅�𝑥𝑥𝑥𝑥 −1 �̅�𝑟 (17) 
 
By using the gradient of the cost function, the LMS 
solution is found as [3, 6]: 
 

𝑤𝑤�(𝑘𝑘 + 1) = 𝑤𝑤�(𝑘𝑘) + 𝜇𝜇 𝜀𝜀∗(𝑘𝑘) �̅�𝑥(𝑘𝑘) (18) 
                                         

where 𝜇𝜇 is the step size parameter controlling the 
rate of adaptation, and 
 

𝜀𝜀(𝑘𝑘) = 𝑑𝑑(𝑘𝑘) −  𝑤𝑤�𝐻𝐻  𝑥𝑥(𝑘𝑘) (19) 
 
     The convergence speed of the LMS method in 
Equation (18) is essentially proportional to the μ 
value. If the step-size value is very small, the 
convergence rate will become slow, the over-
damped case. If the convergence is too slow for the 
varying angles of arrival, it is possible that the 
adaptive array would not catch the desired signal 
quickly enough to track the varying signal. On the 
other hand, if the step-size is very large, the LMS 
algorithm will overshoot the optimum weights, 
exhibiting under-damping: the attempted 
convergence is too fast, and this will make the 
weights oscillate about the optimum, so the desired 
signal will not be precisely tracked. Therefore, it is 
necessary to choose a step-size in a range that 
ensures convergence [8]: 
 

0 ≤  𝜇𝜇 ≤  
1

2 trace[ R�xx ]
 (20) 

 
where “trace” means sum the diagonal elements of  
R�xx , the estimated correlation matrix.     
     
5 Sample Matrix Inversion [SMI] 

Algorithm  
     An alternative to the relatively slowly 
converging LMS scheme is the Sample Matrix 
Inversion (SMI) algorithm, also known as direct 
matrix inversion [20]. The sample matrix is a time-
averaged estimate of the array correlation matrix 
using K samples. With random ergodic noise in the 
correlation, the time-averaged estimate will equal 
the actual correlation matrix. As we use a K–long 
block of data, this method is called a block-adaptive 
approach [2, 8, 21], which adapts the weights block 
by block. K samples of signal vector 𝑋𝑋 define the 
N × K matrix : 

𝑋𝑋�𝐾𝐾(𝑘𝑘) = 

 

⎣
⎢
⎢
⎢
⎢
⎡𝑥𝑥1(1 + 𝑘𝑘𝐾𝐾)  𝑥𝑥1(2 + 𝑘𝑘𝐾𝐾) …  𝑥𝑥1(𝐾𝐾 + 𝑘𝑘𝐾𝐾)
𝑥𝑥2(1 + 𝑘𝑘𝐾𝐾) 𝑥𝑥2(2 + 𝑘𝑘𝐾𝐾)  … 𝑥𝑥2(𝐾𝐾 + 𝑘𝑘𝐾𝐾) 

.

.

.
𝑥𝑥𝑁𝑁(1 + 𝑘𝑘𝐾𝐾)  𝑥𝑥𝑁𝑁(2 + 𝑘𝑘𝐾𝐾) … 𝑥𝑥𝑁𝑁(𝐾𝐾 + 𝑘𝑘𝐾𝐾)⎦

⎥
⎥
⎥
⎥
⎤

 

 
 
 

(21) 

where 𝑘𝑘 is the block index and 𝐾𝐾 is the block 
length. Then the estimate of the array correlation 
matrix is 

𝑅𝑅�𝑥𝑥𝑥𝑥 (𝑘𝑘) =
1
𝐾𝐾
𝑋𝑋�𝐾𝐾(𝑘𝑘) 𝑋𝑋�𝐾𝐾𝐻𝐻(𝑘𝑘) (22) 

 
and the estimate of the correlation vector is 
 

�̂�𝑟(𝑘𝑘) =
1
𝐾𝐾

(𝑑𝑑∗(𝑘𝑘)  𝑋𝑋�𝐾𝐾𝐻𝐻(𝑘𝑘)  ) (23) 

 
In addition, the desired signal vector can be defined 
by 
 
𝑑𝑑(𝑘𝑘) = [𝑑𝑑(1 + 𝑘𝑘𝐾𝐾)𝑑𝑑(2 + 𝑘𝑘𝐾𝐾).𝑑𝑑(𝐾𝐾 + 𝑘𝑘𝐾𝐾)] (24) 
 
The SMI weights can be calculated for the kth block 
of length K as: 
 
𝑤𝑤�𝑆𝑆𝑀𝑀𝑆𝑆(𝑘𝑘) =    𝑅𝑅�𝑥𝑥𝑥𝑥 −1(𝑘𝑘) �̅�𝑟(𝑘𝑘) , and       
 
𝑤𝑤�𝑆𝑆𝑀𝑀𝑆𝑆(𝑘𝑘) = [𝑋𝑋�𝐾𝐾(𝑘𝑘)   𝑋𝑋�𝐾𝐾𝐻𝐻(𝑘𝑘)]−1𝑑𝑑∗(𝑘𝑘)  𝑋𝑋�𝐾𝐾(𝑘𝑘) (25) 
          
6 Simulation Results and Discussion 

  
6.1 The LMS Algorithm 
    A uniform linear array system with N = 10 
elements of spacing d = 0.5𝜆𝜆 is adopted here. The 
desired signal arrives at the antenna at θ0 and there 
is one interference signal at θ1with additive white 
noise. The angular range of interest is [ −900 ,
900].  
Case (1): Desired signal (D) at θ0 =  00 and 
interference signal (I) at θ1 =  300.  
Case (2): Desired signal (D) at θ0 =  400 and 
interference signal (I) at θ1 =  600.  
Case (3): Desired signal (D) at θ0 =  −300 and 
interference signal (I) at θ1 =  −800.  
     To find the instantaneous weights vector of the 
LMS algorithm: 
(1) Assume that the initial array weights are all zero.  
(2) Find steering vectors for desired user (𝑎𝑎0) and 
interferer (𝑎𝑎1) using Equation (10); the steering 
vectors for the three cases are shown below 
respectively. 
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𝑎𝑎0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
1
1
1
1
1
1
1
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝑎𝑎1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1.0000 +  0.0000𝑖𝑖
   0.0000 +  1.0000i
−1.0000 +  0.0000i
−0.0000 −  1.0000i
   1.0000 −  0.0000i
   0.0000 +  1.0000i
−1.0000 +  0.0000i
−0.0000 −  1.0000i
   1.0000 −  0.0000i
   0.0000 +  1.0000i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

   

a0=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   1.0000 +  0.0000i
−0.4337 +  0.9011i
−0.6238 −  0.7816i
   0.9748 −  0.2232i
−0.2217 +  0.9751i
−0.7825 −  0.6226i
   0.9004 −  0.4351i
    0.0015 +  1.0000i
−0.9017 −  0.4323i
   0.7806 −  0.6250i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  a1=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1.0000 +  0.0000i
−0.9127 +  0.4086i
   0.6661 −  0.7458i
−0.3033 +  0.9529i
−0.1125 −  0.9936i
   0.5087 +  0.8609i
−0.8161 −  0.5780i
   0.9810 +  0.1941i
−0.9747 +  0.2236i
   0.7982 −  0.6024i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

   

a0=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
    1.0000 +  0.0000𝑖𝑖
    0.0000 −  1.0000i
−1.0000 −  0.0000i
−0.0000 +  1.0000i
   1.0000 +  0.0000i
   0.0000 −  1.0000i
−1.0000 −  0.0000i
−0.0000 +  1.0000i
   1.0000 +  0.0000i
   0.0000 −  1.0000i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 a1=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1.0000 +  0.0000𝑖𝑖
−0.9989 −  0.0477i
   0.9954 +  0.0953i
−0.9898 −  0.1427i
   0.9818 +  0.1898i
−0.9717 −  0.2364i
   0.9593 +  0.2825i
−0.9447 −  0.3279i
   0.9280 +  0.3726i
−0.9092 −  0.4165i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
(3) Find the total array factor as: 𝑋𝑋 = 𝑎𝑎0 + 𝑎𝑎1  
(4) Find the total received signal correlation matrix 
as:  𝑅𝑅𝑥𝑥𝑥𝑥 = 𝑋𝑋 × 𝑋𝑋𝐻𝐻  
(5) Find the suitable value of the convergence 
parameter ( 𝜇𝜇) using Equation (20) for the three 
cases: 
𝜇𝜇1 =0.0114,      𝜇𝜇2 =0.0113,        𝜇𝜇3 =0.0112 
(6) Find the instantaneous value of the total received 
signal vector  𝑥𝑥(𝑘𝑘) by using Equation (3). 
(7) Find the instantaneous value of the array output 
𝑦𝑦(𝑘𝑘) using Equation (1).  
(8) Find the instantaneous value of the error signal 
𝜀𝜀(𝑘𝑘) between the reference signal and the array 
output using Equation (19). 
(9) Calculate the weights vector of the next iteration 
using Equation (18). 
(10) Repeat steps (6) to (9) until iteration 100.  
The resulting weights vector for the three cases are: 
 
Case (1): wLMS   Case (2): wLMS   Case (3): wLMS   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.0915 +  0.0101i
0.0916 −  0.0102i
0.1118 −  0.0101i
0.1118 +  0.0102i
0.0915 +  0.0101i
0.0916 −  0.0102i
0.1118 −  0.0101i
0.1118 +  0.0102i
0.0915 +  0.0101i
0.0916 −  0.0102i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   0.0904 +  0.0002i
−0.0343 +  0.0865i
−0.0698 −  0.0709i
   0.1014 −  0.0325i
−0.0210 +  0.1087i
−0.0844 −  0.0717i
   0.0995 −  0.0380i
−0.0101 +  0.0990i
−0.0808 −  0.0461i
   0.0705 −  0.0566i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   0.0897 −  0.0077i
   0.0116 −  0.0935i
−0.1130 −  0.0088i
   0.0108 +  0.1111i
   0.0914 −  0.0099i
   0.0099 −  0.0914i
−0.1111 −  0.0108i
   0.0089 +  0.1130i
   0.0935 −  0.0117i
   0.0077 −  0.0897i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
(11) Finally, the array factor can be found using 
Equation (11). 
     The variation of the magnitude of each weight 
vs. iteration number of the LMS algorithm for case 
2 is shown in Fig.4. Fig.5 shows the resulting mean 
square error which converges to near zero after 53 
iterations. Fig.6 shows how the array output 
acquires and tracks the desired signal after some 65 
iterations.  
 

 
Fig.4: The variations of the magnitude of each 

weight of the LMS algorithm for case 2. 
 

 
Fig.5: The MSE of the LMS algorithm. 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Iteration no.

|w
ei

gh
ts

|

 

 

w1
w2
w3
w4
w5
w6
w7
w8
w9
w10

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration no.

M
ea

n 
sq

ua
re

 e
rro

r

WSEAS TRANSACTIONS on COMMUNICATIONS
Mohammed Al-Sadoon, Raed A. Abd-Alhameed, I. T. E. Elfergani, 

J. M. Noras, Jonathan Rodriguez, S. M. R. Jones

E-ISSN: 2224-2864 210 Volume 15, 2016



 
Fig.6: s(k) and y(k) of the LMS algorithm.  

 
Finally, the resultant array factor for all three cases 
is shown in Fig.7, which has a peak at the desired 
direction and a null at the interfering direction, 
independent of the statistical characteristics of the 
arriving signals. Slow convergence limits the 
usefulness of this algorithm in dynamic 
environments where the signal must be captured 
quickly, also a limitation when channel conditions 
are rapidly changing. As shown in Fig.6, the LMS 
algorithm did not converge until after 65 iterations, 
after more than half of the duration of the signal of 
interest. 

  

  
Fig.7: The normalized magnitude of the array factor 

of the smart antenna system using the LMS 
algorithm. 

 
6.2 The SMI Algorithm 
     A uniform linear array system with N=10 
elements array and spacing d = 0.5λ  is adopted 
here. The desired signal reaches the antenna at 
𝜃𝜃0 = 00 and one interference signal arrives at 

𝜃𝜃1 = 400, with additive white noise. Assume the 
reference signal is exactly the same as the desired 
signal, namely d(k)  =  s(k). The angular range of 
interest is [ −900 , 900].  
 
Case (1): Desired signal (D) at θ0 =  200 and 
interference signal (I) at θ1 =  400.  
 
Case (2): Desired signal (D) at θ0 =  500 and 
interference signal (I) at θ1 =  800.  
 
Case (3): Desired signal (D) at θ0 =  −300 and 
interference signal (I) at θ1 =  −600.  
 
To calculate the weights vector: 
(1) Find steering vectors for the desired user (𝑎𝑎0) 
and interferer (𝑎𝑎1) using Equation (10) as: 
 

a0=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   1.0000 +  0.0000i
   0.4762 +  0.8793i
−0.5465 +  0.8375i
−0.9967 −  0.0818i
−0.4027 −  0.9153i
0.6132 −  0.7900i

   0.9866 +  0.1630i
   0.3265 +  0.9452i
 −0.6757 +  0.7372i
−0.9700 −  0.2432i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 a1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1.0000 +  0.0000i
−0.4337 +  0.9011i
−0.6238 −  0.7816i
   0.9748 −  0.2232i
−0.2217 +  0.9751i
−0.7825 −  0.6226i
   0.9004 −  0.4351i
  0.0015 +  1.0000i
−0.9017 −  0.4323i
   0.7806 −  0.6250i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

a0=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   1.0000 +  0.0000i
   0.4762 +  0.8793i
−0.5465 +  0.8375i
−0.9967 −  0.0818i
−0.4027 −  0.9153i
   0.6132 −  0.7900i
   0.9866 +  0.1630i

0.3265 +  0.9452i
 −0.6757 +  0.7372i
−0.9700 −  0.2432i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 a1=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   1.0000 +  0.0000i
−0.4337 +  0.9011i
−0.6238 −  0.7816i
    0.9748 −  0.2232i
−0.2217 +  0.9751i
−0.7825 −  0.6226i
   0.9004 −  0.4351i
   0.0015 +  1.0000i
−0.9017 −  0.4323i
   0.7806 −  0.6250i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

a0=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   1.0000 +  0.0000i
   0.0000 −  1.0000i
−1.0000 −  0.0000i
−0.0000 +  1.0000i
   1.0000 +  0.0000i
   0.0000 −  1.0000i
−1.0000 −  0.0000i
−0.0000 +  1.0000i
   1.0000 +  0.0000i

0.0000 −  1.0000i⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 a1= 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   1.0000 +  0.0000i
−0.9127 −  0.4086i
    0.6661 +  0.7458i
−0.3033 −  0.9529i
−0.1125 +  0.9936i
   0.5087 −  0.8609i
−0.8161 +  0.5780i
   0.9810 −  0.1941i
−0.9747 −  0.2236i
   0.7982 +  0.6024i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
(2) Find total received signal  X(k) and noise using 
Equation (21).  
 
 (3) Find the estimated signal correlation 
matrix�𝑅𝑅�𝑥𝑥𝑥𝑥  � using Equation (22). 
 
(4) Find the estimated signal correlation vector (�̂�𝑟) 
using Equation (23). 
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(5) Calculate the inverse of the signal correlation 
matrix. 
 
(6) The instantaneous weights vector can be found 
using Equation (25). 
 
(7) Repeat steps (2) to (6) until iteration 100. These 
yields:  
 
Case (1): wSMI   Case (2): wSMI   Case (3): wSMI   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
   0.0867 +  0.0224𝑖𝑖
   0.0386 +  0.0677𝑖𝑖
−0.0312 +  0.0899𝑖𝑖
−0.1196 +  0.0140𝑖𝑖
−0.0570 −  0.1210𝑖𝑖
   0.0959 +  0.0460𝑖𝑖
   0.0122 +  0.0815𝑖𝑖
−0.0466 +  0.0666𝑖𝑖
−0.1044 +  0.0007𝑖𝑖
−0.1044 +  0.0007i⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   0.1047 −  0.0004i
−0.0790 +  0.0674i
   0.0152 −  0.1000i
   0.0539 +  0.0814i
−0.0925 −  0.0214i
   0.0808 −  0.0489i
 −0.0249 +  0.0932i
−0.0464 −  0.0883i
   0.0962 +  0.0368i
−0.0987 +  0.0349i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

   0.1025 −  0.0087i
−0.0053 −  0.0938i
−0.0933 −  0.0041i
−0.0084 +  0.1017i
   0.1090 +  0.0025i
−0.0066 −  0.1066i
 −0.0973 +  0.0081i
   0.0003 +  0.0922i
    0.0972 +  0.0076i
   0.0063 −  0.1065i ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(8) Finally, the array factor can be found using 
Equation (11). 
 
     The variation of the magnitude of each weight 
against iteration number is shown in Fig.8. Fig.9 
shows the resulting mean square error which 
converges to near zero after 10 iterations, although 
Fig.10 shows how the array output converges 
quickly after ten iterations, but never acquires the 
desired signal. Finally, the resultant array factor is 
shown in Fig.11, with a peak at the desired direction 
and a null at the interfering direction. Although SMI 
is faster than the LMS algorithm, it has several 
drawbacks. The correlation matrix may be ill-
conditioned resulting in errors or singularities when 
inverted. Table 1 compares the two algorithms.  
  

Fig.8: The magnitude variation of each weight of 
the SMI algorithm for case 1. 

 

 
Fig.9: The MSE of the SMI algorithm. 

 

 
Fig.10: s(k) and y(k) of the SMI algorithm.  

 

 
Fig.11: The normalized magnitude of the array 

factor of smart antenna system using SMI. 
 

Table 1: Comparison between the LMS and SMI 
Algorithms. 
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case 2, D=50, I= 80
case 3 D= -30, I= -60
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Working 
principle 

Minimizing the 
mean square 
error between the 
received signal 
and a reference 
signal. 

Estimation of the 
array weights by 
using the 
correlation matrix 

Converge
nce 

Slow 
convergence. 

Faster than the 
LMS algorithm. 

Complexi
ty and 
accuracy  

Lower 
complexity than 
SMI: does not 
require direct 
matrix inversion 
or memory: 
offers better 
stability.  

Several drawbacks 
as it depends on 
direct matrix 
inversion: may 
result in errors or 
singularities. 

Direction 
of desired 
signal  

It depends on a 
reference signal 
which is similar 
to or highly 
correlated with 
the desired signal 

It depends on the 
correlation matrix 
to estimate the 
desired signal 
direction. 

 
7 Conclusion 
The proposed weight optimization techniques for 
smart antenna wireless communication systems, to 
direct the main beam in the direction of the desired 
signal and place nulls in the direction of interfering 
signals using LMS and SMI adaptive beamforming 
algorithms have been presented. It was concluded 
that the LMS algorithm was a less complex 
algorithm and does not need direct matrix inversion 
or memory, but it is slow in convergence time. The 
SMI algorithm was faster than the LMS algorithm, 
but has several drawbacks: its computational 
complexity and potential to create singularities can 
cause problems.  
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