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Abstract: - The performance of Single Carrier Frequency-Domain Equalization (SC-FDE) system is affected by 
the precision of channel estimation results. For a pilot-assisted SC-FDE system transmitting over sparse 
multipath radio channels, we discuss that the sparse multipath channel estimation can be formulated to be an 
underdetermined compressed sensing (CS) problem or an overdetermined sparse system identification problem 
under different transmission parameters. For the sparse system identification problem setting, we propose to use 
Zardoff-Chu sequence as the pilot sequence to form a deterministic circulant Toeplitz observation matrix for 
signal recovery. To address the unknown sparsity in practical applications, Sparsity Adaptive Matching Pursuit 
(SAMP) algorithm is investigated to reconstruct the channel impulse response (CIR) instead of other greedy 
sparse recovery algorithms that need a priori knowledge of channel sparsity. The simulation results demonstrate 
that using the designed observation matrix and the SAMP algorithm for sparse channel estimation with 
unknown sparsity achieves better performance than the traditional Least Squares (LS) channel estimation 
algorithm with reduced length of pilot sequence in the SC-FDE system over 3GPP radio channels. 
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1 Introduction 
In wireless communications, the transmitted signals 
normally go through multipath channel before 
reaching the receiver. The time dispersion of 
different paths often causes serious Inter-Symbol 
Interference (ISI) to the received signals for 
broadband wireless transmission.  The Single 
Carrier Frequency-Domain Equalization (SC-FDE) 
system has been shown to be an attractive 
transmission technique to combat the ISI [1]. 
Compared to Orthogonal Frequency Division 
Multiplexing (OFDM) system, SC-FDE system has 
similar performance and signal processing 
complexity. Furthermore, but it has the advantages 
of lower peak-to-average power ratio (PAPR) and 
less sensitivity to carrier frequency offsets by 
employing frequency-domain equalization. The 
performance of frequency-domain equalization in a 
SC-FDE system is affected by the precision of 
channel estimation results [2]. Hence, a precise 
channel estimation is an important requirement for 
the SC-FDE system. 

There have been some related research works on 
channel estimation for SC-FDE system [3-5]. In [3], 

the complementary Golay sequences are used for 
time-domain channel estimation. In [4], the 
frequency domain multiplexed pilots are used in the 
channel estimation. In [5], a lower bound for the 
MSE of the linear minimum mean-squared error 
(LMMSE) channel estimator is derived. Most of the 
works are studied under rich multipath channels. 
Nevertheless, the physical arguments and growing 
experimental evidence suggest that many wireless 
channels encountered in practice tend to exhibit a 
sparse multipath structure, where only a few channel 
paths are significant and other channel coefficients 
are zero or close to zero. When employing 
traditional channel estimation methods for sparse 
channel scenarios, it leads to a large number of 
training sequences which results in loss of energy 
and bandwidth. Inspired by the success of 
compressed sensing (CS, also known as 
compressive sensing) in signal processing [6], 
where sparse solution of underdetermined linear 
equations can be accurately and efficiently obtained 
from relatively fewer number of linear non-adaptive 
measurements, many sparse channel estimation 
methods based on CS have been proposed in recent 
years to exploit the sparse channel structure in SC-
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FDE system [7, 8]. In [7], a sparse channel 
estimation method with sparsity predetermined by 
wavelet decomposition is proposed. In [8], the 
performance between channel estimation based on 
CS and time-domain least squares (LS) are 
compared.   

 In the pilot-assisted SC-FDE transmission system, 
the CS problem setting for sparse channel 
estimation can be formulated when the pilot length 
is less than the length of the longest channel path. 
When the pilot length is longer than the channel taps, 
the sparse channel estimation can be formulated as a 
sparse system identification problem. The 
formulated problem becomes an overdetermined 
(more equations than unknowns) problem instead of 
an underdetermined (more unknowns than equations) 
problem based on CS. For the SC-FDE transmission 
over mobile radio channel specified by 3GPP 
channels, it is a more normal setting when the 
transmit data rate is not too high. Under this 
overdetermined problem setting, the observation 
matrix can be designed in a deterministic approach 
and can be solved with simplified algorithms. We 
propose to use Zardoff-Chu sequence as the pilot 
sequence to form a deterministic circulant Toeplitz 
observation matrix for the sparse system 
identification problem setting.  

Next, we evaluate the sparse recovery algorithms for 
the sparse system identification problem setting. 
One popular class of sparse recovery algorithms is 
based on the idea of iterative greedy pursuit, 
including Matching Pursuit (MP) [9], and 
Orthogonal Matching Pursuit (OMP) [10], 
Stagewise OMP (StOMP) [11], Regularized OMP 
(ROMP) [12], Compressive Sampling Matching 
Pursuit (CoSaMP) [13]. However, these algorithms 
assume that the sparsity K is known, whereas K may 
not be available in many practical applications, such 
as channel estimation. Do et. al. proposed an 
iterative greedy reconstruction algorithm, Sparsity 
Adaptive Matching Pursuit (SAMP) [14].  
Compared with other greedy algorithms, the SAMP 
has the capability of signal reconstruction without 
prior information of the sparsity. This makes it a 
promising candidate for many practical applications 
when the number of significant coefficients of a 
signal is not available. Extensive experiment results 
confirm that SAMP is very appropriate for 
reconstructing compressible sparse signal where its 
magnitudes are decayed rapidly. 

In this paper, we mainly investigate the sparse 
system identification setting for the sparse channel 
estimation problem by simulation. A simulation 
comparison is made for the LS, OMP, and SAMP 
channel estimation algorithms under the sparse 
system setting with proposed observation matrix. 
Both NMSE (Normalized Mean Square Error) of 
channel impulse response estimation and BER (Bit 
Error Rate) of the SC-FDE transmission are 
analyzed and compared. The simulation results 
show that both OMP and SAMP algorithms perform 
better than the LS algorithm over 3GPP multipath 
channels even with reduced pilot length. The SAMP 
algorithm performs slightly lower than OMP with 
advantage of adaptive spasity.   

The rest of this paper is organized as follows. In 
Section 2, the system model of pilot-assisted SC-
FDE transmission system is introduced. Section 3 
discusses two different formulations of the sparse 
channel estimation problem, i.e., the 
underdetermined CS setting and the overdetermined 
sparse system identification setting, under different 
transmission parameters. For the sparse system 
identification setting, a deterministic circulant 
Toeplitz matrix is proposed to be the observation 
matrix by using Zardoff-Chu sequence as the pilot 
sequence. The traditional LS algorithm, and the 
sparse recovery algorithms (OMP and SAMP) are 
presented in Section 4 for multipath channel 
estimation. The simulation results and discussions 
are given in Section 5. Section 6 concludes this 
paper. 
 
2 System Description 

The block diagram of SC-FDE transmission 
system is shown in Fig.1, and the frame 
structure of the SC-FDE transmission is shown 
in Fig. 2.  

Input 
data
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Channel
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Channel 
estimator

EqualizerIFFTDemodulator

Output 
data

Insert pilot

 

Fig. 1 SC-FDE transmission system 
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Fig. 2 Frame structure of SC-FDE transmission 

At the transmitter, the information bits are 
mapped into data symbols depending on the 
modulation type. Then each length-N data symbols 
appended with a length-Ncp CP (Cyclic Prefix) forms 
a data block. The CP is assumed to be longer than 
the known channel impulse response (CIR) length L 
to eliminate inter-block interference (IBI). The 
pilots are periodically inserted among the 
transmitted data blocks for synchronization and 
channel estimation purposes. The pilot is assumed to 
be inserted in the time domain with length Np.  Then, 
the SC-FDE blocks is transmitted though the mobile 
radio channel. A multipath channel with additive 
white Gaussian noise is considered in this paper. 
The receiver first removes the CP of the received 
signals, and utilizes the pilot for channel estimation. 
Then the equalization in the frequency domain is 
applied on the received signals. Finally, the 
equalized signals are demodulated to recover the 
original data.  

At the transmitter, the time-domain samples of 
one SC-FDE signal can be written as 

( ) 0 1 .x n n N≤ ≤ −                

Let the channel impulse response (CIR) 
be [ (1), (2) , ( )]h h h L= h , where L is the length of the 
CIR. When only K (K<L) channel paths are 
significant and other channel coefficients are zero or 
close to zero, the channel can be called a K -sparse 
channel.  

The baseband CIR can be described as  

1

0
( ) ( ) ( )

L

l l
l

h t tα δ τ τ
−

=

= −∑                      (1) 

where lτ is the delay of the l th path and ( )l tα is the 
channel coefficient of the l th path. It can be viewed 
as a LTI (Linear Time Invariant) or LTV (Linear 
Time Varying) system impulse response depending 
on whether the channel coefficients are time 
invariant or nor. Actually, the baseband CIR 
specified in (1) is a tapped-delay-line model, where 
the tap spacing is 1/W, where W is the signal 
bandwidth. Each significant path corresponds to a 

significant tap at some multiples of 1/W.  If the 
RMS delay spread of the channel is RMSτ , the 
longest significant tap (corresponding to the Lth 
path) is  close to RMSWτ .   

Assume that the CP length Ncp is larger than L 
(Ncp>L), the baseband model of the SC-FDE system 
can be written as 

( ) ( ) ( ) ( )
1

0
( ) 0 1

−

=

= − + ≤ ≤ −∑
L

l
y n x n l h l z n n N      (2) 

where ( )x n is the input signal, ( )y n  is the received 
signal, ( )z n  is the AWGN samples with zero mean 
and variance of 2σw  .  

The resulting input-output relation of data blocks 
can be expressed as a matrix-vector product 

      =y Xh+ z        which represents     

( )

( )
( )

( )
( ) ( )

( )

( )
( )
( )

( )

( )
( )
( )

( )
1 1

( 1) 1 ( 1)

0 0(0)
0 0

1(1)
1 1

02
(3)2 2

1 1
( 3)

1 2
0 1( 2) L N L

N L N L L

xy
h z

xy
h z

xy
h z

x N x
y N L

h L z N L
x Ny N L × + −

+ − × + − ×

  
     
     
     
   = +   −      
     + −      − + −      −+ −   



 

 



 

  



   

 
3 Sparse Channel Estimation Problem 
Formulation  

In the pilot-assisted SC-FDE transmission system, 
the sparse channel estimation can be formulated as a 
compressed sensing problem (underdetermined 
setting) or a sparse system identification problem 
(overdetermined setting) under different 
transmission parameters. 
3.1 Compressed Sensing Problem Formulation 

In the pilot-assisted SC-FDE transmission system, 
when the pilot length Np is less than the channel taps 
L (i.e., Np < L), the sparse channel estimation can be 
formulated as a CS problem. The formulated 
problem based on CS is an underdetermined  
problem.  

CS is a novel sampling theory that one can recover 
certain signals from far fewer samples or 
measurements than traditional Nyquist sampling 
methods. CS theory is suitable to the situation when 
the signal is compressible or the signal is sparse in a 
transform domain.  

Suppose that there is a signal g   whose length is N, 
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and g is sparse in the space 1 2[ , , ]Nψ ψ ψΨ =  , a 
×N N  matrix. Namely  

0

N
T

i i
i

xψ Ψ
=

= =∑g x                                 (4)   

where x has only K  significant elements and the 
rest of  the elements are zero or close to zero. Thus, 
x is K -sparse in the space Ψ . Under this 
assumption, the signal is projected by a 

×M N measurement matrix Φ  to reduce the 
dimensionality and obtain an 1×M observation 
vector y , which is a compressed vector 
corresponding to x . Namely, 

                 T= Φ = ΦΨ = Θy g x x                            (5)        

CS encodes a signal into a relatively small number 
of incoherent linear measurements. In theory, the 
optimal incoherence is achieved by completely 
random measurement matrices. Hence, to recover 
x from Θ by applying the CS algorithm, the 
measurement matrix has to satisfy certain 
properties, such as Restricted Isometry Property 
(RIP) [15]. Recently, CS methods have been 
developed for the estimation of the multipath 
channels taking into account the sparseness 
characteristic [16][17]. 

By examining (3) for the pilot-assisted SC-FDE 
transmission system, it can be seen that the channel 
estimation problem corresponds to obtaining an 
estimate of the CIR from the “full” set of 
observations described by (3) when the pilot 
sequence is immediately preceded and succeeded by 
zeros (i.e., a guard interval of length exists between 
the data and the pilot sequence). When there is lack 
of a “guard interval” of length between the data and 
pilot sequence, it resembles the canonical CS 
observation model where the number of 
observations Np is far fewer than the length of the 
channel taps L. In this case, the sparse channel 
estimation can be formulated as a CS problem as 
follows, 

                      p p p= Φy h+ z                                     (6)     

where pΦ is observation matrix.   

    When designing the observation matrix in the CS 
setting, it favors random matrices. It is demonstrated 
that random Toeplitz matrices works well in the CS 
reconstruction methods. The pilot sequence with the 
random property can be used to form a Toeplitz 

matrix. As described in Fig.2, the transmit block 
consists of unknown data block and pilot block. In 
such a setting, a pseudo-random sequence can be 
used to probe a channel, and it has been proved that 
the Toeplitz matrix generated by the pseudo-random 
input probe satisfies the RIP [18].  

In this case, the resulting input-output relation of 
data blocks can be expressed as p =y Ph+ z                                 
which represents 

( )

( )
( )

( )
( ) ( )

( )

( )
( )
( )

( )

( )
( )
( )

( )1 1
( 1) 1 ( 1)

0 0(0) 001(1) 1102 2 (7)21 1
( 3)

1 2( 2) 0 1 p
p

p

p

p
pL N Lp N L p N L L

py zhpy zhpy zhp N p
y N L

h L z N Ly N L p N × + −
+ − ×

+ − ×

                         = +  −            + −       − + −     + − −   



 

 









  



Notice that when the pilot sequence is immediately 
preceded and succeeded by the data sequence, the 
observation matrix pΦ  is a “partial” Toeplitz matrix 

in (3). When Np < L, every row of the observation 
matrix pΦ  in this setting has at least one zero entry.  

When Np ≥ L,  the sparse channel estimation can be 
formulated as a overdetermined sparse system 
identification problem as described in the next 
subsection. 
3.2 Sparse System Identification Problem 
Formulation 

In the pilot-assisted SC-FDE transmission system, 
when the pilot length Np is longer than the channel 
taps L (i.e., Np ≥ L), the sparse channel estimation 
can be formulated as a sparse system identification 
problem. The formulated problem becomes an 
overdetermined (more equations than unknowns) 
problem instead of an underdetermined (more 
unknowns than equations) problem based on CS. 
For the SC-FDE transmission over mobile radio 
channel specified by 3GPP channels, it is a more 
normal setting when the data speed is not too high. 
Under such an overdetermined problem setting, the 
observation matrix can be designed in a 
deterministic approach and it can be solved with 
simplified algorithms. 

An overdetermined system is almost always 
inconsistent (it has no solution) when constructed 
with random coefficients. The method of ordinary 
least squares (LS) can be used to find an 
approximate solution to overdetermined systems. 
When the system (channel) non-zero coeffcients are 
fewer than the observation vector, sparse 
approximate solutions can be found by using greedy 
algorithms such as OMP. By exploiting the channel 
sparsity characteristic, the sparse approximate 
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solutions may outperform the traditional LS 
algorithm. 

In the case that the length of pilot sequence is 
smaller than the CP, the equation (3) of the pilot 
sequence can be written as   

                       p p p= +y h zX                                (8)        

where py  is the received pilot sequence, pz is the 
noise symbol. 

 Here we propose to adopt the Zadoff-Chu sequence 
as the pilot to form the observation matrix. pX  is a 

p LN N×  Toeplitz matrix formed by the pilots as 
follows, 

0 1 1

1 0 2

1 2

p p

p

p p p
p

N N L

N L

p

N N N L N L

x x x

x x x

x x x

− − +

− +

− − −
×

 
 
 
 =  
 
 
  





   

   



X                     (9)    

where pN is the length of pilot, L is the length of 
channel.  In pX , each column is a shifted version of 
the first column 0 1 1[   ]

p

T
Nx x x − , which is the pilot 

sequence. 

The pilot we choose is Zadoff-Chu sequences. 
Assuming that the length of Zadoff-Chu sequence is 

pN . Zadoff–Chu (ZC) sequence can be expressed as 

2

exp( ) for  integer even
(10)

( 1)exp( ) for  integer odd
p

p
p

N

p
p

kj N
N

ZC (k)=
k kj N

N

π

π


−




+ −


 

Zadoff–Chu (ZC) sequence is a complex-valued 
mathematical sequence which, when applied to 
radio signals, gives rise to an electromagnetic signal 
of constant amplitude, whereby cyclically shifted 
versions of the sequence imposed on a signal result 
in zero correlation with one another at the receiver 
[19][20]. Zadoff–Chu sequences are CAZAC 
sequences (constant amplitude zero autocorrelation 
waveform). Hence, these sequences exhibits the 
useful property that cyclically shifted versions of 
itself are orthogonal to one another, provided, that is, 
that each cyclic shift is greater than the combined 
propagation delay and multi-path delay-spread of 

that signal between the transmitter and receiver.  

Zadoff–Chu sequences are used in the 3GPP LTE 
Long Term Evolution air interface in the Primary 
Synchronization Signal (PSS), random access 
preamble (PRACH), uplink control channel 
(PUCCH), uplink traffic channel (PUSCH) and 
sounding reference signals (SRS) [21]. 

The ZC sequences have important properties that 
are appropriate for forming observation matrix in 
the SC-FDE channel estimation. 

A ZC sequence has a constant amplitude. Also its 
Np-point DFT has a constant amplitude. This 
property limits the Peak-to-Average Ratio and 
generates bounded and time-flat interference to 
other uses. 

The second property shows that the cyclic auto-
correlation of each ZC sequence results in a single 
dirac-impulse at time offset zero.  

1
*

0
( ) ( ) ( ) [0 ] (11)

pZ

kk k k p
n

( )= x n x n Nφ τ τ δ τ τ
−

=

+ = ∈∑  

In addition, the cross-correlation of each ZC 
sequence with its cyclic shifted version with l shifts 
results in a single dirac-impulse at time offset l.  

1
*

( )
0

( ) ( ) ( ) [0 ] (12)
pZ

k k l k k l p
n

( )= x n x n l Nφ τ τ δ τ τ
−

+ +
=

+ = + ∈∑  

This property allows the receiver to easily find the 
timing offset by correlation. 

Additionally, each ZC sequences also holds a 
Fourier dual. This means, that the DFT of a ZC 
sequence [ ]ux k  is a weigthed cyclicly-shifted ZC 

sequence [ ]wX k  such that 1 mod pw N
u

= − . This 

property is useful in practical systems, as it allows 
the generation of ZC sequences directly in 
frequency domain without any DFT operation. Even 
more important, the correlation may be done in 
frequency domain and/or in time domain 
accordingly. In the channel estimation of SC-FDE, 
the channel estimation can be implemented either in 
the time domain or in the frequency domain with 
such a circulant Toplitz matrix formed by shifted 
ZC sequences.  
With such a design of the observation matrix, the 
pilot vectors form a complete set for orthonormal 
transform. In the context of sparse component 
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analysis (SCA), pX  is called sensing dictionary and 
the column vector in pX is called atom. With our 
design, all the atoms are orthogonal to each other 
and form a complete or over-complete set for signal 
recovery. Classical linear algebra show that any 
unknown signal can be recovered exactly using such 
a set of test vectors if there is no noise terms in the 
observation. 
4 Sparse Channel Estimation 
Algorithms 

In this paper, we mainly investigate the second 
setting (overdetermined sparse system identification) 
of the sparse channel estimation problem in the SC-
FDE system. Under this setting, the traditional 
channel estimation algorithm (LS), and two sparse 
channel estimation algorithms (OMP, and SAMP) 
for signal recovery are presented as follows. 
Specifically, the SAMP algorithm can deal with the 
scenario that the channel sparsity is unknown. 
4.1 LS Algorithm  

The sparse multipath channel can be estimated 
by using LS algorithm either in the time domain or 
in the frequency domain. In the time domain, the 
estimated channel result ĥ is the LS solution of 

2
min p−Φy h , which is a l2-norm solution. The 
solution can be expressed as 

ĥ  = †
pΦ y                                                    (13) 

where the pseudoinverse †1 )T T
p p p p

−Φ Φ Φ Φ= ( , 
and TΦ indicates a matrix transpose. 

Since the SC-FDE system performs the channel 
equalization in the frequency domain, by doing FFT 
of ĥ , we obtain the estimated channel frequency 
response Ĥ  of the pilot sequence. That is, ˆĤ = hF , 
where ĥF denotes the Fourier transform of h . 

The sparse multipath channel can also be estimated 
by using LS algorithm in the frequency domain. In 
this case, after FFT transformation, the system 
equation becomes p p p p= Φ +y h zF F F F , where 

pyF , pΦF , phF  , pzF denote the Fourier transform 
of y , pΦ , h , and pz , respectively. The channel 
estimation  obtained in the frequency domain is 

ˆ p

p

=
y

H
x

F
F

.  

Note that the sparsity characteristic of multipath 
channel is not exploited in the traditional LS 
algorithm. 
 4.2 OMP Algorithm 

MP is a greedy iterative algorithm for 
approximately solving the original 0l -norm problem. 
MP works by finding a basis vector in the dictionary 
that maximizes the correlation with the residual, and 
then recomputing the residual and coefficients by 
projecting the residual on all atoms in the dictionary 
using existing coefficients. OMP is similar to MP, 
except that an atom once picked, cannot be picked 
again. The algorithm maintains an active set of 
atoms already picked, and adds a new atom at each 
iteration. The residual is projected on to a linear 
combination of all atoms in the active set, so that an 
orthogonal updated residual is obtained. By using a 
circulant Toplitz matrix as the observation matrix, 
the atoms in the observation matrix are all 
orthogonal already. Hence, the OMP is equivalent to 
MP in this case. The pseudo code of the OMP 
algorithm is given as follows. 

OMP algorithm 

INPUT: received pilot vector y , sensing matrix Φ , 
Sparsity K; 
OUTPUT: A K -sparse approximation ĥ of the 
channel                                             
Initialization: 

ĥ  = 0 { Trivial initialization } 
0r  = y  { Initial residue } 
0F = ∅ {Empty finalist } 

for k=1:K 
J  = Max( *

1k−Φ r ) { Candidate Test } 

kF  = 1−kF  ∪ J  { Make Finalist } 
rk = y − †

F FΦ Φ y  { Compute Residue } 
if  halting condition true (e.g.,

2k ε<r ) then 
quit the iteration; 

Output: ĥ  = †
FΦ y  

 Here, the pseudoinverse †1 )T T
F F F F

−Φ Φ Φ Φ= ( , 
which is the LS solution of 

2
min F−Φy r . 

4.3 SAMP Algorithm for Unknown Sparsity 

The sparsity adaptive matching pursuit (SAMP) is 
designed for blind recovery when the sparsity K is 
not available. It follows the “divide and conquer” 
principle through stage by stage estimation of the 
sparsity level and the true support set of the target 
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signals.  The pseudo code of the SAMP algorithm is 
given as follows. 

 

SAMP algorithm  
                                                                                            
INPUT: received pilot vector y , sensing matrix Φ , 
step size s ; 
OUTPUT: A K -sparse approximation ĥ of the 
channel   
Initialization: 

ĥ  = 0 { Trivial initialization } 
0r  = y  { Initial residue } 
0F = ∅ {Empty finalist } 

v = s { Size of the finalist in the first stage } 
k = 1 { Iteration index } 
j = 1 { Stage index } 

repeat 
kS  = Max( *

1k−Φ r , v) { Preliminary Test } 

kC  = 1−kF  ∪ kS  { Make Candidate List } 
F = Max( †

kCΦ y , v) { Final Test } 

r = y − †
F FΦ Φ y  { Compute Residue } 

if  halting condition true (e.g.,
2

ε<r ) then 
quit the iteration; 

else if 12 2k−>r r  then { stage switching } 
j = j + 1 { Update the stage index } 
v = j × s { Update the size of finalist } 

else 
1−kF = F  {Update the finalist} 

rk= r { Update the residue } 
k = k + 1 

end if until halting condition true; 
Output: ĥ  = †

FΦ y  

Here, v = kF  represents the size of finalist; for a 
vector a, function Max(a, I) returns v indices 
corresponding to the largest absolute values of a. 
For a set Λ∈{1,…,N}, ΛΦ is the submatrix of Φ  
with indices i∈Λ . At the k-th iteration, kS , kC , kF , 
rk represent the short list, the candidate list, the 
finalist and the observation residual, respectively. 

The recovery process in the SAMP algorithm is 
divided into several stages, each of which contains 
several iterations. In the kth iteration of the SAMP 
algorithm, the sizes of candidate set kC  and finalist 

kF are adaptive. This innovation enables the SAMP 
to conduct blind recovery without priori information 

of K. kF  is kept fixed for iterations in the same 
stage and increased by a step size s ≤ K between 
two consecutive stages. There is a trade-off between 
s and the recovery speed as smaller s requires more 
iterations. Empirical results suggest that small s is 
preferable for signal with (exponentially) decayed 
magnitude, while large s is advantageous for binary 
sparse signal. 
 
5 Simulation Results 

In this section, we investigate the sparse channel 
estimation for the pilot-assisted SC-FDE system 
under the sparse system identification problem 
setting. We compare the performance of the 
proposed sparse channel estimation and the 
traditional LS channel estimation in the SC-FDE 
communication system. The OMP and SAMP 
algorithms are adopted as the sparse channel 
estimations. 

In the considered SC-FDE system, one transmitted 
frame is 1024 samples with 896 data symbols and 
128 CP samples. The Zadoff-Chu sequences is used 
as the pilots for the traditional LS channel 
estimation and the sparse channel estimation 
methods (OMP and SAMP). The pilot length is 128 
for LS channel estimation, and the pilot length is 64 
for sparse channel estimation methods. For channel 
equalization at the SC-FDE receiver, the minimum 
mean square error (MMSE) scheme is used. The 
signal bandwidth in our simulation is 10MHz, and 
the symbol sampling rate is also 10M samples per 
second. The simulation parameters are listed in 
Table I.  

TABLE I. Simulation assumptions and parameters 

Sampling rate  10 mega-samples per 
second 

Data modulation format BPSK 
Pulse shaping  None 

Pilot length 128 (LS); 64 
(OMP,SAMP) 

Pilot type Zadoff-Chu sequence 
FFT/IFFT size 1024 samples 
Channel estimation LS; OMP; SAMP 
Equalization MMSE 
Channel coding None 

In our simulation, we utilize the 3rd generation 
partnership project (3GPP) Pedestrian A channel 
and Vehicular A channel models. The two channel 
models are shown in Table II and Table III, 
respectively [22]. There are 4 dominant taps in 
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Pedestrian A channel and 6 dominant taps in 
Vehicular A channel. Hence, the spasity of these 
two channel is 4 and 6 respectively. Under the 
10MHz sampling rate, the time resolution of the 
channels is 100ns. The length of channel we choose 
is L=31. In the simulation, the channel coefficients 
are normalized such that ith channel coefficient iα  

is normalized to be 2

1
/

L

i i j
j

α α α
=

= ∑ . 

TABLE II. Channel delay profiles of 3GPP 
Pedestrian A channel 

Tap  Ped. A 
Relative delay(ns) Average relative power(dB) 

1 0 0 
2 110 -9.7 
3 190 -19.2 
4 410 -22.8 

TABLE III. Channel delay profiles of 3GPP 
Vehicular A channel  

Tap  Veh. A 
Relative delay(ns) Average relative power(dB) 

1 0 0 
2 310 -1.0 
3 710 -9.0 
4 1090 -10.0 
5 1730 -15.0 
6 2510 -20.0 

With the above simulated assumptions and 
parameters, because Np > L , the channel estimation 
problem can be formulated as a sparse system 
identification problem (overdetermined setting) 
instead of a CS problem.  

The normalized mean square error (NMSE) can be 
used to measure the performance of the estimator as 
it reflects both the bias and the variance of the 
estimator. The NMSE [16] of ĥ is described as  

ˆ{ }ˆNMSE{ = ˆ{ }
E

E
−} h hh
h

                        (14) 

Fig. 3 and Fig. 4 show the original and estimated 
channel delay profiles of 3GPP Pedestrian A 
channel at SNR= 5dB and 10dB, respectively. It can 
be seen that four main paths of channel delay profile 
can be estimated by the channel estimation 
algorithms. The estimation is more precise at 10 dB 
than that at 5 dB. Fig. 5 and Fig. 6 show the original 
and estimated channel delay profiles of 3GPP 
Vehicular A channel at SNR= 5dB and 10dB, 
respectively. It can be seen that six main paths of 

channel delay profile can be estimated by the 
channel estimation algorithms. The estimation is 
more precise at 10 dB than that at 5 dB. It can be 
observed that the estimation errors are higher under 
3GPP Vehicular A channel than that under 3GPP 
Pedestrian A channel. 
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Fig.3. 3GPP Pedestrian A channel delay profile and 
estimated results (SNR=5dB). 
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Fig.4. 3GPP Pedestrian A channel delay profile and 
estimated results (SNR=15dB).  
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Fig.5. 3GPP Vehicular A channel delay profile and 
estimated results (SNR=5dB). 
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Fig.6. 3GPP Vehicular A channel delay profile and 
estimated results (SNR=15dB). 

Fig. 7 and Fig. 8 show the NMSE versus SNR 
(Eb/N0) with different channel estimation 
algorithms under 3GPP Pedestrian A channel and 
Vehicular A channel, respectively. It can be seen 
that the NMSE of the sparse channel estimation 
(OMP & SAMP) methods is smaller than that with 
the traditional LS channel estimation. Furthermore, 
the NMSE value of the SAMP algorithm is higher 
than that of the OMP algorithm over 3GPP 
Pedestrian A channel and Vehicular A channel.  
Hence, there is drawback of the SAMP algorithm in 
terms of achieved NMSE though it has advantage of 
sparse adaptivity comparing with the OMP 
algorithm. In addition, it can be observed that the 
NMSE value under 3GPP Vehicular A channel is 
higher than that under 3GPP Pedestrian A channel. 
Thus, the NMSE increases with the increase of 
channel sparsity with the sparse estimation 
algorithms.  
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        Fig.7. NMSE of channel estimation in Pedestrian A 
channel. 
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           Fig.8. NMSE of channel estimation under 
Vehicular A channel. 
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Fig.9. BER performance of SC-FDE system under 
Pedestrian A channel. 
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Fig.10. BER performance of SC-FDE system under 
Vehicular A channel. 

Fig. 9 and Fig. 10 shows the BER performance of 
different channel estimation algorithms in the SC-
FDE transmission system under 3GPP Pedestrian A 
channel and Vehicular A channel, respectively. It 
can be seen that the sparse channel estimation 
algorithms perform better than the traditional LS 
algorithm under 3GPP Pedestrian A channel and 
Vehicular A channel. Furthermore, all the 
algorithms performs better under 3GPP Pedestrian 
A channel than that under the Vehicular A channel.    
It can be seen that sparse channel estimation 
algorithms performs better than the traditional LS 
channel estimation even much reduced pilot length.  
 
6 Conclusions 

 In the pilot-assisted SC-FDE transmission system, 
the sparse channel estimation can be formulated to 
be an underdetermined Compressed Sensing (CS) 
problem or an overdetermined sparse system 
identification problem under different transmission 
parameters. Specifically, when the pilot length Np is 
longer than the number of channel taps L (i.e., Np ≥ 
L), the sparse channel estimation can be formulated 
as an overdetermined sparse system identification 
problem. For SC-FDE transmission over mobile 
radio channel specified by 3GPP, the latter is a more 
normal setting when the data speed is not too high. 
Under such an overdetermined problem setting, the 
observation matrix can be designed in a 
deterministic approach and can be solved with 
simplified algorithms. We propose to use Zardoff-
Chu sequence as the pilot sequence to form a 
deterministic circulant Toeplitz observation matrix. 
With such a design of the observation matrix, the 
pilot vectors are formed as orthonormal atoms in an 

over-complete dictionary. In practical system 
applications, the greedy sparse signal recovery 
algorithms that need a priori knowledge of channel 
sparsity can not be employed directly. To address 
this issue, Sparsity Adaptive Matching Pursuit 
(SAMP) algorithm is investigated to reconstruct the 
channel impulse response (CIR) with the proposed 
observation matrix. The simulation results show that 
both OMP and SAMP channel estimation 
algorithms perform better than the traditional LS 
algorithm for SC-FDE system transmitting over a 
sparse multipath channel even with reduced pilot 
length. Comparing with the OMP algorithm, the 
SAMP algorithm has the advantage of sparse 
adaptivity, but the drawback of the SAMP algorithm 
is slightly decreased precision of the estimated CIR. 
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