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Abstract: Solutions to addition chain problem can be applied to operations involving huge number such as scalar
multiplication in elliptic curve cryptography. Recently, a decomposition method was introduced, with an intention
to generate addition chain with minimal possible terms. Totally different from others, this new method uses rule
representation for prime factors of n, and a new algorithm to generate a complete chain for n. Although the chain
is not always optimal, the method is shown to outclass other existing methods for certain cases of n. The method
is based on prime power decomposition and it can be seen as a two-layered approach, prime layer and prime
power layer. In this paper, we adapt an idea of non-adjacent form into decomposition method at prime layer. This
new hybrid method is called signed decomposition method. Our objective is to reduce the number of addition
operations for each p by transforming an original unsigned rule into a signed rule. The study shows that the length
of this new chain is confined to the same boundary as that of an optimal chain. A series of tests shows that our
method outperforms decomposition method as well as earlier methods significantly. Moreover, possible saving of
terms can be made more noticeable as we increase the prime factor.
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1 Introduction

An addition chain is defined as a sequence of inte-
gers a0, a1, . . . , ar starting from 1 = a0 and ending
with n = ar with only addition and doubling opera-
tions of two previous terms are permitted. This topic
has emerged for more than 100 years ago [6] and the
field has gradually established itself after it has found
its applicability in elliptic curve cryptography (ECC)
[1, 2]. In ECC, addition chain method is used to com-
pute the most important operation namely scalar mul-
tiplication denoted as Q = nP where P and Q are
points on elliptic curve and n is a very large positive
integer. Direct multiplication consumes tremendous
amount of computational resources, whereas, naive
method that performs the addition of P for n−1 times
is considered inefficient especially when n gets large.
The best solution is to use addition chain method.

Although the hardness of finding an optimal chain
for any integer n was not proven to be NP-complete,
[3] has proved for the generalized case, that finding
optimal addition chains for each integer in a sequence,
which they regarded as addition sequence problem, is
NP-complete. As a result, many heuristic methods
such as binary method [4], non-adjacent form method

[8, 16, 15, 12, 7, 14], mutual-opposite form method
[15, 10] and complementary recoding method [11]
were introduced and each method works well in some
occasions.

Recently, another heuristic method called decom-
position method (DM) [5] was introduced. For an
integer n, DM works out an addition chain from its
prime factors. Moreover, it takes an input in the form
of rules which is unique to each prime, different from
earlier methods which were based on binary represen-
tation. DM was shown to perform better than previous
methods under certain circumstances. However, its
capability is likely to be comparable to BM in most
cases. Unlike previous methods, DM splits up the
problem of generating an addition chain for n into a
two-layered approach, the lower layer concerns with
individual prime and the upper layer deals with prime
powers that builds up n.

Noteworthy, methods we listed above are based
on binary representation which uses {0,±1} to repre-
sent n. There are other representations such as m-ary
and also multiple basis, but that are considered to fall
under different family. Since computer representation
for data is in bits, binary representation has a tendency
to be more efficient during preprocessing.
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The method to be proposed namely signed de-
composition method (SDM), based on binary repre-
sentation, is an improvement to the DM. Initially, a
list of primes p1, p2, . . . , ps is randomly generated in
a form of rules. A prime is uniquely determined by
a rule. From each rule, we can generate one spe-
cific chain. The size of each prime is proportional
to the length of its respective rule and is control-
lable and can be made suitable for ECC scalar. Let
n = p1.p2. . . . .ps, a chain for n can be computed by
operating a rule after the other which can be seen as
concatenating a chain to another that will produce an
ascending sequence of integers similar to that of an
addition chain.

This way, SDM does not randomly generate
n, form an appropriate representation of which nP
can be computed as a sequence of integer point
P, 2P, . . . , nP in similar fashion as that of previous
methods. Instead, it randomly generates a list of rules,
one for each prime and from these rules, nP can be
computed where n itself is the result of multiplying
primes altogether.

SDM aims at shortening an addition chain by op-
timizing the add rule at prime layer by adapting the
idea of non-adjacent form [9]. This method can
also be seen a hybrid of decomposition method and
non-adjacent form method. Some analysis will be
performed to determine the boundary value of this
method. For the purpose of performance comparison,
SDM is tested against other methods that fall within
the same family.

From security perspective, if we use this method
for message encryption as that found in ECC El-
Gamal analogue, as an example, we affirm that this
method does not introduce any new loopholes. The
fact that rules are not interchanged between parties,
rather be wrapped up into an encrypted message will
maintain the security of ECC.

The remaining of this paper is organised as fol-
lows. Section 2 starts off by revisiting DM. Section 3
introduces the idea behind SDM and its translation
into some mathematical formulation. Section 4 de-
velops the whole idea of SDM into a computational
model. Section 5 analyzes the boundary of an addi-
tion subtraction chain produced by SDM. Section 6
includes a comparative results on SDM against other
earlier methods. Finally, Section 7 serves as a sum-
mary to the findings.

2 Decomposition Method

A decomposition method (DM) was introduced as an
alternative to other existing methods. Instead of gen-
erating n, this method begins with a list of primes and

its powers that make up n. Each prime is transformed
into a rule of which an addition chain for n can be gen-
erated from the combination of these rules. However,
the work of converting a prime to a rule requires some
precomputations. It was also mentioned about gener-
ating rule or a combination of rules as a replacement
to different p that make up n. DM uses these rules
to generate an addition chain for n. By doing this,
the efficiency will be improved as the needs for pre-
computation can be avoided. Furthermore, the idea
adds up an extra security to the system, where unlike
number, rule cannot easily be understood and manipu-
lated by adversaries. In this paper, a study of DM will
be advanced further, and this starts with a redefinition
of rule from DM. Prior doing that, some necessary
conditions must first be determined.

A rule will normally be generated at random by
some random generator. It constitutes of dbl and add
elements representing doubling and addition opera-
tions respectively. Each rule starts with a list of dbl’s
followed by a number of add’s. Doubling always in-
volves the immediate predecessor term. The number
of dbl’s denoted as #dbl specifies the range for p in
that 2#dbl ≤ p ≤ 2#dbl+1. The following number of
add’s denoted as #add cannot be more than the num-
ber of dbl’s such that 0 ≤ #add < #dbl. Within
add rule, the first operand always be the immediate
predecessor term while the second operand is taken in
descending order from terms generated by dbl rule as
the add rule ascends to the right.

The fact that [5] studied rules for prime numbers,
similarly in this paper, a study is focused on prime
rule. Nonetheless, a generic term ’rule’ will be sub-
categorized into unsigned rule and signed rule which
refers to DM and SDM respectively. Definition 1 sug-
gests a more accurate definition for unsigned rule.

Definition 1 Let p be a prime. An unsigned rule for
p denoted by rule(p) is defined as a sequence of dbl’s
followed by add’s of the form

rule(p) = dbl(a0), dbl(a1), . . . , dbl(ai−1), add(ai, aj1),

add(ai+1, aj2), . . . , add(ar−1, ajm)

where:
(1) a0, a1 = dbl(a0), a2 = dbl(a1), . . . , ar =
add(ar−1, ajm) is the respective addition chain for
which 0 ≤ jm < . . . < j2 < j1 ≤ i− 1,
(2) ajc > 0 for all c such that 1 ≤ c ≤ m.

Definition 1 describes the complete form of a rule.
The combination by means of keeping some terms of
add(ai, aj) and throwing others makes up a unique p

between 2#dbl to 2#dbl+1 inclusive.
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It has been demonstrated earlier that for some
primes, DM produces the shortest chain among oth-
ers, however in other cases it is not. This is due to the
fact that a rule for a prime p does not always produce
the shortest chain especially when comparing to NAF.
In spite of this, the original idea of DM has opened
up an opportunity for study on addition chain prob-
lem and an improvement for this shortcoming in DM
will be the main topic to be addressed in the remaining
sections.

3 Signed Decomposition Method

Signed decomposition method (SDM) is brought for-
ward to address the weaknesses found in DM. SDM
accepts an unsigned input rule from DM and in re-
turn produces a signed rule. SDM aims at optimiz-
ing the add rules within unsigned rule. Obviously, it
does not touch the dbl rule as there is nothing much
that can be done. Similar to the idea of NAF, SDM
allows not only addition of terms but also subtract-
ing them. This is valid because subtraction requires
no significant extra resource than addition on elliptic
curve. By allowing subtraction operation into the pic-
ture, an original addition chain can be redefined into
an addition subtraction chain. The following study is
strictly dedicated for SDM.

Definition 2 An addition subtraction chain for n is
a sequence of positive integers of the form a0 =
1, a1, . . . , ar = n such that ai = ai−1 ± aj where
j ≤ i − 1 < i, 0 ≤ i ≤ r. The generation of ai must
satisfy the following conditions:
(1) if ai−1 = aj , then ai ≤ ar or ai > ar.
(2) if ai−1 6= aj and ai = ai−1 + aj , then ¬∃k > j
such that ai = ai−1 + ak ≤ ar or ¬∃k < j such that
ai = ai−1 + ak ≥ ar.
(3) if ai−1 6= aj and ai = ai−1 − aj , then ¬∃k > j
such that ai = ai−1 − ak ≥ ar or ¬∃k < j such that
ai = ai−1 − ak ≤ ar.

The following definitions for doubling and addi-
tion operations are similar to that found in [5]. We
rewrite them here for the purpose of completeness.

Definition 3 A doubling operation (dbl) for any term
ai in a sequence a0, a1, . . . , ar is defined as ai =
dbl(ai−1) = 2ai−1.

A doubling operation (dbl) for any term ai is still
defined as ai = 2ai−1 as in Definition 2(1), although
this time ai can be greater than ar. Whereas, an addi-
tion operation (add) is still ai = ai−1 + aj although
the decision on aj must follow Definition 2(2).

Definition 4 An addition operation (add) for any
term ai is defined as ai = ai−1 + aj , where 0 ≤ j <
i− 1.

An original add rule can be optimized into add or
sub rules. In addition, following to dbl and add rules
from DM, a new definition for sub rule is proposed
here. Similarly, the choices of aj within sub rule is
decided according to Definition 2(3).

Definition 5 A subtraction operation (sub) for any
term ai is defined as ai = ai−1 − aj , such that
ai−1 − aj ≥ ar where 0 ≤ j < i− 1.

Although the selection on which operation to be
operated (dbl or (add or sub)) and the element within
the add or sub term is now different, they must abide
by the conditions given by Definition 2. This selection
process ensures the minimality of the addition sub-
traction chain.

First, let’s present an idea behind SDM with some
concrete examples. Consider a prime p. During the
computation of its addition subtraction chain, to find
the next term ai+1, the concept of ’closest’ value to
p is used. This is a two-step approach where at first
a decision on the type of operation for ai+1, dbl or
add/sub must be made, and if add/sub is chosen, an
appropriate second operand corresponds to the opera-
tion must follow. To illustrate this idea, consider the
following examples. First, let p = 23. SDM gener-
ates the chain of 1, 2, 4, 8, 16, 24, 23. The first four
operations were chosen to be dbl’s as their values al-
ways produce the term closer to 23 than any add/sub
rule. At ai = 16, to calculate ai+1, there is a choice
to add 4 or 8 to ai such that ai+1 could either be
ai+1 = 20 < p or ai+1 = 24 > p. Here 8 is cho-
sen because 24 is closer to 23 than to 20. For the
second example, let p = 31. This method produces
the chain of 1, 2, 4, 8, 16, 32, 31. Again, the first four
terms were generated as a result of dbl operations. At
ai = 16, to find ai+1, there is a choice to add 8 or 16 to
ai such that ai+1 = 24 < p or ai+1 = 32 > p. In this
case, 16 is chosen because 32 is closer to 31 than to
24, and the resulting operation is instead a doubling.

Definition 6 Let p be a prime. A term ai+1 = ai± aj
for which 0 < j ≤ i is considered as the closest value
to p if |p− (ai± aj)| < |p− (ai± ak)| for any k 6= j.

Remark 7 If p is equidistant from both sides, the
lower value is considered as the ’closest value’.

Meanwhile, to show SDM surpasses others, con-
sider p = 47. This method produces a chain 1, 2, 4, 8,
16, 32, 48, 47 of length 7 whereas BM, NAF and CR
produce chains of length 9, 8 and 8 respectively.
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It was shown earlier that, to calculate the next
term based on add or sub rule, two operands will be
combined together by means of addition or subtrac-
tion respectively. The value of p will be in between
add(ai, ajr) < p < add(ai, ajr+1) where ai is the
immediate predecessor and ajr and ajr+1 are those
terms generated as a result of doubling operations ear-
lier. The decision to select ajr or ajr+1 will be de-
termined by their closeness to p for which the closer
value is to be chosen. However, there are cases when
p is equidistant from both sides. For the purpose of
implementation, the lower value is chosen. In a case
where ai > p, the coming operation for ai+1 must be
a sub, otherwise it will be an add. Note that, there is
also a case where a presumed add becomes a dbl due
to adding ai to itself as shown in the second example.

Let’s generalized p to n for a moment. Consider
addition rules for small n. Table 1 provides an in-
dividual chain for 2 ≤ n ≤ 16 which separates dbl
and add/sub sequence into different columns. Un-
der Column 1 comes the dbl rule, which is similar for
both DM and SDM, under Column 3 are add rules for
DM and under Column 4 are add/sub rules belongs
to SDM.

Observe closely that the pattern for add rules for
the first 2i−1 elements based on dbl = 2i can be seen
to be elements based on dbl = 2i−1. As an exam-
ple, add rules for n = 9, 10, 11, 12 based on dbl =
1, 2, 4, 8 have a pattern of add rules for n = 5, 6, 7, 8
respectively, based on dbl = 1, 2, 4. Studies under-
taken on Column 3 and Column 4 have discovered
two interesting findings. The first one says that, if two
consecutive add rules in Column 3 uses two consec-
utive doubling terms as their second operands, it can
be exchanged without any losses to the add/sub rules
shown in Column 4. The idea applies to n = 7, 11, 14.
Another one says that, if at least three consecutive
add rules in Column 3 uses three consecutive dou-
bling terms as their second operands, it can be ex-
changed to the add/sub rules in Column 4 for some
gains. This idea applies to n = 15. From these obser-
vations, it can be concluded that for the first case, one
need not do anything unless by so doing will trigger
another substitution which will optimize the rule. But
for the second case, one should transform the rule on
Column 3 into the rule on Column 4. As a result of
the first case, one can avoid the disadvantage of NAF
which unnecessarily substitutes two consecutive non-
zero terms. As an example, NAF substitutes 10011
with 10101̄ which produces no gain. Moreover, hav-
ing n in a form of rule eliminates the possibility of
adding an extra digit to the left of most significant bit
in a case where two or more consecutive 1’s appear
as that of NAF. As an example NAF substitutes 1100
with 101̄00. For the simplicity of SDM implemen-

tation, all block of two 1’s will be substituted even
though it does not induce another substitution. This
does not affect the original idea of ’closest’ value pre-
sented earlier as both techniques generate the same
number of terms.

Based on the discussion above, a proposed itera-
tive method to generate a signed rule from an unsigned
rule of DM is presented here. Considering a rule for p
as rule(p), such an iterative process can be described
as follows.

Let
rule(p) = dbl(a0), dbl(a1), . . ., dbl(ai−1),

add(ai, aj1), add(ai+1, aj2), . . ., add(ar−1, ajm)
where 0 ≤ jm < . . . < j2 < j1 ≤ i− 1.

Step 1: The process starts at rule add(ar−1, ajm)
and move one rule to the left each time until rule
add(ai, aj1). For c from m to 1, if found ajc 6= 0,
scan ajc−1 , ajc−2 and so on until zero digit is found.

Step 2: If ajc .ajc−1 . . . . .ajc−l
6= 0 with l+1 con-

secutive terms such that l+1 ≥ 2. Let i < t < r− 1,
then apply the following substitutions:

ajc−l
⇐ ajc−(l+1)

such that add(at, ajc−l
) be-

comes add(at, ajc−l+1).
ajc ⇐ −ajc such that add(at+l, ajc) becomes

sub(at+l, ajc).
{ajc−l

, ajc−(l−1)
, ajc−(l−2)

, . . . , ajc−1} ⇐ 0 such
that all terms add(at+1, ajc−l

), add(at+2, ajc−(l+1)
),

. . . , add(at+(l−1), ajc−1) are eliminated.
Step 3: The first operand for rules starting

from add/sub(at+l, ajc) through to the right most
must be shifted to the left l − 1 steps such that
add/sub(at+l, ajc) becomes add/sub(at−1, ajc) and
so on. This value represents the number of add rules
that was cancelled during substitution.

Step 4: Repeat Steps 1-3 until no more 3 consec-
utive terms of the second operand exists.

Another example, consider an integer p =
23910 = 111011112. The unsigned rule for 239 gen-
erated by DM is

rule(239) = dbl(a0), dbl(a1), dbl(a2),
dbl(a3), dbl(a4), dbl(a5), dbl(a6), add(a7, a6),
add(a8, a5), add(a9, a3), add(a10, a2), add(a11, a1),
add(a12, a0).
Applying the algorithm for the first substitution yields

rule(239) = dbl(a0), dbl(a1), dbl(a2), dbl(a3),
dbl(a4), dbl(a5), dbl(a6), add(a7, a6), add(a8, a5),
add(a9, a4), sub(a10, a0).
Applying the algorithm for the second substitution
yields

rule(239) = dbl(a0), dbl(a1), dbl(a2), dbl(a3),
dbl(a4), dbl(a5), dbl(a6), add(a7, a7), sub(a8, a4),
sub(a9, a0).

At this end, no more sub is possible. The result of
the algorithm above is regarded as the signed rule of
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Table 1: Addition rule for n ≤ 16
dbl rule n DM add rule SDM add/sub rule
dbl(a0) 3 add(ai, a0)

4 add(ai, a1)

dbl(a0), dbl(a1) 5 add(ai, a0)

6 add(ai, a1)

7 add(ai, a1)+add(ai, a0) add(ai, a2)+sub(ai, a0)
8 add(ai, a2)

dbl(a0), dbl(a1), dbl(a2) 9 add(ai, a0)

10 add(ai, a1)

11 add(ai, a1)+add(ai, a0) add(ai, a2)+sub(ai, a0)
12 add(ai, a2)

13 add(ai, a2)+add(ai, a0)
14 add(ai, a2)+add(ai, a1) dbl(ai, a3)+sub(ai, a1)
15 add(ai, a2)+add(ai, a1)+add(ai, a0) dbl(ai, a3)+sub(ai, a0)
16 add(ai, a3)

SDM. As a consequence, an original rule with 13 op-
erations is now consisting of 10 operations, less three
operations. From the studies above, a new definition
for a signed rule can be suggested.

Definition 8 Let p be a prime. A signed rule for p
denoted by rule(p) is defined as a sequence of dbl’s
followed by add/sub’s of the form

rule(p) = dbl(a0), dbl(a1), . . . , dbl(ai−1), add/sub(ai,

aj1), add/sub(ai+1, aj2), . . . , add/sub(ar−1, ajm)

where:
(1) a0, a1 = dbl(a0), a2 = dbl(a1), . . . , ar =
add/sub(ar−1, ajm) is the respective addition sub-
traction chain for which 0 ≤ jm < . . . < j2 < j1 ≤ i,
(2) ajk > 0 for all k such that 1 ≤ k ≤ m.

Be it signed or unsigned, similar notation will be
used for a rule for p which is rule(p). What really
decides the different is the content within the rule.
The question arises whether signed rule preserves the
uniqueness property as that of unsigned rule. The fol-
lowing theorem have it all.

Theorem 9 An addition subtraction chain
a0, a1, . . . , ar for a prime p can be computed
from a given signed rule and each rule is unique to
each p.

Proof: First, the proof of each signed rule is an addi-
tion subtraction chain is laid out. For each value of ai
such that 2ai < ar and 2ai+1 > ar, by Definition 2,
the maximum number of dbl operations is i+1. Simi-
larly, a0 is always set to 1 and by Definition 8, the first

operation is always dbl. As a consequence, a0 = 1
and a1 = 2. Therefore, there always exists a path to
ar = p starting from ai+1 or ai+2 as a result of addi-
tion and subtraction operations.

To prove the uniqueness of this relation, suppose
there are two different signed rules for p, both having
i and j number of doubling operations. It will be
shown that they both are the same.
rule1(p) = dbl(a0), dbl(a1), . . ., dbl(ai−1),
add/sub(ai, as1), add/sub(ai+1, as2), . . .,
add/sub(am1−1, asx)
rule2(p) = dbl(b0), dbl(b1), . . ., dbl(bj−1),
add/sub(bj , bt1), add/sub(bj+1, bt2), . . .,
add/sub(bm2−1, bty)
Consider the corresponding chains for both rules
chain1(p) = a0, a1, a2, . . ., ai, . . ., am1 =
add/sub(am1−1, asx)
chain2(p) = b0, b1, b2, . . ., bj , . . ., bm2 =
add/sub(bm2−1, bty)
If the two chains can be proved to be equal, it can be
deduced that both rules are also equal because rule
and chain are interchangeable. Let’s show that each
ai is a bj for some i and j from i = 0, 1, . . . ,m1

and j = 0, 1, . . . ,m2. According to Definition 2(1)
and condition set by Definition 6, the number of dou-
blings d, for chain1(p) is equal to that of chain2(p).
Hence, a0 = b0, a1 = b1, . . . , ad = bd for the first
d + 1 terms where 0 ≤ d ≤ m1. Since the terms
asu and btv for 0 ≤ su, tv ≤ d, 1 ≤ u ≤ x and
1 ≤ v ≤ y, were a result of previous doublings, by
Definition 2(2,3) and condition set by Definition 6,
asu = btv . Inductively, from ai+1 = ai ± asx and
bi+1 = bi ± bty and since ai = bi and asu = btv , this
yields ai+1 = bi+1, ai+2 = bi+2, and so forth until
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the last term am1 = bm2 .
Let’s show that m1 = m2 by contradiction. Assume
m1 6= m2 such that m1 > m2. By the same argument
as above, a0 = b0, a1 = b1, . . . , am2 = bm2 . For all
ai, i > m2, there exists no bi such that ai = bi. This
could be the result of different number of doublings
or/and the number of additions/subtractions on both
chains. By Definitions 6, this will produce two
different integers. Hence m1 = m2. ut

Lemma 10 Suppose a signed rule for a prime p is
given by

rule(p) = dbl(a0), dbl(a1), . . . , dbl(ai−1), add(ai, aj1),

add(ai+1, aj2), . . . , add(ar−1, ajm)

then the signed decomposition method generates an
addition subtraction chain for any composite integer
n = pe in a sequential and n = aer.

Proof: By Definition 2, this proof follows similar
technique as Lemma 2.11 in [5]. ut

Lemma 11 Suppose signed rules for each primes pi,
for i = 1, 2, . . . , s gives the following addition sub-
traction chains

chain(pi) = ai0 , ai1 , ai2 , . . . , airi .

Then the signed decomposition method generates an
addition subtraction chain for n = pe11 pe22 . . . pess in a
sequence and n = a∑s

i=1 ei.iri
.

Proof: By Definition 2, Definition 6 and Lemma 10,
this proof can be completed in similar technique as
Lemma 2.13 in [5]. ut

For each signed rule, the average number of ad-
dition operation given by this method is #dbl

3 , shorter
than the average produced by DM which is #dbl

2 . In
general, it is similar to that of NAF where #dbl is sub-
stituted to l, the length of binary representation except
for the case where NAF performs redundant substitu-
tion.

4 Algorithm Development

As stated earlier, this study is proposed for decom-
posed n in prime power pe11 pe22 . . . pess form. Algo-
rithm 1 takes an input rule(p1, p2, . . . , ps) and gener-
ates the complete chain for n.

Algorithm 1. Generating chain for n

1. INPUT: rule(p1, p2, . . . , ps), e1, e2, . . . , es

2. for i from 0 to s− 1 step-up by 1
3. for k from 0 to ei − 1 step-up by 1

4. for l from 0 to ci − 1 step-up by 1

5. if rule is dbl

6. aieici+kci+l+1 = 2.aieici+kci+l

7. else if rule is add

8. aieici+kci+l+1 = aieici+kci+l + aieici+kci+j

9. else if rule is sub

10. aieici+kci+l+1 = aieici+kci+l − aieici+kci+j

11. OUTPUT: a0, a1, . . . , ar = n

We use array to store all the terms generated from
the chain starting from a0. This is necessary as the
add rule will use some of the previous terms, if not
all in its addition or subtraction operations. There
will be one rule assigned for each prime pi. This
rule is executed ei number of times. For each i, let
ci = #(dbl + add)i be the number of doubling and
addition operations for pi. The code seems a bit com-
plicated with 3 nested loops but the complexity is ap-
proximated to ci.ei.s.

5 Analysis

Earlier studies show that the length of an addition
chain produced by DM, ldm(n) is bounded by the
same boundary as that of optimal addition chain l(n)
for which ldm(n) ≥ l(n). For a quick recap, con-
sider n = pe11 pe22 . . . pess such that 2m + 1 ≤ n ≤
2m+1. The boundary for ldm(n) is given by m+ 1 ≤
(m1.e1 + m2.e2 + . . . + ms.es) + 1 ≤ ldm(n) ≤
2(m1.e1 +m2.e2 + . . .+ms.es) ≤ 2m.

Thanks to P. Erdös, the study for the length of
an addition subtraction chain generated by SDM, de-
noted as lsdm(n) is made easier. In his paper, [17]
proved that the length of optimal addition subtraction
chain, denoted as l

′
(n) is always shorter than, if not

equally lengthy to an optimal addition chain l(n) such
that l

′
(n) ≤ l(n). Due to this the following theorems

will be stated without further proofs.

Lemma 12 Let p be an odd prime, lsdm(p) ≤ ldm(p).

Proof: Proof is deducible from [17]. ut
By Lemma 10, given a signed rule for p of length

r, SDM computes the chain for pe giving the length
as e multiple of the length for chain p such that
lsdm(pe) = er = e× lsdm(p).
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Lemma 13 Let p be an odd prime, lsdm(pe) ≤
ldm(pe) for e ∈ Z+.

Proof: Since lsdm(pe) = elsdm(p). By Lemma 12,
elsdm(p) ≤ eldm(p) which yields lsdm(pe) ≤
ldm(pe). ut

By Lemma 11, given a signed rule for pi of length
ri for 1 ≤ i ≤ s, SDM computes the length of an
addition subtraction chain for n = pe11 pe22 . . . pess , giv-
ing the length as a summation of ei multiple of the
length for chain pi, for all i such that lsdm(n) =∑s

i=1 eiiri =
∑s

i=1 eilsdm(pi).

Theorem 14 Let n = pe11 pe22 . . . pess . lsdm(n) ≤
ldm(n) for e1, e2, . . . , es ∈ Z+.

Proof: Earlier we have lsdm(pe11 pe22 . . . pess ) =
lsdm(pe11 ) + lsdm(pe22 ) + . . . + lsdm(pess ) =
e1lsdm(p1) + e2lsdm(p2) + . . . + eslsdm(ps) and by
Lemma 12, for all i, eilsdm(pi) ≤ eildm(pi), it is safe
to write e1lsdm(p1)+e2lsdm(p2)+. . .+eslsdm(ps) ≤
e1ldm(p1) + e2ldm(p2) + . . . + esldm(ps). Group-
ing back, lsdm(pe11 ) + lsdm(pe22 ) + . . .+ lsdm(pess ) ≤
ldm(pe11 ) + ldm(pe22 ) + . . . + ldm(pess ) will yield
lsdm(pe11 pe22 . . . pess ) ≤ ldm(pe11 pe22 . . . pess ). ut

The relationship of the four different chains fol-
lows these inequalities l

′
(n) ≤ l(n) and lsdm(n) ≤

ldm(n). Although in general, the case of lsdm(n) ≤
l(n) (or otherwise) is not always true.

As an extension to the studies on DM, the bound-
ary for the length of an addition subtraction chain gen-
erated by SDM can also be determined. For an integer
in certain number range, of which studies was initi-
ated by [13], the following assertions can be made.

Lemma 15 Given an odd prime p, m + 1 ≤
lsdm(p) ≤ 2m for 2m + 1 ≤ p ≤ 2m+1.

Proof: Simply substituting lsdm(p) in place of ldm(p)
as a consequence of Lemma 12 and Lemma 4.3 in [5]
completes the proof. ut

Lemma 16 Let n = pe such that 2m + 1 ≤ n ≤
2m+1, if mp + 1 ≤ lsdm(p) ≤ 2mp then m + 1 ≤
emp + 1 ≤ lsdm(pe) ≤ 2emp ≤ 2m , where mp is
associated with chain generated by SDM.

Proof: Simply substituting lsdm(p) in place of ldm(p)
as a consequence of Lemma 13 and Lemma 4.6 in [5]
completes the proof. ut

Theorem 17 Let n = pe11 pe22 . . . pess such that 2m +
1 ≤ n ≤ 2m+1. Then lsdm(n) is bounded as m+1 ≤
(m1.e1 + m2.e2 + . . . + ms.es) + 1 ≤ lsdm(n) ≤
2(m1.e1 +m2.e2 + . . .+ms.es) ≤ 2m where 2mi +
1 ≤ pi ≤ 2mi+1 for all 1 ≤ i ≤ s.

Proof: Simply substituting lsdm(p) in place of ldm(p)
as a consequence of Lemma 14 and Lemma 4.7 in [5]
completes the proof. ut

Instead of depending solely on the properties of
binary representation for n, SDM opens up a new win-
dow of improving an addition chain by decomposing
n into two layers, an individual prime and prime pow-
ers.

6 Results

A series of rigorous test was conducted to compare
SDM against previous methods such as BM, NAF, CR
and DM, for integers from 2 to 1000000. Such limit
for the test was chosen for our convenience, as the use
of bigger numbers would require tremendous amount
of additional computing time. Initially, we investi-
gate the chains generated by SDM against previous
methods. This is followed by a test to simulate real
world application for large integer n which are ran-
domly generated.

We conducted a series of tests to examine the
properties of an addition subtraction chain produced
by SDM against other previous methods. Each of
these tests takes an input n in a form of pe11 pe22 . . . pess .
The result shows that chains generated by SDM are
shorter than the previous methods 421498 times, the
previous methods produce shorter chains than SDM
for 338478 times. Meanwhile for the other 240023
values, they produce chains of at equal length.

We also conducted another test to extend the re-
sult from [5] to include SDM with prime-power in-
puts. Similarly, the test takes an input of approxi-
mately 100 decimal digit integer, equivalent to 300
bits which is well above the number required by the
current standard. Various combination of primes were
selected at random to make up n. In some cases, SDM
produces a chain shorter than previous methods and
the difference can be large.

From Table 2, consider the first row when n =
315.177.4922.7313.9711. For this n, SDM produces a
chain of 411 terms, which is similar to DM but shorter
by 27 terms than NAF. In this case, SDM improves
NAF by 6.2 percents.

WSEAS TRANSACTIONS on COMMUNICATIONS M. A. Mohamed, M. R. Md. Said

E-ISSN: 2224-2864 150 Volume 14, 2015



Table 2: Computational result for n of ∼100 decimal digits using different set of primes
Range Prime BM NAF CR DM SDM
2 ≤ p < 100 315.177.4922.7313.9711 494 438 492 411 411
2 ≤ p < 1000 312.8310.31115.92911 475 425 472 452 422
2 ≤ p < 10000 115.52123.717710 543 469 515 438 438
2 ≤ p < 100000 521.23917.591139 491 441 486 500 431
2 ≤ p < 1000000 12711.91771313 505 445 499 457 413
100 ≤ p < 1000 10110.3535.7098.92915 507 460 491 444 444
1000 ≤ p < 10000 15539.552113.91135 479 432 489 438 428
10000 ≤ p < 100000 4920112.999898 487 422 472 412 412
100000 ≤ p < 1000000 85141915 455 396 432 495 375

Consider the fifth row when n =
12711.91771313, it can be seen that SDM again
produces the shortest chain among others, with 413
terms. However, DM produces a chain of 457 terms
while NAF of 445. Against DM, we figure that NAF
introduces an improvement of 2.6 percents (by 12
terms), while SDM of 9.6 percents (by 44 terms).
Moreover, for the same n, SDM also improves NAF
by 7.2 percents (by 32 terms). This is an example
where SDM closed up some weaknesses in DM as
well as outclassed the performance of NAF.

In our studies, we specifically compare our re-
sult with NAF because NAF is considered as the best
among other existing methods. Empirically, SDM
outperforms previous methods in its ability to gener-
ate shorter chains with significant improvement.

7 Conclusion

Subtraction operation is employed within signed de-
composition method as an aggregation to the original
doubling and addition operations within decomposi-
tion method. Initial DM is a two-layered approach. In
this studies, SDM aims at improving chain at prime
layer. The obtained result agrees with the theoreti-
cal findings introduced at the earlier section. In cases
studied, SDM is the method that produces shorter ad-
dition subtraction chain than older methods. Apart
from efficiency, it also provides an extra layer of pro-
tection through an unusual form of rule which cannot
easily be manipulated as of number.
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